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The binomial model and its limiting form the Black-Scholes model are
based on the assumption that returns are independent.

However, real life data often refute this assumption.

This initiates the need to introducing models taking such effects into
account: Time series models in which returns at time t are corellated with
returns at previous times t − 1, t − 2, · · · , t − k ,

yt = F (yt−1, · · · , yt−k) + ϵ

An important class of such models are Garch models (which essentially
treat the volatility σ2 not as a constant but as a stochastic process per se).
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Stylized facts

Common observations from real life data show that

Returns are correlated

Very weak correlations in the actual returns
Absolute values or squares of the returns show stronger corellations

Heavy tails are often observed in the return distributions

Volatility clustering: Extreme volatility events are often followed by
extreme volatility events
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Volatility clustering
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Deviations from normality
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Deviations from normality
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Autocorrelation function for lnRt

Autocorrelation function for (lnRt)
2
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In the more general case we can consider the returns of a basket of d stocks or
indices (probably interrelated) so that the return process

{X (t) t ∈ [0,T ]} = {(X1(t), · · · ,Xd) : t ∈ [0,T ]}

is a vector valued process (where Xi are the returns – or log returns – of stock or
index i).

Common assumption: The process can be adequately described by the first two
moments the mean and the autocovariance function:

µ(t) = E[X (t)], µi (t) = E[Xi (t)], i = 1, · · · , d .
Γ(t, s) = E[(X (t)− µ(t))(X (s)− µ(s))T ],

Γij(t, s) = E[(Xi (t)− µi (t))(Xj(s)− µj(s))], i , j = 1, · · · , d .

Weak stationarity:

µ(t) = µ, t ∈ Z,
Γ(t, s) = Γ(t + k , s + k), t, s, k ∈ Z.

vs

Stationarity

(X (t1), · · ·X (tn))
d
= (X (t1 + k), · · ·X (tn + k)),

∀ t1, · · · , tn, k ∈ Z, n ∈ N
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Example

Consider the returns R(t) = ln
(

P(t)
P(t−1)

)
of an index, which are not independent

but modelled as

R(t) = ρR(t − 1) + ϵ(t), ϵ(t) ∼iid N(0, σ2
ϵ ).

Find the variance of returns for a period of 2 days.

For 2 days

Var(R(t) + R(t − 1)) = Var(R(t)) + Var(R(t − 1)) + 2Cov(R(t − 1),R(t))

= Var(R(t)) + Var(R(t − 1)) + 2ρVar(R(t − 1)).

If Var(R(t)) ≃ Var(R(t − 1)) ≃ σ2 then

Var(R(t) + R(t − 1)) = 2σ2(1 + ρ),
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Example (Need for models with fat tails)

We often observe the following stylized facts:

Each year we have 1 or more daily fluctuations that correspond to 4 standard
deviations
Each year we have at least one market that displays daily fluctuations that
corresponds to more than 10 standard deviations.

How would you account for these stylized facts?

The empirical probability of observing a 4 standard deviations event is estimated as

Pemp ≃ 1

252
= 0.003968

If the returns are modelled by the normal distribution then the theoretical
probability of such an event would be

P = 1− N(4) = 0.000031671

which would correspond to one such event in 125 years! (t ≃ 1/P)

Clearly the normal distribution cannot account for such observations.
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Example (Continued ...)

Assuming as alternative model the Student distribution with parameter ν
we estimate

1− Fν(4) = 0.028595 ν = 2,

1− Fν(4) = 0.014004, ν = 3,

1− Fν(4) = 0.0080650, ν = 4,

1− Fν(4) = 0.0051617, ν = 5,

which is closer to the observations.

Hence, models presenting fat tails can describe more closely the
observations.
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GARCH processes

In a GARCH model we no longer consider the volatility as a constant, but
rather as a stochastic process depending on the previous returns.

That means e.g. that high returns in the past may lead to higher volatility
in the future or vice versa.

This is related to the observed phenomenon of volatility clustering

The GARCH model (introduced by Engle and Bollerslev in the 1980’s) is
now a standard model for stock returns featuring stochastic volatility
effects such as volatility clustering.
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Garch(1,1)

Let X (t) := ln S(t)
S(t−1)

According to the GARCH model X (t) follows the law

X (t) | Ft−1 ∼ N(µ(t), σ2(t)),

Ft−1 = σ(X (1), · · · ,X (t − 1)).

where the conditional volatility σ(t) depends on past returns and past conditional
volatilities as

σ2(t) = α0 + α1X
2(t − 1) + β1σ

2(t − 1).

Conditional returns

X (t) | X (1) · · ·X (t − 1) ∼ N(µ(t), σ2(t)),

follow the normal distribution.

Unconditional returns will follow a mixture distribution which depending on the
specification of σ2(t) may deviate considerably from the normal distribution, hence
display fat tails.
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Assuming wlog that µ(t) = 0 (else set X̂ (t) = X (t)− µ(t) and rewrite
model for that):

Conditional volatility:

σ2(t) = E[X 2(t) | X 2(1), · · · ,X 2(t − 1)] =: Et−1[X
2(t)],

i.e. mispecification of X (t) if estimated by E[X (t) | Ft−1] = 0 at
time t − 1

vs

Unconditional volatility

Var(X (t)) = E[X 2(t)],

i.e. mispecification of X (t) is estimated by E[X (t)] = 0 at time 0.
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Dynamic form of the model,

X (t) = σ(t)ϵ(t), ϵ(t) ∼ N(0, 1), i .i .d

σ(t)2 = ω + α1X (t − 1)2 + β1σ(t − 1)2

where wlog we consider µ(t) = 0.

Note that

E[X (t) | X (u), u < t] = 0, ∀ t ∈ Z,

but Corr(X (t)2,X (t − h)2) ̸= 0!

This is compatible with empirical observations such as e.g. volatility clustering

This model presents fat tails, as well as mean reversion effects for the volatility,
with the mean level as well as the rate of return to the mean level governed by the
parameters ω, α1, β1.

To make sure that σ2(t) ≥ 0 we need the assumption

ω ≥ 0, α1 ≥ 0, β1 ≥ 0.
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Stationarity for the Garch(1,1) model

Stationarity is an important property for a model.

The Garch(1,1) model is stationary if α1 + β1 < 1

Theorem

If α1 + β1 < 1 then the stochastic process

X (t) =
√
H(t)ϵ(t),

H(t) = ω

{
1 +

∞∑
i=1

A(t − 1) · · ·A(t − i)

}
A(k) = α1ϵ

2(k) + β1 ≥ 0

is the unique stationary solution to the Garch(1,1) model.
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Proof: Express the model as

σ2(t) = ω + α1X (t − 1)2 + β1σ
2(t − 1)

= ω + α1σ(t − 1)2ϵ(t − 1)2 + β1σ
2(t − 1)

= ω + (α1ϵ(t − 1)2 + β1)σ
2(t − 1)

= ω + A(t − 1)σ2(t − 1),

where

A(t − 1) := α1ϵ(t − 1)2 + β1 ≥ 0

and show by induction that for any N > 0,

σ2(t) = ω[1 +
N∑
i=1

A(t − 1) · · ·A(t − i)] + A(t − 1) · · ·A(t − N − 1)
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Define the process

H(t,N) := ω(1 +
N∑
i=1

A(t − 1) · · ·A(t − i))

= ω(1 + A(t − 1) + A(t − 1)A(t − 2) + · · ·+ A(t − 1) · · ·A(t − N)),

and observe that (H(t,N))N is a monotone sequence of random variables hence (if
bounded) converges a.s. to some limit H(t),

H(t) := lim
N→∞

H(t,N), a.s

From the definition of H(t,N)

H(t,N) = ω + A(t − 1)H(t − 1,N − 1), ∀N, t

hence taking the limit as N → ∞

H(t) = ω + A(t − 1)H(t − 1), ∀ t
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The condition for H(t) finite is

−∞ ≤ γ := E[ln(α1ϵ
2(t − 1) + β1)] < 0

From the equation for H(t) we see that for every M it holds that

H(t) = ω[1 + A(t − 1) + A(t − 1)A(t − 2) + · · ·+ A(t − 1)A(t − 2) · · ·A(t −M)]

+A(t − 1)A(t − 2) · · ·A(t −M − 1)H(t −M − 1)

Whether the limit is finite or not depends on the convergence of the series

∞∑
M=1

bM , bM = A(t − 1) · · ·A(t −M)

By the Cauchy criterion this series converges if λ = lim sup b
1/M
M < 1.
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But

b
1/M
M = exp

(
1

M

M∑
i=1

lnA(t − i)

)
→ eγ =: λ, a.s

from the law of large numbers.

By Jensen’s inequality we have

E[lnA(t)] ≤ lnE[A(t)] = ln(α1 + β1) < 0 αν α1 + β1 < 1.

This concludes the proof. QED
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Weak stationarity

Strong stationarity may be too strong a condition. Often weaker versions
of stationarity are sufficient.

We will ask for covariance stationarity instead,

C (t1, t2) := E[X (t1)X (t2)] = C (t1 − t2), ∀ t1, t2 > 0.

(where we assume for simplicity that E[X (t)] = 0).

For a covariance stationary process

E[X 2(t)] = E[X 2(0)]2, ∀ t > 0.
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By the GARCH(1,1) model X (t) = σ(t)ϵ(t), with σ(t) fully known if we
know X (t − 1), σ(t − 1).

Hence,

X (t) | X (t − 1), σ(t − 1) ∼ N(0, σ2(t)),

Var(X (t) | X (t − 1), σ(t − 1)) = σ2(t).

Applying the law of total variance

Var(Y ) = E[Var(Y | W )] + Var(E[Y | W ]),

for Y = X (t) and W = (X (t − 1), ϵ(t − 1)) we have that

Var(X (t)) = E[σ2(t)]
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From the GARCH(1,1) model taking expectations

E[σ2(t)] = ω + α1Var(X (t)) + β1E[σ2(t − 1)].

By covariance stationarity Var(X (t)) = σ̄2, constant, hence
E[σ2(t)] = σ̄2, so the above yields

σ̄2 =
ω

1− α1 − β1
.

Hence α1, β1 must satisfy

α1 + β1 < 1,

which can be proved that it is a necessary and sufficient condition for
autocovariance stationarity.

In conclusion for the GARCH(1,1) model for α1 + β1 < 1 the
unconditional variance is constant and equal to

σ̄2 =
ω

1− α1 − β1
.
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GARCH(1,1) model and predictions

If the returns are provided by the GARCH(1,1) model can we provide an
estimate for Et−1[X

2(t + n)]?

This corresponds to the prediction error for the return X (t + n) given the
information about the market until time t − 1.

Note that

Et−1[X
2(t + n)] ̸= σ2(t + n) := Et+n−1[X

2(t + n)]!
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Calculating Et−1[X
2(t + 1)]

Start from the definition

σ2(t) := Et−1[X
2(t)]

that yields σ2(t) ∈ m −Ft−1.

By the properties of conditional expectation

Et−1[X
2(t + 1)] = Et−1[ Et [X

2(t + 1)]︸ ︷︷ ︸
σ2(t+1)

] = Et−1[σ
2(t + 1)]

==︸︷︷︸
Garch

Et−1[ω + a1X
2(t) + b1σ

2(t)] = ω + a1 Et−1[X
2(t)]︸ ︷︷ ︸

σ2(t)

+b1Et−1[ σ2(t)︸ ︷︷ ︸
∈m−Ft−1

]

= ω + (a1 + b1)σ
2(t) = σ̄2(1− a1 − b1) + (a1 + b1)σ

2(t)

= σ̄2 + (a1 + b1)(σ
2(t)− σ̄2).
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Defining

γ := a1 + b1,

σ̄2 :=
ω

1− γ
, asymptotic volatility

we conclude that for the conditional volatility Et−1[X
2(t + 1)] it holds

that

Et−1[X
2(t + 1)] = σ̄2 + γ(σ2(t)− σ̄2) (1)

where σ2(t) = Et−1[X
2(t)].
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Calculating Et−1[X
2(t + 2)]

By the properties of conditional expectations

Et−1[X
2(t + 2)] = Et−1[ Et+1[X

2(t + 2)]︸ ︷︷ ︸
σ2(t+2)

] = Et−1[σ
2(t + 2)]

==︸︷︷︸
Garch

Et−1[ω + a1X
2(t + 1) + b1σ

2(t + 1)]

= ω + a1 Et−1[X
2(t + 1)]︸ ︷︷ ︸

known by (1)

+Et−1[ σ2(t + 1)︸ ︷︷ ︸
σ2(t+1):=Et [X 2(t+1)]

]

= ω + a1Et−1[X
2(t + 1)] + b1Et−1[Et [X

2(t + 1)]]

= ω + a1Et−1[X
2(t + 1)] + b1Et−1[X

2(t + 1)] = ω + γEt−1[X
2(t + 1)]

==︸︷︷︸
(1)

ω + γ(σ̄2 + γ(σ2(t)− σ̄2)) = σ̄2(1− γ) + γ(σ̄2 + γ(σ2(t)− σ̄2))

= σ̄2 + γ2(σ2(t)− σ̄2).
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We then have,

Et−1[X
2(t + 1)] = σ̄2 + γ(σ2(t)− σ̄2)

Et−1[X
2(t + 2)] = σ̄2 + γ2(σ2(t)− σ̄2)

where σ2(t) = Et−1[X
2(t)] and

γ := a1 + b1,

σ̄2 :=
ω

1− γ
, asymptotic volatility

With an induction step we can show that

Et−1[X
2(t + n)] = σ̄2 + γn(σ2(t)− σ̄2)
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In conclusion ...

We showed inductively that

Et−1[X
2(t + n)] = σ̄2 + γn(σ2(t)− σ̄2), ∀ t, n

where

γ = a1 + b1, σ̄2 =
ω

1− γ
, σ2(t) = Et−1[X

2(t)]

This is the best prediction we may have concerning the volatility of the market n
times ahead, given the information of the market up to time t − 1.

Since γ < 1 then as n grows this prediction tends to the asymptotic value σ̄2, i.e.

Et−1[X
2(t + n)] → σ̄2, as n → ∞.

with the convergence speed depending on γ.
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Calibrating the GARCH(1,1) model

The model can be calibrated to market returns data {X1, · · · ,Xn} using
maximum likelihood.

According to the model σ(t) is fully determined by Xt−1, · · · ,X1,X0, σ(0)
(by simply iterating the GARCH equation) and since

fXt |Xt−1,··· ,X0,σ0
(xt | xt−1, · · · , x0, σ0) =

1√
2πσ2

t

exp

(
− x2t
2σ2(t)

)
by the independence of ϵ(t) we have

fX1,··· ,Xn|X0,σ0
(x1, · · · , xn | x0, σ0) =

n∏
i=1

fXt |Xt−1,··· ,X0,σ0
(xt | xt−1, · · · , x0, σ0)
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Hence, the likelihood of the sample is

L(ω, α1, β1;X ) =
n∏

i=1

1√
2πσ2(t)

exp

(
−

X 2
i

2σ(t)2

)
with σ2(t) provided by the iteration

σ2(t) = ω + α1X
2
t−1 + β1σ

2(t − 1),

σ2(0) = σ2
0.

Maximizing the likelihood with respect to ω, α1, β1, possibly setting σ0
equal to

σ2
0 =

1

n

n∑
i=1

X 2
i .

provides the best estimate to the parameters of the model, which can then
be used for prediction.
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