Σύνοψη από απόσταση διαλέξεων (ακ. έτος 2020-21): 14η-15η

Σάββατο, 12 Δεκεμβρίου 2020 - 6:52 μ.μ.
- από τον χρήστη ΑΡΒΑΝΙΤΗΣ ΣΤΥΛΙΑΝΟΣ

Εστιάζοντας κυρίως στο ζήτημα της διακρίβωσης του εάν δεδομένη σειρά υπάρχει, ξεκινήσαμε την διατύπωση θεμελιώδους λογισμού σειρών που βασίζεται στον λογισμό που έχουμε αναπτύξει για τα όρια. Έτσι καταρχάς είδαμε ότι όταν η αρχική ακολουθία αποτελείται από ομόσημους όρους τότε και επειδή η ακολουθία μερικών αθροισμάτων αυτής είναι μονότονη, η σχετική σειρά θα υπάρχει ανν η ακολουθία μερικών αθροισμάτων είναι φραγμένη.

Το παραπάνω χρησιμοποιήθηκε προκειμένου να δείξουμε ότι η υπεραρμονική σειρά υπάρχει. Στα πλαίσια αυτού του παραδείγματος,είδαμε ότι είναι δυνατόν η φραγή της σχετικής Α.Μ.Α. να προκύπτει μέσω της επιλογής κατάλληλης βοηθητικής πραγματικής ακολουθίας η οποία δεν είναι γενικά προφανής. Κατανοήσαμε έτσι την ανάγκη ύπαρξης "υπολογιστικά απλού" τρόπου διαπίστωσης της σύγκλισης σε κάποιες τουλάχιστον περιπτώσεις.

Εξετάσαμε στοιχεία του λογισμού σειρών που άπτονται άλγεβρας συγκλινουσών σειρών, σχετίσαμε το ζήτημα της σύγκλισης σειράς με την σύγκλισης της σειράς που προκύπτει αν από την αρχική εξαιρέσουμε πεπερασμένο πλήθος των αρχικών της όρων, ενώ αφήσαμε για αργότερα το χρήσιμο ζήτημα του πως μπορούμε να μετασχηματίζουμε δείκτες άθροισης σε σειρές χρησιμοποιώντας γνησίως αύξοντες μετασχηματισμούς.

Πρόχειρες σημειώσεις για τα παραπάνω μπορείτε να βρείτε εδώ, εδώ και εδώ.

Τους πίνακες των από απόσταση διαλέξεων μπορείτε να βρείτε εδώ.

 

Περαιτέρω Ασκήσεις

  1. Αν  \sum_{i=0}^{\infty} \alpha^{i},\: \sum_{i=0}^{\infty}\beta^{i} υπάρχουσες γεωμετρικές σειρές τότε με τι ισούται η \sum_{i=0}^{\infty} (\alpha^{i}-\beta^{i}) και γιατί;
  2. Ισχύει ότι \sum_{i=0}^{\infty}a_{i}b_{i}=\sum_{i=0}^{\infty}a_{i}\sum_{i=0}^{\infty}b_{i}; Υπάρχει περίπτωση να μην υπάρχει κάποια από τις δύο σειρές στην δεξιά πλευρά και να υπάρχει η σειρά στην αριστερή πλευρά της εν λόγω ισότητας;
  3. Να δείξετε ότι \lim_{k\rightarrow\infty}\sum_{i=k}^{\infty}x_{i}=0 όταν η σειρά \sum_{i=0}^{\infty}x_{i} υπάρχει.
Σχόλια (0)