Σύνοψη από απόσταση διαλέξεων (ακ. έτος 2020-21): 12η-13η

Σάββατο, 5 Δεκεμβρίου 2020 - 11:53 μ.μ.
- από τον χρήστη ΑΡΒΑΝΙΤΗΣ ΣΤΥΛΙΑΝΟΣ

Ξεκινώντας την ενασχόληση μας με τις πραγματικές σειρές, και προσπαθώντας να εννοιολογήσουμε το απειροπληθές άθροισμα είδαμε ότι γενικά αυτό είναι αδύνατο μέσω της άλγεβρας. Ξεκινήσαμε την εννοιολόγηση ορίζοντας την έννοια της ακολουθίας μερικών αθροισμάτων δεδομένης πραγματικής ακολουθίας που περικλείει του συντελεστές του αθροίσματος. Αυτή μπορεί να θεωρηθεί ως διαδικασία "ολοκλήρωσης ", ενώ η ζητούμενη έννοια της σειράς ως προς την ακολουθία των συντελεστών είναι το όριο αυτής όταν αυτό υπάρχει. Εξετάσαμε παραδείγματα μεταξύ των οποίων αυτά της γεωμετρικής, της αρμονικής, της εναλλάσουσας αρμονικής και της υπεραρμονικής ακολουθίας μερικών αθροισμάτων (και συνακόλουθα σειρών όπου αυτές υπάρχουν). Παρατηρήσαμε ότι με την εξαίρεση παραδειγμάτων όπως αυτό της γεωμετρικής σειράς, όπου ήταν "εύκολο" να βρεθεί και να ελεγχθεί ως προς την σύγκλιση γενικός τύπος για την μερική άθροιση, και κάπως δυσκολότερα αυτό της αρμονικής σειράς, όπου βρήκαμε μέσω ολοκλήρωσης μη φραγμένη ακολουθία που φράσσει "από κάτω" την ακολουθία μερικών αθροισμάτων δείχνοντας τελικά ότι η αρμονική σειρά δεν υπάρχει, γενικά τα ζητήματα i) της ύπαρξης δεδομένης σειράς και ii) της εύρεσης του με τι ισούται όταν υπάρχει, εμφανίζουν δυσκολίες στην γενική τους επίλυση ανάλογες με αυτές των διαδικασιών ολοκλήρωσης.

Πρόχειρες σημειώσεις για τα παραπάνω μπορείτε να βρείτε εδώ.

Τους πίνακες των από απόστασης διαλέξεων μπορείτε να βρείτε εδώ και εδώ.

Ασκήσεις

  1. Να οριστεί αυστηρά η αντίστροφη της διαδικασίας μερικής άθροισης.
  2. Έστω ακολουθία με αυστηρά θετικούς όρους. Δείξτε ότι η ακολουθία μερικών αθροισμάτων αυτής είναι γνησίως αύξουσα. Το αντίστροφο ισχύει;
  3. Χρησιμοποιώντας την γεωμετρική σειρά, και χωρίς να ασχοληθείτε με το αν μπορείτε να την «παραγωγίσετε» ως προς a προσπαθήστε να βρείτε την \sum_{i=1}^{\infty}i a^{i} όταν |a|<1,\: a\neq 0.
  4. Αν  \sum_{i=0}^{\infty} \alpha^{i},\: \sum_{i=0}^{\infty}\beta^{i} υπάρχουσες γεωμετρικές σειρές τότε με τι ισούται η \sum_{i=0}^{\infty} (\alpha^{i}-\beta^{i}) και γιατί;
  5. Να δείξετε ότι κάθε άθροισμα πεπερασμένου πλήθους όρων είναι δυνατόν να γραφεί ως κάταλληλη σειρά.
Σχόλια (0)