Σύνοψη Διαλέξεων 22ης-23ης (2018-19)

Κυριακή, 16 Δεκεμβρίου 2018 - 4:28 μ.μ.
- από τον χρήστη ΑΡΒΑΝΙΤΗΣ ΣΤΥΛΙΑΝΟΣ

Καταρχάς ασχοληθήκαμε με την διερεύνηση παραδειγμάτων ως προς το θεώρημα Cauchy-Hadamard, και συνεχίσαμε με στοιχεία της άλγεβρας μεταξύ δυναμοσειρών με κοινό κέντρο, με αναφορά στα διαστήματα σύγκλισής τους. Παρατηρήσαμε π.χ. ότι δύο δυναμοσειρές με το ίδιο κέντρο είναι ίσες ανν οι συντελεστές τους είναι κατά σημείο ίσοι, ενώ περισσότερο περίπλοκες σχέσεις μεταξύ των συντελεστών είναι δυνατόν να χρειάζονται για την διατύπωση ισότητας μεταξύ δυναμοσειρών με διαφορετικά κέντρα. Αναλόγως το άθροισμα δυναμοσειρών με κοινό κέντρο είναι δυναμοσειρά με το ίδιο κέντρο και διάστημα σύγκλισης υπερσύνολο της τομής των διαστημάτων σύγκλισης των δύο δυναμοσειρών, κ.ο.κ.  

Ξεκινήσαμε την ενασχόληση μας με αναλυτικές ιδιότητες των δυναμοσειρών. Καταρχάς διατυπώσαμε το θεώρημα συνέχειας που μας πληροφορεί ότι οι δυναμοσειρές είναι συνεχείς συναρτήσεις στο διάστημα συγκλισής τους. Η απόδειξη αυτού είναι δυνατόν να προκύπτει από έννοιες εκτός του εύρους του μαθήματος (δείτε π.χ. εδώ και εδώ), αλλά επί της ουσίας μας πληροφορεί ότι για της δυναμοσειρές επιτρέπεται κάποιου είδους εναλλαγή ορίων.

Εντυπωσιακότερο είναι το θεώρημα παραγωγισιμότητας δυναμοσειράς με μη εκφυλισμένο διάστημα σύγκλισης, στο εσωτερικό αυτού, που επιτρέπει επίσης κάποιου εναλλαγή ορίου, και συνεπάγεται ότι η παράγωγος είναι επίσης δυναμοσειρά με το ίδιο κέντρο και εσωτερικό διαστήματος σύγκλισης που ταυτίζεται με το εσωτερικό του διαστήματος σύγκλισης της αρχικής, ενώ υπολογίζεται πολύ εύκολα από την αρχική δυναμοσειρά. Ασχοληθήκαμε με διάφορες εφαρμογές του.

Εργαστήκαμε με παραδείγματα που προέκυψαν στα πλαίσια της γεωμετρικής σειράς όποτε είδαμε ότι είναι δυνατόν να χρησιμοποιείται η εν λόγω αναλυτική ιδιότητα προκειμένου να βρίσκουμε πραγματικές σειρές. Παραγωγίζοντας κατάλληλη δυναμοσειρά και βρίσκοντας την μοναδική λύση προβλήματος αρχικών τιμών δείξαμε το πως αναπαρίσταται από δυναμοσειρά η εκθετική συνάρτηση, ενώ είδαμε ότι η αναπαράσταση αυτή δεν είναι μοναδική όπως και άλλα συναφή ζητήματα. Οι λόγοι που ισχύουν αυτές οι αναπαραστάσεις αφορούν στην θεωρία των αναλυτικών συναρτήσεων.

Σημειώσεις και ασκήσεις για τα παραπάνω μπορείτε να βρείτε εδώ και εδώ.

 

Περαιτέρω Ασκήσεις.

Α. Να δειχθεί ότι οι παρακάτω είναι δυναμοσειρές και να βρεθεί το εσωτερικό του διαστήματος σύγκλισης αυτών:

Β. Να βρεθούν οι παράγωγοι πρώτης τάξης για τις παρακάτω δυναμοσειρές (αγνοήστε το ζήτημα του αν αυτές έχουν ή όχι εκφυλισμένο διάστημα σύγκλισης-γιατί είναι δυνατόν να το κάνετε;):

  1. ,
  2. ,
  3. ,
  4. ,
  5. .

 

Γ. Για ποιές από τις περιπτώσεις της άσκησης Β, οι παράγωγοι είναι καλώς ορισμένες;

Σχόλια (0)