Σύνοψη Διαλέξεων 8ης-9ης (Ακ. Έτος 2021-22)

Κυριακή, 21 Νοεμβρίου 2021 - 11:19 μ.μ.
- από τον χρήστη ΑΡΒΑΝΙΤΗΣ ΣΤΥΛΙΑΝΟΣ

Συνεχίσαμε την διερεύνηση ζητημάτων μονοτονίας για τις πραγματικές ακολουθίες. Δείξαμε ότι η μονοτονία προκύπτει ισοδύναμα από την σύγκριση μεταξύ των όρων σε κάθε ζεύγος διαδοχικών όρων της ακολουθίας. Παρατηρήσαμε ότι οι (γνησίως) αύξουσες ακολουθίες είναι αναγκαστικά φραγμένες από κάτω, ενώ δυικά οι (γνησίως) φθίνουσες ακολουθίες είναι αναγκαστικά φραγμένες από πάνω. Παρόλα αυτά υπάρχουν μονότονες ακολουθίες που δεν είναι φραγμένες ακριβώς επειδή τους λείπει η ύπαρξη του έτερου φράγματος, ενώ υπάρχουν και ακολουθίες που δεν είναι ούτε μονότονες ούτε και φραγμένες.

Όταν όμως μια ακολουθία συνδυάζει και τις δύο ανωτέρω ιδιότητες τότε διαθέτει ένα ενδιαφέρον χαρακτηριστικό το οποίο θα μας βοηθήσει στην νοηματοδότηση του ορίου. Ξεκινήσαμε να το αναπτύσσουμε χρησιμοποιώντας το γενικό παράδειγμα φραγμένης και αύξουσας ακολουθίας όπου και είδαμε ότι θα εμφανίζει μορφή "ασυμπτωτικής συγκέντρωσης" "γύρω από" το sypremum της. Δυικά ισχύει  "ασυμπτωτικής συγκέντρωσης" όποιας φραγμένης και φθίνουσας ακολουθίας "γύρω από" το infimum της.

Τα παραπάνω μας οδήγησε στην ακριβή (καταρχάς γεωμετρική) διατύπωση της έννοιας του ορίου πραγματικής ακολουθίας. Μέσω αυτής διαπιστώσαμε ότι υπάρχουν τόσο συγκλίνουσες (π.χ. οι φραγμένες και μονότονες) όσο και αποκλίνουσες ακολουθίες (π.χ. εναλλάσουσες). Εξετάσαμε περαιτέρω παραδείγματα, και ξεκινήσαμε την εξαγωγή μιας σειρά από αποτελέσματα που συγκροτούν ένα μικρό μέρος του (ατελούς) λογισμού που χρησιμεύει στην διακρίβωση του αν μια ακολουθία είναι συγκλίνουσα, ή/και όταν είναι, στην εύρεση του ορίου αυτής. Έπι παραδείγματι, μέσω της χρήσης του γεωμετρικού ορισμού είδαμε ότι το όριο όταν υπάρχει είναι μοναδικό.

Πρόχειρες σημειώσεις για τα παραπάνω όπως και κάποιες ασκήσεις μπορείτε να βρείτε εδώ και εδώ.

Τους πίνακες των διαλέξεων μπορείτε να βρείτε εδώ και εδώ (σελ. 1-9).

 

Περαιτέρω Ασκήσεις:

  1. Να δειχθεί ότι για κάθε μονότοτονη ακολουθία, κάθε υπακολουθία αυτής έχει την ίδια ή ισχυρότερη μονοτονία.
  2. Nα δειχθεί ότι αν οι gif.latex?%28x_%7Bn%7D%29%2C%5C%3A%28y_%7Bn%7D%29 είναι αύξουσες, τότε και η gif.latex?%5Cleft%20%28%20%5Cmax%28x_%7Bn%7D%2Cy_%7Bn%7D%29%20%5Cright%20%29 είναι (ενδεχομένως γνησίως) αύξουσα.
  3. Να δειχθεί ότι αν μια ακολουθία είναι φθίνουσα και φραγμένη, τότε σε κάθε ανοικτό διάστημα με κέντρο το infimum της θα περιέχει σχεδόν όλη την ακολουθία, με το πλήθος των όρων που βρίσκονται εκτός αυτού να μπορεί να εξαρτάται από το διάστημα. Θα άλλαζε το συμπέρασμα αν χρησιμοποιούσαμε τα κλειστά αντι των ανοικτών διαστήμάτων.
  4. Χρησιμοποιώντας τον γεωμετρικό ορισμό του ορίου να δειχθεί ότι κάθε υπακολουθία συγκλίνουσας ακολουθίας συγκλίνει επίσης στο ίδιο όριο.
  5. Εξάγετε τις αποδείξεις όλων των αποτελεσμάτων αντικαθιστώντας στον ορισμό του ορίου τα ανοικτά με κλειστά διαστήματα.
Σχόλια (0)