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Stocks

Stocks are financial assets, traded in organized markets, offering firms
capital for development in return to access to future earnings of the
firm (e.g. dividends ) to stock holders.

These future earnings are uncertain, and the fact that stock are
bought and sold on an everyday basis hence providing an ever
changing stochastic demand and supply, leads to stochastic
fluctuations for the stock prices.

Various stochastic models have been proposed to model and predict
the stock prices

Binomial model
Time series models (e.g. Garch)
The Black-Scholes model
....
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(a) APPL (b) APPL vs DELL vs
HPQ vs MSFT

(c) Nokia (d) Dow Jones

Figure: Examples of stock prices
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(a) SNP prices (b) Log returns
Rt := ln

Pt+1

Pt

(c) Rt statistics

Figure: SNP data and statistics
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A first model: The binomial model

Keeping it simple (to start with!)

Assumptions

There is a riskless asset in the market with return r .
Returns of the risky asset (stock) are independent: What happens between t
and t + 1 stays there!
Two possible returns each period:

Rt =
St+1

St
=

{
u with probability p
d with probability 1− p

Sn+1 = Hn+1 Sn, (1)

{Hn} i .i .d . P(Hn = u) = p, P(Hn = d) = 1− p, n = 1, 2, · · ·
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(a) Binomial model
paths

(b) Rt :=
Pt+1

Pt

histogram

(c) lnRt histogram

Figure: Binomial model paths and statistics
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Information structures for the binomial model

At any time N the random variable SN may take the following values

{S0uN , S0uN−1d , · · · , S0udN−1, S0d
N}

SN = HNHN−1 · · ·H1S0 is measurable with respect to the σ-algebra

FN = σ(HN ,HN−1, · · · ,H1) = σ(SN ,SN−1, · · · ,S1)

FN contains the information of the market history up to time N

Clearly, F1 ⊂ F2 ⊂ · · · ⊂ FN ⊂ · · ·
Accumulating increasing information as times goes by: A filtration
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Example

Assume that you are interested in the binomial model up to time 2, i.e. you want
to describe S2 = H2H1S0.

Ω = {uu, ud , du, dd}

Then,

F0 is the information about the market at t = 0 ( i.e. having observed S0)

F0 = {∅,Ω}

F1 is the information about the market at t = 1 ( i.e. having observed S0, S1)

F1 = {∅,Ω {uu, ud}, {du, dd}}

F2 is the information about the market at t = 2 ( i.e. having observed
S0, S1,S2)

F2 = {∅,Ω {uu}, {ud}, {du}, {dd}, {uu, ud}, {du, dd}, {uu, ud , du}, · · · }
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Reminder: σ-algebras and measurability

Definition (σ-algebra)

Let Ω be a set. A σ-algebra F on Ω is a collection of subsets of Ω such that

1 ∅,Ω ∈ F .
2 If A ∈ F then Ac ∈ F
3 If A1,A2, · · · ∈ F , then

⋃∞
i=1 Ai ∈ F .

Definition (Measurability of a random variable with respect to a σ-algebra)

Let X : Ω → R be a random variable and F be a σ-algebra on Ω.
X is measurable with respect to F , denoted by X ∈ m −F if

∀ A ⊂ R it holds that X−1(A) ∈ F

Measurability of X with respect to F means that the necessary information to
completely describe the random variable X can be found in the σ-algebra
(information structure) F .
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Conditional expectation

Definition

Let X be a random variable measurable with respect to a σ-algebra G, and
F be a σ-algebra F ⊂ G (i.e. carrying less information)
The conditional expectation of X with respect F , is the best predictor Z
for X , that can be determined only using information available in F , i.e.
the solution to the problem

E[(X − Z )2] = min
Y∈m−F

E [(X − Y )2]

We use the notation Z = E[X | F ]

It can be shown that Z is the (unique) random variable satifying:

Z is measurable with respect to F ,∫
A Z (ω)dP(ω) =

∫
A X (ω)dP(ω) for every A ∈ F .
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Basic properties of conditional expectation

If FM ⊂ FN then E[E[X | FM ] | FN ] = E[X | FM ].

If FM ⊂ FN then E[E[X | FN ] | FM ] = E[X | FM ].

If X ∈ mF , then E[X | F ] = X

If X is independent of F then, E[X | F ] = E[X ]
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The Markov property for the binomial model

E[Sn+1 | Fn] = E[Sn Hn+1 | Fn] = Sn E[Hn+1 | Fn] =

Sn E[Hn+1] = Sn (p u + (1− p) d)

The best prediction for Sn+1 given the full history S1, · · · , Sn, only
depends on Sn!

E[Sn+1 | Fn] = E[Sn+1 | σ(S1, · · · ,Sn)] = E[Sn+1 | σ(Sn)]

The process {Sn} “forgets its memory” and is like starting anew on the
previous time instance as far as predictions are concerned: Markov property
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Long run predictions

Using the law of total probability

E[Sn+1] = E[E[Sn+1 | Fn]] = (p u + (1− p) d)E[Sn]

hence by induction

E[Sn] = (p u + (1− p) d)n S0

Define the discounted price process S∗
n = (1 + r)−n Sn, and work as above to show

E[S∗
n ] =

(
p u + (1− p) d

1 + r

)n

S0

▶ If p u+(1−p) d
1+r > 1 then the expected value of the asset increases

▶ If p u+(1−p) d
1+r < 1 then the expected value of the asset decreases
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Martingales and asset prices

We observe that

▶ if p u+(1−p) d
1+r > 1 then

E[S∗
n+1 | Fn] =

p u + (1− p) d

1 + r
S∗
n ≥ S∗

n

▶ if p u+(1−p) d
1+r < 1 then

E[S∗
n+1 | Fn] =

p u + (1− p) d

1 + r
S∗
n ≤ S∗

n

▶ if p u+(1−p) d
1+r = 1 then

E[S∗
n+1 | Fn] =

p u + (1− p) d

1 + r
S∗
n = S∗

n
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Martingales

Let {Xn} be a stochastic process and {Fn} a filtration (Fn ⊂ Fn+1)

Definition

{Xn} is called adapted to {Fn} if

Xn ∈ m −Fn, ∀ n ∈ N.

Definition

An adapted process {Xn}, such that E[|Xn|] < ∞ is called a martingale if

E[Xn+1 | Fn] = Xn

Definition

An adapted process {Xn}, such that E[|Xn|] < ∞ is called a submartingale if

E[Xn+1 | Fn] ≥ Xn

Definition

An adapted process {Xn}, such that E[|Xn|] < ∞ is called a supermartingale if

E[Xn+1 | Fn] ≤ Xn

A martingale is a mathematical model for the earnings of a fair game
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Theorem

The following hold for the binomial model:

1 If p u+(1−p) d
1+r = 1 then the discounted price process {S∗

n} is a
martingale

2 If p u+(1−p) d
1+r ≥ 1 then the discounted price process {S∗

n} is a
submartingale

3 If p u+(1−p) d
1+r ≤ 1 then the discounted price process {S∗

n} is a
supermartingale
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The equivalent martingale measure

One may observe the time series for the asset prices (equiv. return) i.e. the paths
of the stochastic processes but it is difficult to place probabilities on the possible
values.

Hence, one may consider that u and d are known, but the probability p with which
these are distributed.

Keeping the paths of the returns but allowing freedom on the probability of
returns, choose p = q such that

q u + (1− q) d

1 + r
= 1,

and let Q be the corresponding probability measure of the paths.

Then, by the above arguments

EQ [S
∗
n+1 | Fn] = S∗

n ⇐⇒ EQ [
Sn+1

Sn
| Fn] = 1 + r ,

i.e. under the probability measure Q, the discounted price process {S∗
n} is a

martingale.
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If 0 < q < 1 then under the new measure, we will still have two possible
states for the return of the asset: The model P and the model Q have the
same null sets i.e. P and Q are equivalent measures.

Q is called an equivalent martingale measure (or risk neutral measure).

0 < q < 1 ⇐⇒ d < 1 + r < u

The condition d < 1 + r < u is equivalent to a no arbitrage condition: If it
is not satisfied then an investor may have arbitrage opportunities by
placing a portfolio in the riskless and the risky asset.

Theorem (Fundamental theorem of asset pricing)

There are no arbitrage opportunities in the binomial model if and only if
there exists an equivalent martingale measure

In fact this theorem is true for any model for a financial market (but the
proof is more complicated and requires delicate tools from convex duality).
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The binomial model in the limit of N → ∞ and the
lognormal distribution

Take logs in the binomial model Sn+1 = Hn+1Sn:

lnSn+1 − lnSn = lnHn+1 ⇐⇒ lnSN − lnS0 =
N∑
i=1

lnHi

Hence,

ln
SN
S0

=
N∑
i=1

lnHi ,

which is the sum of N independent random variables.

The central limit theorem can be used to approximate the distribution of
this sum
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The central limit theorem

Theorem

Let {Xn} be a sequence of i.i.d. random variables, with E[Xn] = µ and
Var(Xn) = σ2.
Then,

Zn =

∑n
i=1 Xi − µn

σ
√
n

n→∞→ Z ∼ N(0, 1),

with the convergence being understood as convergence in distribution.

A. N. Yannacopoulos (AUEB) Financial Mathematics Academic year 2023-2024 20 / 28



Applying the CLT to the binomial model we conclude that

ln
SN
S0

∼ N(µN, σ2N), for N large,

where

µ = E[lnHi ] = p ln u + (1− p) ln d ,

σ2 = Var(lnHi ) = p(ln u − µ)2 + (1− p)(ln d − µ)2

Hence, in the long horizon limit, SN follows the lognormal distribution –
compare with the empirical data!

This is interesting information, but for inference processes useless since
with this parameterization the variance is huge for N large.
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A scaling limit and a calibration procedure

Consider data for a time horizon T (e.g. 1 yr) and try to fit a binomial model of N
iterations in that.
From data we may calculate

µ :=
1

T
EP

[
ln

S(T )

S(0)

]
,

σ2 :=
1

T
VarP

[
ln

S(T )

S(0)

]
volatility

If the binomial model is a suitable representation for the stock prices then

µ = E[lnHi ] = p ln u + (1− p) ln d ,

σ2 = Var(lnHi ) = p(ln u − µ)2 + (1− p)(ln d − µ)2

Two equations for 3 unknowns (p, u, d).

Fix two of them by setting ud = 1 (recombining model) which yields

ln u = − ln d =

√
T

N
σ2 +

T 2

N2
µ2 ∼ σ

√
T

N

p =
1

2
+

1

2

µ

σ

(
N

T
+

(µ
σ

)2
)−1/2
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The above proposes the following calibration procedure:

1 Collect data for a time horizon T and in terms of the log returns calculate the
volatility

σ2 :=
1

T
VarP

[
ln

S(T )

S(0)

]
volatility

A simple estimator for the volatility can be the sample variance.
2 Break [0,T ] into N intervals of length ∆t = T

N each.
3 Then approximate each S(tn), for tn = n∆t by the binomial model

Sn+1 = Hn+1Sn with parameters

u = d−1 = exp(σ
√
∆T ).

Remark

We can calculate p as well e.g. through the approximation

p =
1

2
+

1

2

µ

σ

√
T

N

but this will not be needed if we want to use this binomial model approximation for
the data in order to price derivative products (coming up!)
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A scaling limit: Take 2

Take [0,T ] and break into N intervals of length δt = T
N , and set tn = nδt.

Set the parameters (as above)

u = d−1 = exp(σ
√
δt),

p =
1

2

(
1 +

µ

σ

√
δt
)

Define the random variables that indicate occurence of high returns

Xi = 1{Hi=u} =

{
1 Hi = u,
0 Hi = d

The random variables

Un :=
n∑
i

Xi ,

Dn := n − Un

count the number of up and down market moves (respectively) up to time
t := tn = nδt.
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By the binomial model

Sn = S(t) = S(tn) = S(nδt) = S(0) uUn dDn = S(0) dn
(u
d

)Un

and taking logs (keeping in mind that n = t
δt ) we have

ln

(
S(t)

S(0)

)
= n ln(d) + ln

(u
d

) n∑
i=1

Xi

=
t

δt
ln(d) + ln

(u
d

) t/δt∑
i=1

Xi

= − σ t√
δt

+ 2σ
√
δt

t/δt∑
i=1

Xi

where we also used the definition of the parameters u, d .

Note that to be completely rigorous we should use [t/δt] but we will not
complicate the notation.
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We will pass to the continuous limit by taking δt → 0: By n = t
δt this corresponds

to n → ∞!

Consider the random sum Y (t) := − σt√
δt

+ 2σ
√
δt

∑t/δt
i=1 Xi at this limit.

Important: Because of the chosen scaling even though the above sum has infinite
terms it has finite mean and variance!

Indeed

E[Y (t)] =
−σt√
δt

+ 2σ
√
δt

t/δt∑
i=1

E[Xi ] =
−σt√
δt

+ 2σ
√
δt

t

δt
p = µ t

(using the definition of p) and

Var [Y (t)] = 4σ2 δt

t/δt∑
i=1

Var(Xi ) == 4σ2δt
t

δt
p(1− p) = 4σ2p(1− p)t

≃ σ2t (for δ → 0)

Both are finite (since t) is finite and proportional to t!
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From the binomial to the Black-Scholes model

In the continuous limit δt → 0 (δt = t
n , t finite) we show that the binomial model

yields

E
[
ln

(
S(t)

S(0)

)]
= µ t

Var

(
ln

(
S(t)

S(0)

))
= σ2t

Using the CLT with this scaling we can prove that in the limit as δt → 0 the
stochastic process generated by the binomial model converges (in distribution) to
the stochastic process {S(t) : t ∈ [0,T ]} with

ln
S(t)

S(0)
∼ N(µt, σ2t)

which follows the lognormal distribution.

Hence in the limit as δt → 0,

S(t) = S(0) exp(µt + σ
√
tZ ), Z ∼ N(0, 1),

which is equivalent to the celebrated Black-Scholes model for stock returns!
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Recap

The simplest model that can reproduce the basic features of the empirical data for
stock prices or indices is the binomial model

S(n + 1) = H(n + 1)S(n), H(n), i.i.d. P(H(n) = u) = p = 1− P(H(n) = d).

This model has the Markov property and there exists an equivalent martingale
measure Q that turns the discounted prices S∗(n) = (1 + r)−nS(n) into
martingales, i.e.

EQ [S
∗(n + 1) | Fn] = S∗(n)

This model can be calibrated to real data, in terms of the volatility σ, and in the
right scaling the binomial model converges to the lognormal distribution
(Black-Scholes model)

ln
S(t)

S(0)
∼ N(µt, σ2t)
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