
  1. SIMPLE LINEAR REGRESSION 

 
In this chapter we will refer to modeling the relationship between two 

variables when the relationship is linear.  

 

Let us consider two variables, X  and Y .  

 

Consider then the variable Y  as the dependent variable, i.e. one whose 

behaviour (variation) depends on the behaviour (variation) of another variable, X , 

which we call independent or explanatory variable.  

 

Let us even assume that the relationship between the two variables is linear. 

In such a case, a simple linear regression model would be appropriate to describe the 

relationship between X  and Y .  

 

We could in our model introduce several independent (explanatory) variables, 

i.e. variables that co-decide for the behaviour of the dependent variable (Y ). In the 

latter case and if the relationship of each independent variable with the dependent is 

linear, we get a multiple linear regression model with which we will deal in the next 

chapter. 

 



Example 

 

Consider the height in centimetres (Y) and the age in completed years of life 

(X) of a sample of eight pre-schoolers. The observed pairs of values of the two 

variables are given below: 

 

Y 

Height 

X 

Age 

68 1 

91 2 

102 3 

107 3 

105 4 

114 4 

115 5 

127 6 

  

1. Diagrammatic illustration of the X, Y pairs of observations: (x, y). 
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2. Calculation of correlation coefficient 

 

We will need: 

iY = 829 

iX = 28 

2

iY = 88 133 

2

iX = 116 

i iX Y = 3090 

 

To calculate: 
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Therefore the correlation coefficient between the two variables in this sample is, 
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Based on these calculations, to assess the significance of correlation coefficient 

ρ of the population, we have to test the hypothesis: 
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The test statistics (control variable) is  
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Thus, with a risk α= 0.05 (5%) we conclude that the ρ can be considered as statistically  

significant 

 

So it makes sense to implement a simple linear model to describe the 

relationship between Y and X  

 

In this step we must decide which is the dependent and which the independent 

variable. 
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Theoretical background 

 
 

The theoretical simple linear regression model is 

 

0 1Y X  = + +
                          

 

 

Here Y  It is the dependent variable, i.e. the variable that we wish to explain or 

predict.  

 

and X  is the independent variable, which is also called the explanatory variable, 

and finally  

 

  are the errors, which is the only random term in the model and therefore the only 

source of randomness in the behaviour of Y . 

 

The model of simple linear regression, consisting of two parts: the non-

random part, which is the straight line itself and the random parts i.e. the residuals 

or errors.  

 

The non-random part of the model, the straight line, is the relationship which 

expresse the expected value of Y for any given value ix  as a linear function of X .  

 

         0 1( )E Y X X = +          

                                             

Thus 

( )Y E Y X = +
 

                        

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The theoretical regression model describes the relationship between two variables 

X  and Y in the reference population. To estimate the parameters of the model, we 

use the observed pairs of values of the two variables. Based on this set of observed 

values X  and Y  we cannot calculate the regression model parameters 0 and 1  but 

simply estimate them. The classical way for estimating these two model parameters, 

is the method of ordinary least squares, as described in the next section. 

  

ORDINARY LEAST SQUARES METHOD (OLS) 

 

The challenge, as already mentioned in the previous section, is to calculate 

the best possible estimates of the parameters of our model. The desired line is the 

one that passes as closely as possible the observed pairs (x,y). Still want the 

estimators of the model parameters 0  and 1 , let us denote them by 0̂  and 1̂  

respectively, to meet the criteria of unbiasedness and efficiency, so that, based on 

these, using the observed data, to calculate the best possible point estimates of 

Theoretical assumptions of the model: 

 

1) The relationship between X  and Y  is linear. 

 

2) The different values of the independent variable X is fixed (not 

random). The only source of randomness in Y  therefore stems 

from the presence of residuals  . 

 

3) The residuals     (As many as the distinct values X ) are random 

variables that follow the normal distribution with expected value 

0 and constant variance 
2 .  

 

 Using statistical notations, we have: 

           
2~ (0, )N    

 

 

4) Residues are independently. 
 

   

   

 



parameters 0  and 1 . The observed values of 0̂  and 1̂ , will be denoted as  0b  

and 1b
 respectively.  

 

One method that will give our estimators these desired features are the OLS method. 

 

 

This method is not unique to tailor a straight line to the data. There are alternative 

methods, such as minimization of the sum of the absolute values of errors. However 

the method of least squares is the most widely used method for estimating the 

parameters of a regression model. 

 

 The estimation of our model in this sample of observations X  and Y  will 

be, 

 . 

               0 1i i iY b b X e= + +                1,2,...,i n=    

 

where  
 

0b  is the estimate of 0   and  1b  is the estimate 1 , while ie  are the observed values 

of the residuals., which are the observed values of the actual population errors i .  

The linear relationship of X  and Y  in this sample is given by 

 

                                          0 1Ŷ b b X= +                                                  

 

where Ŷ  the fitted value of Y  

                                                                                                

                             Parameters                 estimators                        estimates 

 

                                  0     
                              
→               

0̂                 
                   
→           0b  

                                  1        
                            
→              

1̂                 
                        
→            1b  

 

  



Having defined the estimated regression relationship, errors, and fitted values of Y , 

we will now describe the principles of the least squares method, which give us 

unbiased and efficient estimators.  

 

Our aim is to minimize all errors, which are sometimes positive and sometimes 

negative, but if we raise to the square, these become positive. We consider the sum 

of squares of errors, 
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Our challenge now is to identify the estimators 0̂ and 1̂ so that they will 

give us the minimum possible price ESS .  

 

Taking the first partial derivatives of ESS  and setting them equal zero 

The normal equations are: 
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The two equations with two unknowns if solved would give us formulas for 

calculating the estimator 0̂ and 1̂  that minimize ESS .  



 

 

The estimators 0̂  and 1̂  are random variables having smallest possible 

variance,  as is apparent from the theorem of Gauss-Markov.  

 

These estimators can be used, along with the assumption of normality, to 

construct confidence intervals and to conduct hypothesis testing about parameters 

0  and 1 the theoretical model. This methodology will be given below. 

 

 

EXAMPLE (cont.) 

 

Returning to our example, using the sample data of Table 1.1 can fit a simple 

linear model to height (Y ) and ( X ).  

 

We have: 
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The estimators of the parameters of the simple linear regression model based 

on the least squares method are:  
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1 1
ˆ 10,47XY

X

SS
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0 1 0
ˆ ˆ 66,972y x b = −  =  

 

 

ˆ 66,972 10,472Y X= +   

 



THE VARIATION OF RESIDUALS 

 

Let us remember that 
2  the variance of errors   in the theoretical regression 

model (i.e. that concerning population) is supposed to be  constant for all variables 

  associated with various values of X . The variation of errors, 
2  is an important 

parameter because it is a criterion that shows how dispersed are the data around the 

regression line. Generally, the smaller the variation is, the closer to the population 

data passes the straight regression. It is important to understand that the variance of 

the errors is the variation of the dependent variableY  corresponding to any given 

value of  X . This easily we can see since, as previously presented, for any given 

value of X  we have got, 

 

( )| |Y X E Y X = + , 

 

note that ( )|E Y X  as population parameter is stable with zero variation. Thus, 

 

( ) ( ) 2|Var Y X Var  = =  

 

As a population parameter, 
2 is unknown and thus it must be estimated from 

the observed data. An unbiased estimator for 
2  is the mean square error ( EMS ) 

defined as, 
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An unbiased estimator of 
2 , is  

 

                                  ( )2E EMS SS n= − , 

 

where ESS  is the sum of squares for the errors.  
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The positive square root of this, Es MS=  is the standard error of the 

residuals. This is criterion of goodness of fit of the model and is often referred as a 

standard error of the estimate. 

 

Note that this criterion is expressed in units of our dependent variable. 

Therefore it cannot be used as a criterion of comparison between different 

applications of the linear model when the dependent variables of these applications 

have the same metric. But this criterion can be an alternative model comparison tool 

on the same dependent variable. 

 

In our example we take,  

 
2

1
ˆ( ) 2227,875 10,472 188,5 42,31E Y XYSS Y Y SS b SS= − = − = −  =  

=>   42,31 6,505Es MS= = = . 



The standard errors of the estimators of model parameters. 
 

The standard error of 
0̂  is 
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in our example: 
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CONFIDENCE INTERVALS FOR THE PARAMETERS OF THE 

MODEL  

 

The confidence intervals for the parameters 0 and 1  are easy to calculate 

using the estimators and the standard error for each one of the two parameters. 

 

The (1-a) 100%  confidence interval for the 0  is, 
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The (1-a) 100%  confidence interval for the 1  is: 
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in our example 

             

( )0 ( 2),1 /2 0 066,972 2,447 5,84 52,7 81,3nb t s b − − =   =        

              

( )1 ( 2),1 /2 1 110,472 2,447 1,53 6,8 14,2nb t s b − − =   =                  



HYPOTHESIS TESTING FOR THE PARAMETERS OF THE MODEL  

 

0H : ( )1 1 0
 =  

1H : ( )1 1 0
   

 

 with control function:  

                                               

( )

( )
1 1 0

( 2)

1

ˆ

nt
s b

 
−

−
=

                                                       

 

where ( )1 0
  the price of 1  under the null hypothesis.  

In our example,  0H : 1 0 =  versus 1H : 1 0  the observed value of the test 

function equal to 6.831. This value should be compared to the critical value of t

distribution with ( )2n − = 6 degrees of freedom. Here the sample size used is equal 

to 8. Then the critical value for a = 0.05 in two-sided test, from tables of  t  

distribution is  2447 and since 6.831> 2.447. Thus  we conclude that we reject the 

null hypothesis at α=0.05. Note that the value of the observed level of significance 

(p-value) is very small, almost zero. 

 

The corresponding test for the significance of the constant 0 , given by most 

statistical packages, is of lesser importance compared to the one for the statistical 

significance of the parameter 1 . Here, the non-rejection of 0H  connected to the 

conclusion that when the independent variable X  take the value 0, then the mean 

value of the dependent variable Y  is 0. However, even if the test lead to the 

conclusion that, the constant term remains in the model, since though it’s 

insignificant contribution, is not a problem for our fit. 

 

In our example,  0H : 0 0 =  versus 1H : 0 0  the observed value of the 

control function equal to 11.472. which is much higher that the critical value 2,447. 

We thus reject the null hypothesis. 



GOODNESS OF FIT CRITERIA  

 

            We have already presented a measure to evaluate the fit of the 

regression line to the observed pairs of observations of the two variables, i.e. the 

mean square error ( EMS ).  

 

The EMS is an estimate of the dispersion of the errors (residuals) and a measure of 

observed data dispersion around the regression line. Consequently, the smaller the 

value, the better the fit. However as mentioned above the EMS  measured in the unit 

of our dependent variable and therefore the value is dependent on both the measure 

of the dependent variable, and the price levels of Y . It therefore cannot be used as a 

comparison goodness of fit criterion between different fits where the dependent 

variables are measured in different units of measurement, or when the dependent 

variable, although having the same unit, moves in substantially different price levels. 

 

What we need then  is a measure of the degree of data dispersion around the 

regression line, liberated by units. Such a measure will enable us to compare the 

results of different fits. 

 

The measure looking should be a measure that compares the dispersion of Y  around 

the regression line to the total dispersion Y .  It can be shown that this measure is the 

square of the estimated correlation coefficient r  , i.e. the coefficient of 

determination
2r . 

 

The coefficient of determination 
2r  is a descriptive measure of the goodness of fit, 

an indicator of how well the regression line describes the observed relation between 

Y and X. Moreover the coefficient of determination
2r  is an estimator of the 

corresponding population parameter 2 , Which is the square of the population 

correlation coefficient between two variables X  and Y .  

 

Let us now see how the coefficient of determination is defined.  

 

  

               ( )y y− =           ˆ( )y y−           +             ˆ( )y y−                                   

        Total                unexplained                        explained         

        deviation            deviation                          deviation 



Considering now the squares of these three variations for each point y  and taking 

the sums of those terms for all data points, after simple calculations we conclude: 

 

 

 

 

 

 

 

 

 

 

 

 The term RSS  the part of the variability of Y  explained by the model, while ESS  is 

the sum of the square errors, i.e. the part of the variability Y which are not explained 

by the model, i.e. the dispersion of Y values that cannot be interpreted. The sum of 

these two terms gives us the overall dispersion in Y , i.e. TSS . 

 

 We define the coefficient 
2r as the ratio of the regression sum of squares RSS

the total sum of squares TSS .  

𝑟2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

 

 

According to (1.29) , the sum of ESS  and RSS  give us TSS . Thus  
2r  can also be 

considered as  

 

𝑟2 = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

 

   

 

 

The coefficient of determination 
2r  is defined as the part of total dispersion of 

Y  interpreted by the regression model.  
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        TSS               =           ESS                  +            RSS         

total sum of                   sum of squares           sum of squares  

   squares                       of the residuals           of regression 



ANALYSIS OF VARIANCE TABLE (ANOVA) 

 

The Analysis of Variance Table or simply ANOVA Table is given below. 

 

 

Table 1.2  Analysis of Variance table – ANOVA table 

 
Source of 

Variation 

Sums of squares  Degrees of 

freedom  

Mean sums of 

squares  

    

     F statistic 
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2
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In our example we take 

 

  

Table 1.3  Table Analysis of Variance - ANOVA 

 
Source of Variation Sums of squares  Degreeso

of 

freedom 

 

Mean sums of 

squares  

    

     F value 

 

p-value 

Regression SSR = ,974.014 1 RMS = 1974.014 (1, 2) 46,656nF − =     0,000 

Residuals SSE = 253.861 6 EMS = 42.310   

Total SST = 227.875 7    

 

F (1, n-2) = (t (n-2)) 2 

 

 

  



 

 Data   

↓ 

 Statistical Model 

↓ 

 Systematic behaviour data  
 

+ 
 Random variation 

 

 

Data behaviour has two components (systematic and random). The model describes the 

systematic behaviour of the data leaving out the contribution of the random 

agent (errors or residuals). 

   
 

 

ASSECING THE ASSUMPTIONS OF THE RESIDUALS  

▪ INVESTIGATION OF THE INDEPENDENCE OF RESIDUALS 

 

 

▪ EXPLORING THE CONSTAND VARIANCE OF THE RESIDUALS 
 

 

▪ INVESTIGATION OF THE NORMALITY ASSUMPTION 

 

  



               USING THE REGRESSION MODEL FOR PREDICTIONS 

 

 As mentioned in the first section of the chapter, there are several uses of the 

regression model. The first is to describe the relationship between two variables X  

and Y .  

 

 The ultimate goal of any statistical course of the investigation is the 

prediction. Using the equation
0 1Ŷ b b X= + , We are able to estimate (predict) the value 

of the dependent variable Y  for any value of the independent variable X . This way 

we provide point estimates (forecasts) on our dependent variable. It should be noted 

that the projections should be made to the data area used in the estimation process. 

Using linear regression to draw conclusions out of the range of values X , Our 

estimate is highly uncertain and the risk of erroneous prediction becomes serious as 

the estimated relationship may not be appropriate outside the range of the 

independent variable used in our model.  

 

POINT FORECASTS 

 

The calculation of point forecasts using the estimated regression equation is 

very simple. We simply model the price X  for which we want to predict Y And so 

calculate the predicted value of Y .  

 

In our example, for children aged 4 years, using our model we get that the 

expected height is 109 cm,  

 

 �̂� = 66,972 + 10,472 ⋅ 4 = 109   

 

 

 



PREDICTION INTERVALS 
 

The interval degree prediction (1-a) 100% for Y  when the X x=  is given  

 

 

 

In our example for 4x = , The 95%confidence interval   for Y , is 

 

 
21 (4 3,5)

109 2,447 42,3.(1 109 17,0 92 ;126
8 18

−
  + + =  =  

It is evident that the ranges are dependent on the distance of that price x  (for which 

we want to predict the Y ) from the mean x . The greater this distance, the larger 

the standard error of Ŷ , The larger the width of the confidence interval and hence 

the less effective our prediction.  
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CONFIDENCE INTERVALS OF THE  EXPECTED VALUE OF Y FOR GIVEN X 

 

               The (1-α)100% confidence interval for the ( )|E Y X  is : 
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In our example the  95% confidence interval for the expected value of Y if 

X=4, is 

 

 
21 (4 3,5)

109 2,447 42,3.( 109 5,9 103 ;115
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−
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MODEL BUILDING 
 

1. Select the model 

↓ 
 

2. Estimation of parameters using the data 

                                     ↓ 
 

3. Model: Validation - residual analysis 
                 

If the model is not appropriate, then return to Step 1, 

if appropriate, then 

↓ 
 

4. Using the model for estimates and projections 

 

 
  



 

Another example 

 

Table 1.1 shows the annual total expenditure (Y ) n thousands of euros, and the annual total net 

income ( X ) also in thousands of euros, for  a random sample of twenty  households.  

 

Table 1.1. 

Expenses (Y ) And income ( X )   

a random sample of 20 households (in thousand euros). 

Y 

Consumption 

(In th. Euros) 

X 

Income 

(In th. Euros) 

5 

6.5 

6 

5 

6 

10 

9 

8.5 

6.5 

8.5 

9 

12 

11 

11 

14.5 

14 

12 

16 

3 

10 

5 

5 

6 

7 

5 

8 

9 

9 

10 

10 

11 

12 

13 

14 

15 

16 

15 

14 

6 

10 

 

Figure 1.2 shows graphically the relationship of observed values of two variables in this sample 

of twenty households.  



 

Figure 1.2: Relationship between expenditure (Y ) And income ( X )  

 

We compute: 
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Having calculated the values of the sums of squares, we now from the relationship 1.14 to 

calculate through estimator 
0̂  and 

1̂ , The point estimates of the parameters of the simple linear 

model ( 0b  and 1b ): 

1 1
ˆ 0,844XY

X

SS
b

SS
 =  =   

 

0 1 0
ˆ ˆ 0,73y x b = −  =  

 

 

So our model is: 

16,0014,0012,0010,008,006,004,00

X1

16,00

14,00

12,00

10,00

8,00

6,00

4,00

2,00

Y



 XY += 844,073,0ˆ  

 

Based on the assessment of the fixed term of the model, the average consumption of zero-

income households is estimated at 730 euros. Still, according to the estimate of the regression 

coefficient, an increase in annual household income of 1000 euros, the expected increase of the 

annual expenditure equal 844 euros. 

 

Figure 1.3 is a plot of pairs of observations X  and Y  and the straight regression fitted 

using the least square method.  

 

Figure 1.3: Simple linear model to describe the relationship between costs (Y ) and income ( X ) 

 

 

Let us then build the 95% confidence intervals for 0  and 1 . Using the respective 

formulas we take 
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s
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So the confidence interval for the 0  is: 

 

             ( )0 ( 2),1 / 2 0 0,730 2,093 (1,105) [ 1,583 ; 3,043]nb t s b− − =   = −                 

 

where the value 2,093 is the taken from the table of t distribution, for 1 / 2 0,975− =  and 

2 18n − = degrees of freedom. So, with 95% confidence, the constant term of the regression model 

have a value between 1,583 and 3,043.  

 

If the confidence interval includes the value 0, we can say that the constant term of the 

model is not statistically significant. This means that at zero X , the dependent variable Y  gets a 

value not significantly different from 0. This is a reasonable in our case. 

 

The 95% confidence interval for the 1 , is 

 

          ( )1 ( 2),1 / 2 1 0,844 2,093 (0,104) [0,626 ;1,062]nb t s b− − =   =                

So, based on our results, 95% of the population households, an increase of annual income in 

thousand euros expected to increase their annual costs by 626 to 1062 euros. If the confidence 

interval does not include the value 0 we can say that with 95% confidence, the regression 

coefficient is statistically significant and therefore our vision, thatY  linearly related to the X  is 

correct and therefore our model is appropriate. 

 

                230,64T YSS SS= =  

                1 0,844 214,5 181,143R XYSS b SS= =  =   

                49,495E T RSS SS SS= − =  



 

2 / 0,785R Tr SS SS= =
 

 

 

Table Analysis of Variance - ANOVA 

 
source of 

Variation 

sums of squares  Degrees of 

freedom  

Through 

squares Sums 

    

     F value 

straight 

regression 

SSR = 181143 1 
RMS = 181.143 (1, 2) 65,877nF − =  

bugs 

(Remnants) 

SSE = 49,495         18 
EMS = 2,750  

Total SST = 230 638 19   

 

(1,18)F  They are equal to 4.41 

 

 

 

 

INVESTIGATION OF THE INDEPENDENCE OF RESIDUES 
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INVESTIGATION OF THE REGULARITY OF RESIDUES 
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PREDICTIONS 

 

In our example, if the annual income equal to 10 000 euro on the basis of our model and 

our calculations in this set of observations of (X,Y), the expected level of expenditure, equal to 

9170 euros, since  17,910844,073,0ˆ =+=Y . 

 

For 10x = , the  95% prediction interval for Y , is 

 

 
21 (10 10)

9,3 2,101 1,658 1 9,3 3,57 5,73 ;12,87
20 254

−
  + + =  =  

 

So, based on the model and our calculations in this set of observations, in the population, the 95% 

of households with an annual income equal to 10 000 euros, have  annual expenditures in the range 

between 5730 to 12 870 euros.  

 

The  95% confidence interval for  the expected value of Y  for 10x = , is 

 

 
21 (10 10)

9,3 2,101 1,658 9,3 0,78 8,52 ;10,08
20 254

−
  + =  =  

So, based on the model and our calculations in this set of observations, the average annual 

consumption of households with an annual income equal to 10 000 euro in  the population, with  

95% confidence is expected to have a value  between 8520 and 10080 euros.  

 

 

 

 



 

 

 

 


