Σύνοψη Διαλέξεων 10ης-11ης (Ακ. Έτος 2021-22)
Συνεχίσαμε την εξαγωγή σειράς από αποτελέσματα που συγκροτούν ένα μικρό μέρος του (ατελούς) λογισμού που χρησιμεύει στην διακρίβωση του αν μια ακολουθία είναι συγκλίνουσα, ή/και όταν είναι, στην εύρεση του ορίου αυτής. Είδαμε ότι αν μια ακολουθία είναι συγκλίνουσα είναι και φραγμένη οπότε ισοδύναμα αν μια ακολουθία είναι μη φραγμένη τότε αναγκαστικά είναι αποκλίνουσα, ότι όταν μια συγκλίνουσα ακολουθία έχει μη αρνητικούς όρους,τότε το όριο της δεν μπορείνα είναι αρνητικό, και ότι το ζήτημα της σύγκλισης της ακολουθίας δεν επηρεάζεται καθόλου από την συμπεριφορά όποιου πεπερασμένου μέρους της ακολουθίας.
Παρατηρήσαμε ότι η διατύπωση στοιχείων αυτού του λογισμού θα είναι πιο ευχερής μεταγράφοντας τον αρχικό γεωμετρικό ορισμό του ορίου σε ισοδύναμο αναλυτικό ορισμό, χρησιμοποιώντας τους ποσοδείκτες ("υπάρχει" και "για κάθε" ) και ανισότητες. Τον εξάγαμε και είδαμε πως εφαρμόζεται σε παραδείγματα και αντιπαραδείγματα. Προχωρήσαμε μέσω της χρήσης του στην διακρίβωση της σχέσης της σύγκλισης με τις αλγεβρικές πράξεις που έχουμε μελετήσει για πραγματικές ακολουθίες.
Πρόχειρες σημειώσεις για τα παραπάνω και ασκήσεις μπορείτε να βρείτε εδώ και εδώ.
Τους πίνακες των διαλέξεων του Ακ. Έτους 2020-21 που εμπεριέχουν και μέρος των παραπάνω, μπορείτε να βρείτε εδώ και εδώ. Τους πίνακες της φετινής 10ης διάλεξης μπορείτε να βρείτε εδώ.
Περαιτέρω Ασκήσεις
- Έστω συγκλίνουσα ακολουθία όπου κάθε όρος της οποίας είναι μεγαλύτερος ή ίσος του πραγματικού αριθμού C. Να δειχθεί ότι το όριο είναι επίσης μεγαλύτερο ή ίσο του C.
- Έστω συγκλίνουσα ακολουθία όπου κάθε όρος της οποίας είναι μικρότερος ή ίσος του πραγματικού αριθμού C. Να δειχθεί ότι το όριο είναι επίσης μικρότερο ή ίσο του C.
- 'Εστω ακολουθία για την οποία οι απόλυτες τιμές σχεδόν όλων των όρων είναι μεγαλύτερες ή ίσες των απολύτων τιμών των αντίστοιχων όρων ακολουθίας που δεν είναι φραγμένη. Να δειχθεί ότι η αρχική ακολουθία είναι αποκλίνουσα.
- Δείξτε το Λήμμα (Μοναδικότητα) αποκλειστικά μέσω του αναλυτικού ορισμού.
- Δείξτε ότι συγκλίνουσα ακολουθία με κάτω φράγμα το 1 δεν μπορεί να έχει όριο μικρότερο του 1.
- Δείξτε ότι συγκλίνουσα ακολουθία με άνω φράγμα το 1 δεν μπορεί να έχει όριο μεγαλύτερο του 1.
- Δείξτε ότι το όριο συγκλίνουσας ακολουθίας δεν μπορεί να είναι μικρότερο από το inf και μεγαλύτερο από το sup αυτής.
- Να δείξετε μόνο μέσω του αναλυτικού ορισμού ότι η συγκλίνει στο 1.
- Να δείξετε μόνο μέσω του αναλυτικού ορισμού ότι η δεν συγκλίνει σε όποιον πραγματικό διάφορο του
- Να δείξετε ότι το γινόμενο φραγμένης με συγκλίνουσα στο μηδέν ακολουθία είναι ακολουθία που επίσης συγκλίνει στο μηδέν. Θα ήταν δυνατόν να συμβαίνει κάτι τέτοιο ακόμη και αν η πρώτη δεν ήταν φραγμένη αλλά αποκλίνουσα;
Σχόλια (0)