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Chapter 1

Discrete Distributions

1.1 Sums of discrete independent random variables

Let X , Y , be independent random variables with values in Z. Suppose that an = P(X = n),
bn = P(Y = n) denotes the distributions of X and Y respectively. The distribution of Z := X+Y
is then given by

P(Z = n) =
∞∑

k=−∞
P(X + Y = n, Y = k) =

∞∑
k=−∞

P(X = n− k, Y = k)

=
∞∑

k=−∞
P(X = n− k)P (Y = k) =

∞∑
k=−∞

an−kbk.

For the most part we will restrict ourselves to distributions on the non-negative integers. In this
case, if X , Y , take values on N, then

P(Z = n) =
n∑
k=0

an−kbk for n ∈ N.

If {an}, {bn}, n ∈ N are real sequences then the sequence {cn} where cn =
∑n

k=0 an−kbk is called
the convolution of the two sequences. We write cn = (a ? b)n.

1.2 The Probability Generating Function

The probability generating function (p.g.f.) of a discrete random variable X (with values in N) is
defined as

φ(z) := EzX =

∞∑
n=0

P(X = n)zn. (1.1)

The series above converges at least for all z ∈ [−1, 1]. We note that if pk = P(X = k), φ(z) =∑∞
k=0 pkz

k, and by φ(k)(z) we denote the derivative of order k at z, then

pk =
1

k!
φ(k)(0), k = 0, 1, 2, . . . , (1.2)
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and
E[X(X − 1) · · · (X − k + 1)] = φ(k)(1). (1.3)

The latter is called the descending factorial moment or order k. Ordinary moments can be easily
obtained from these. Finally we note that the probability distribution {pn} obviously determines
uniquely the p.g.f. φ(z) and, reversely, the p.g.f. uniquely determines the probability distribution
via (1.2).

In particular we point out that, if X , Y , are independent random variables with p.g.f.’s φX(z),
φY (z) respectively, then the p.g.f. of their sum Z = X + Y is given by φZ(z) = φX(z)φY (z). To
see this it suffices to note that φZ(z) = E[zX+Y ] = E[zXzY ] = EzXEzY , the last equality holding
because of the independence of X , Y . The above relation extends readily to the case of any finite
number of independent random variables. In particular ifXi, i = 1, 2, . . . , n are i.i.d. (independent,
identically distributed) random variables with (common) probability generating function φX(z) then
their sum Sn := X1 + · · ·+Xn has p.g.f. given by φSn(z) = (φX(z))n.

While the p.g.f. of the sum Sn is readily obtained in terms of the p.g.f. of each of the terms
Xi, the corresponding probability distributions are in general hard to compute. Based on the above
discussion it should be clear that

P(Sn = k) =
1

k!

dk

dzk
(φX(z))n

∣∣∣∣
z=0

,

a quantity that, in the general case, is not easy to evaluate. Alternatively, if pk = P(X = k) then
P(Sn = k) = p?nk := (p ? · · · ? p)k, the n–fold convolution of the sequence {pn} with itself.

We give some examples of discrete probability distributions.

1.3 Discrete distributions

1.3.1 The Bernoulli and the Binomial distribution

The random variable

ξ =

{
0 w.p. q := 1− p,
1 w.p.p

where p ∈ [0, 1] is called a Bernoulli random variable. It is the most elementary random variable
imaginable and a useful building block for more complicated r.v.’s. Its p.g.f. is given by φ(z) =
1− p+ zp, its mean is p and its variance is pq.

If ξi, i = 1, 2, . . . , n are independent Bernoulli random variables with the same parameter p
then their sum X := ξ1 + ξ2 + · · · + ξn is Binomial with parameters n and p. Its distribution is
given by

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n,

and its p.g.f. by

φ(z) =
n∑
k=0

(
n

k

)
pk(1− p)n−kzk = (1− p+ pz)n.
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The mean and variance of the binomial can be readily obtained from its representation as a sum of
independent Bernoulli random variables. Indeed, EX = E[ξ1 + · · · + ξn] = np and Var(X) =
Var(ξ1 + · · ·+ ξn) = Var(ξ1) + · · ·+ Var(ξn) = nqp.

Note that, if X ∼ Binom(p, n), Y ∼ Binom(p,m), and X , Y , are independent, then X + Y ∼
Binom(p, n+m).

1.3.2 The Poisson distribution

X is Poisson with parameter α > 0 if its distribution is given by

P(X = k) =
1

k!
αke−α, k = 0, 1, 2, . . . .

Its p.g.f. is given by

φ(z) =
∞∑
k=0

zk
1

k!
αke−α = e−α

∞∑
k=0

1

k!
(αz)k = e−αezα = e−α(1−z).

The mean and variance of the Poisson can be easily computed and are given by EX = Var(X) = α.

One of the most important properties of the Poisson distribution is that it arises as the limit
of the binomial distribution Binom(n, α/n) when n → ∞ (i.e. in the case of a large number of
independent trials, say n, each with a very small probability of success, α/n). This is easy to see by
examining the probability generating function of the binomial (n, α/n) and letting n→∞. Indeed,

lim
n→∞

(
1− α

n
+ z

α

n

)n
= lim

n→∞

(
1− α(1− z)

n

)n
= e−α(1−z)

which establishes that Binom(α/n, n)→ Poi(α) as n→∞.

We also point out that, ifX1, X2 are independent Poisson random variables with parameters α1,
α2 respectively, then X1 +X2 ∼ Poi(α1 + α2). The easiest way to see this is to consider the p.g.f.
EzX1+X2 = EzX1EzX2 = e−α1(1−z)e−α2(1−z) = e−(α1+α2)(1−z).

1.3.3 The geometric distribution

If X is geometric with parameter p its distribution function is given by

P(X = k) = qk−1p, k = 1, 2, 3, . . . , (1.4)

where p ∈ (0, 1) and q = 1− p, and its p.g.f. by

φ(z) =

∞∑
k=1

qk−1pzk =
(1− q)z
1− qz

. (1.5)

The parameter p is usually referred to as the “probability of success” and X is then the number of
independent trials necessary until we obtain the first success. An alternative definition counts not
the trials but the failures Y until the first success. Clearly Y = X − 1 and

P(Y = k) = qkp, k = 0, 1, 2, . . . , (1.6)
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with corresponding p.g.f.

EzY =
1− q
1− qz

. (1.7)

It is easy to check that EY = q/p and Var(Y ) = q/p2. Also, EX = 1 + EY = 1/p and
Var(X) = Var(Y ) = q/p2.

1.3.4 The negative binomial distribution

The last example we will mention here is the negative binomial (or Pascal) distribution. Recall that
the binomial coefficient is defined for all a ∈ R and n ∈ N as(

a

n

)
=
a(a− 1) . . . (a− n+ 1)

n!
.

If a is a positive integer then
(
a
n

)
= 0 for all n > a. If however a is a negative integer or a (non-

integer) real then
(
a
n

)
6= 0 for all n ∈ N. Also recall the binomial theorem, valid for |x| < 1 and all

α ∈ R:

(1 + x)α =
∞∑
k=0

(
α

k

)
xk. (1.8)

(If α is a positive integer then
(
α
k

)
= 0 for all k = α+ 1, α+ 2, · · · and thus the infinite series (1.8)

turns into a finite sum: (1 + x)α =
∑α

k=0

(
α
k

)
xk.)

Note in particular that binomial coefficient
(−α
n

)
can be written as(

−α
n

)
=

(−α)(−α− 1) · · · (−α− n+ 2)(−α− n+ 1)

n!

= (−1)n
(α+ n− 1)(α+ n− 2) · · · (α+ 1)α

n!
= (−1)n

(
α+ n− 1

n

)
.

Thus we have the identity

(1− x)−α =

∞∑
k=0

(
−α
k

)
(−x)k =

∞∑
k=0

(
α+ k − 1

k

)
xk. (1.9)

If p ∈ (0, 1) and q = 1− p then the negative binomial distribution with parameters p and α > 0
is defined as

P(X = k) =

(
α+ k − 1

k

)
pαqk, k = 0, 1, 2, . . . . (1.10)

In order to check that the above is indeed a probability distribution it suffices to note that
(
α+k−1

k

)
>

0 when α > 0 for all k ∈ N and that
∑∞

k=0

(
α+k−1

k

)
pαqk = pα(1− q)−α = 1, on account of (1.9).

The probability generating function of the negative binomial distribution is given by

φ(z) =

∞∑
k=0

(
α+ k − 1

k

)
pαqkzk =

(
p

1− qz

)α
.
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If X is a random variable with this distribution then EX = φ′(1) = αq pα

(1−q)α+1 or

EX = α
q

p
.

Similarly, EX(X − 1) = φ′′(1) = α(α + 1)q2 pα

(1−q)α+2 = α(α + 1)
(
q
p

)2
. Thus we have EX2 =

α(α+ 1)
(
q
p

)2
+ α qp and thus Var(X) = α(α+ 1)

(
q
p

)2
+ α qp −

(
α qp

)2
= α qp

(
1 + q

p

)
or

Var(X) = α
q

p2
.

When α = m ∈ N then the negative binomial random variable can be thought of as a sum of m
independent geometric random variables with distribution (1.6). This follows readily by comparing
the corresponding generating functions.
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Chapter 2

Distributions on R

The statistics of a real random variable X are determined by its distribution function F (x) :=
P(X ≤ x), x ∈ R. It is clear thatF is nondecreasing and that limx→−∞ F (x) = 0, limx→∞ F (x) =
1. F is defined to be right-continuous. Note that P(a < X ≤ b) = F (b)− F (a). If x is a point of
discontinuity of F then x is called an atom of the distribution and P(X = x) = F (x)−F (x−) > 0.
If on the other hand x is a point of continuity of F then P(X = x) = 0. F can have at most count-
ably many discontinuity points. If there exists a nonnegative f such that

F (x) =

∫ x

−∞
f(y)dy, x ∈ R

then F is called an absolutely continuous distribution and f is (a version of) the density of F . Most
of the distributions we will consider here will have densities though occasionally we will find it
useful to think in terms of more general distribution functions. Most of the time we will also be
thinking in terms of distributions on R+, i.e. distributions for which F (0−) = 0. The function
F (x) := 1 − F (x) is called the tail of the distribution function. The moment of order k of a
distribution is defined as

mk :=

∫ ∞
−∞

xkdF (x),

provided that the integral exists.

The moment generating function that corresponds to a distribution F is defined as

M(θ) := EeθX =

∫ ∞
−∞

eθxdF (x)

for all values of θ for which the integral converges. If there exists ε > 0 such that M(θ) is defined
in (−ε,+ε) then the corresponding distribution is called light–tailed. In that case one can show that
repeated differentiation inside the integral is permitted and thus M (k)(θ) =

∫∞
−∞ x

keθxdF (x) for
θ ∈ (−ε,+ε). Thus we see that F has moments of all orders and

M (k)(0) = mk,

M(θ) =

∞∑
k=0

θk

k!
mk.
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This justifies the name “moment generating function”. There exist however many distributions
for which the moment generating function does not exist for all values of θ ∈ R. We shall see
such examples in the sequel. In fact it is possible that the integral defining the moment generating
function exists only for θ = 0. This is the case for instance in the ”double-sided Pareto” distribution
with density f(x) = α

2|x|α+1 , |x| ≥ 1, α > 0.

Convergence problems, such as the ones just mentioned, are usually sidestepped by examining
the characteristic function

∫
R e

itxdF (x). In this case the defining integral converges for all t ∈ R.
Also, particularly when dealing with nonnegative random variables, it is often customary to ex-
amine the so-called Laplace transform which is defined as

∫
e−sxdF (x). For nonnegative random

variables the Laplace transform always exists for s ≥ 0. The only difference between Laplace trans-
forms and moment generating functions is of course the sign in the exponent and thus all statements
regarding moment generating functions carry over to Laplace transforms mutatis mutandis.

Scale and location parameters. Let X a random variable with distribution F (and density f ). If
Y = aX + b where (a > 0 and b ∈ R) then the distribution G(x) := P(Y ≤ x) of Y is given by

G(x) = P(X ≤ (x− b)/a) = F

(
x− b
a

)
.

a is called a scale parameter while b a location parameter. The density of G, g, is given by

g(x) =
1

a
f

(
x− b
a

)
.

Note in particular that EY = aEX+ b and Var(Y ) = a2Var(X). Thus if X is “standardized” with
mean 0 and standard deviation 1, then Y has mean b and standard deviation a. Also, if MX(θ) =
EeθX is the moment generating function of X , then the moment generating function of Y is

MY (θ) = Eeθ(aX+b) = eθbMX(aθ). (2.1)

2.1 Some distributions and their moment generating functions

In this section we give the definition of several continuous distributions that will play an important
role in the sequel. Many of their properties will be explored in later sections.

2.1.1 The normal distribution

This is the most important distribution in probability theory. The standard normal distribution has
density given by

ϕ(x) =
1√
2π

e−
1
2
x2 , x ∈ R. (2.2)

The distribution function of the standard normal, denoted by

Φ(x) :=

∫ x

−∞
ϕ(y)dy, x ∈ R (2.3)

cannot be expressed in terms of elementary functions. Its values are available in tables. If X has
the standard normal density then one can readily check (by a symmetry argument) that EX = 0.
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Also, an integration by parts shows that Var(X) = 1. We denote the standard normal distribution as
N (0, 1). The general normal random variable can be obtained via a location-scale transformation:
If X isN (0, 1) then Y = σX +µ (with σ > 0) has mean µ and variance σ2. Its density is given by

f(x) =
1

σ
ϕ

(
x− µ
σ

)
=

1

σ
√

2π
e−

(x−µ)2

2σ2 (2.4)

and of course its distribution function by F (x) = Φ(x−µσ ). It is denoted by N (µ, σ2).

The moment generating function of the standard normal distribution is given by

M(θ) =

∫ ∞
−∞

eθx
1√
2π

e−
1
2
x2dx =

∫ ∞
−∞

e
1
2
θ2 1√

2π
e−

1
2(x2−2θx+θ2)dx

= e
1
2
θ2
∫ ∞
−∞

1√
2π

e−
1
2
(x−θ)2dx

= e
1
2
θ2 , (2.5)

where in the last equality we have used the fact that 1√
2π
e−

1
2
(x−θ)2 is a probability density function.

Thus, using (2.1), for aN (µ, σ2) normal distribution the corresponding moment generating function
is given by

M(θ) = eµθ+
1
2
θ2σ2

, θ ∈ R. (2.6)

Note that the moment generating function is defined for all θ ∈ R.

While Φ(x) cannot be expressed in closed form in terms of elementary functions, some particu-
larly useful bounds for the tail of the distribution, Φ(x) := 1−Φ(x) are easy to derive. We mention
them here for future reference.

Proposition 1. For all x > 0 we have(
1

x
− 1

x3

)
e−

1
2
x2

√
2π
≤ 1− Φ(x) ≤ 1

x

e−
1
2
x2

√
2π

(2.7)

Proof: The tail is given by Φ(x) =
∫∞
x

1√
2π
e−

1
2
u2du. The upper bound for the tail follows imme-

diately from the inequality∫ ∞
x

e−
1
2
u2du ≤

∫ ∞
x

u

x
e−

1
2
u2du =

1

x

∫ ∞
x

e−
1
2
u2d(

1

2
u2) =

1

x
e−

1
2
x2

(remember that x > 0).

The lower bound can be obtained by the following integration by parts formula

0 ≤
∫ ∞
x

3

u4
e−

1
2
u2du = − 1

u3
e−

1
2
u2
∣∣∣∣∞
x

−
∫ ∞
x

1

u2
e−

1
2
u2du

=
1

x3
e−

1
2
x2 −

∫ ∞
x

1

u2
e−

1
2
u2du

=
1

x3
e−

1
2
x2 − 1

x
e−

1
2
x2 +

∫ ∞
x

e−
1
2
u2du. (2.8)
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2.1.2 The exponential distribution

The distribution function is

F (x) =

{
0 if x < 0
1− e−λx if x ≥ 0

,

(where λ > 0 is called the rate) with corresponding density

f(x) =

{
0 if x < 0
λe−λx if x ≥ 0

.

The mean of the exponential distribution is 1
λ and the variance 1

λ2
. Its moment generating function

is given by ∫ ∞
0

eθxλe−λxdx =
λ

λ− θ
, for θ < λ.

2.1.3 The Gamma distribution

The density function is given by

f(x) =


0 if x ≤ 0

β
(βx)α−1

Γ(α)
e−βx if x > 0

.

β is often called the scale parameter, while α the shape parameter. The Gamma function, which
appears in the above expressions is defined via the integral

Γ(x) =

∫ ∞
0

tx−1e−tdt x > 0, (2.9)

and satisfies the functional equation

Γ(x+ 1) = xΓ(x).

In particular, when x is an integer, say n,

Γ(n) = (n− 1)! .

(This can be verified by evaluating the integral in (2.9).) We also mention that Γ
(
1
2

)
=
√
π.

The corresponding distribution function is

F (x) =


0 if x ≤ 0∫ x

0
β

(βu)α−1

Γ(α)
e−βudu if x > 0

α > 0,

which can be expressed in terms of the incomplete gamma function defied as Γ(z, α) :=
∫ z
0 t

α−1e−tdt.

The moment generating function of the Gamma distribution is

M(θ) =

∫ ∞
0

exθβ
(βx)α−1

Γ(α)
e−βxdx =

(
β

β − θ

)α
.
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Note thatM(θ) above is defined only in the interval−∞ < θ < β because when θ ≥ β the defining
interval does not converge. It is easy to see that, for α = 1 the Gamma distribution reduces to the
exponential.

A special case of the Gamma distribution is the so-called Erlang distribution obtained for integer
α = k − 1 (We have also renamed β into λ). Its density is given by

f(x) =


0 if x < 0

λ
(λx)k

k!
e−λx if x ≥ 0

with corresponding distribution function

F (x) =


0 if x < 0

1−
k−1∑
i=0

λ
(λx)i

i!
e−λx if x ≥ 0

Its moment generating function is of course
(

λ
λ−θ

)k
. One of the reasons for the importance of

the Erlang distribution stems from the fact that it describes the sum of k independent exponential
random variables with rate λ.

2.1.4 The Pareto distribution

The Pareto density has the form

f(x) =


0 if x ≤ c

αcα

xα+1
if x > c

with corresponding distribution function

F (x) =


0 if x ≤ c

1−
( c
x

)α
if x > c

where α > 0. The Pareto distribution is a typical example of a subexponential distribution. The
nth moment of the Pareto distribution is given by the integral

∫∞
c xnαcαx−α−1dx provided that it

is finite. Hence the nth moment exists if α > n and in that case it is equal to αcn

α−n . In particular the
mean exists only if α > 1 and in that case it is equal to cα

α−1

An alternative form of the Pareto which is non-zero for all x ≥ 0 is given by

f(x) =


0 if x < 0

α

c(1 + x/c)α+1
if x ≥ 0
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F (x) =


0 if x < 0

1− 1

(1 + x/c)α
if x ≥ 0

where α > 0.

2.1.5 The Cauchy distribution

The standardized Cauchy density is given by

f(x) =
1

π

1

1 + x2
, x ∈ R,

with distribution function
F (x) =

1

2
+

1

π
arctan(x), x ∈ R.

It has “fat” polynomial tails: In fact using de l’Hôpital’s rule we see that

lim
x→∞

xF (x) = lim
x→∞

F (x)

x−1
= lim

x→∞

f(x)

x−2
= lim

x→∞

x2

π(1 + x2)
=

1

π
.

This it does not have a mean or a variance because the integrals that define them do not converge. It
is useful in modelling phenomena that can produce large claims.

2.1.6 The Weibull distribution

The distribution function is given by

F (x) =

{
0 if x ≤ 0

1− e−xβ if x > 0

with corresponding density

f(x) =

{
0 if x ≤ 0

βxβ−1e−x
β

if x > 0

The nth moment of this distribution is given by∫ ∞
0

βxn+β−1e−x
β
dx =

∫ ∞
0

yn/βe−ydy = Γ

(
n

β
+ 1

)
.

2.2 Sums of independent random variables in R+

Suppose that F , G, are two distributions on R+. Their convolution is defined as the function

F ? G(x) =

∫ x

0
F (x− y)dG(y), x ≥ 0. (2.10)
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If X , Y , are independent random variables with distributions F and G respectively, then F ? G is
the distribution of their sum X + Y . Indeed,

P(X + Y ≤ x) =

∫ ∞
0

P(X + Y ≤ x|Y = y)dG(y) =

∫ ∞
0

P(X ≤ x− y|Y = y)dG(y)

=

∫ ∞
0

F (x− y)dG(y) =

∫ x

0
F (x− y)dG(y).

In the above string of equalities we have used the independence of X and Y to write P(X ≤
x − y|Y = y) = F (x − y) and the fact that F (x − y) = 0 for y > x to restrict the range of
integration. In view of this last remark it is clear that F ? G = G ? F . We will also write F ?n to
denote the n–fold convolution F ?F ?· · ·?F (with n factors) with the understanding that F ?1 = and
F ?0 = I where I(x) = 1 if x ≥ 0 and I(x) = 0 when x < 0. When both F and G are absolutely
continuous with densities f and g respectively then H = F ?G is again absolutely continuous with
density

h(x) =

∫ x

0
f(x− y)g(y)dy.

We will denote the convolution of the two densities by h = f ∗ g. For instance, if f(x) = λe−λx,
g(x) = µe−µx, then

f ∗ g(x) =

∫ x

0
λµe−λ(x−y)e−µydy = λµe−λx

(
1− e−(µ−λ)x

)
µ− λ

=
λµ

µ− λ

(
e−λx − e−µx

)
.

Note that, if X , Y , are independent then the moment generating function of the sum X + Y is
given by

MX+Y (θ) = Eeθ(X+Y ) = EeθXeθY = MX(θ)MY (θ).

IfXi, i = 1, 2, . . . , n are independent, identically distributed random variables with distribution
F and moment generating function MX(θ) then S := X1 + · · ·+Xn has distribution function F ?n

and moment generating function MS(θ) = (MX(θ))n.

Convolutions are in general hard to evaluate explicitly. As an exception to this statement we
mention the exponential distribution, F (x) = 1− e−λx, x ≥ 0. In that case we have

F ∗n(x) = 1−
n−1∑
k=0

(λx)k

k!
e−λx.

(This is the well known Erlang distribution). More generally, if F (x) = 1 −
∑m−1

k=0
(λx)k

k! e−λx

then F ∗n(x) = 1 −
∑nm−1

k=0
(λx)k

k! e−λx and, more generally yet, if F is Gamma(α, λ) then F ∗ is
Gamma(nα, λ).

2.3 Random Sums

Suppose that Xi, i = 1, 2, . . . is a sequence of non-negative random variables with distribution
function F and moment generating function MX(θ) :=

∫∞
0 eθxdF (x). Suppose also that N is
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a discrete random variable, independent of the Xi’s, i = 1, 2, . . .. Let SN =
∑N

i=1Xi. The
distribution and the moments of SN can be obtained by conditioning on N . For instance

P(SN ≤ x) =

∞∑
n=0

P(N = n)P(X1 + · · ·+Xn ≤ x) =

∞∑
n=0

P(N = n)F ?n(x). (2.11)

The mean and the variance of SN can be computed in the same fashion.

ESN =

∞∑
n=0

P(N = n)E[X1 + · · ·+Xn] =

∞∑
n=1

P(N = n)nEX1 = ENEX1. (2.12)

Also

E

(
n∑
i=1

Xi

)2

= E

 n∑
n=1

X2
i +

∑
i 6=j

XiXj

 = nEX2
1 + n(n− 1)(EX1)

2

and thus

ES2
N =

∞∑
n=0

P(N = n)E[(X1 + · · ·+Xn)2] =
∞∑
n=1

P(N = n)
(
nEX2

1 + n(n− 1)(EX1)
2
)

= E(X2
1 )EN + (EX1)

2
∞∑
n=1

n(n− 1)P(N = n)

= E(X2
1 )EN + (EX1)

2EN2 − (EX1)
2EN

= Var(X1)EN + (EX1)
2EN2. (2.13)

From (2.12) and (2.13) we obtain

Var(SN ) = Var(X1)EN + Var(N)(EX1)
2. (2.14)

Finally we can also compute the moment generating function of SN by conditioning:

MSN (θ) = EeθSN =

∞∑
n=0

P(N = n)Eeθ
∑n
i=1Xi =

∞∑
n=0

P(N = n)
(
EeθX1

)n
=

∞∑
n=0

P(N = n) (MX(θ))n .

If we denote by φN (z) =
∑∞

n=0 P(N = n)zn the p.g.f. of N we see from the above that

MSN (θ) = φN (MX(θ)). (2.15)
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Chapter 3

The Central Limit Theorem and
Logarithmic Asymptotics

3.1 Premium Computation Using the Central Limit Theorem

Suppose that the insurance company has a portfolio consisting of n policies. Over one period each
one of these policies generates a claim, the ith claim being a random variable Xi, i = 1, 2, . . . , n.
These are assumed to be independent, identically distributed random variables with common dis-
tribution F and mean m. The premium the insurance company receives for each company is p. If
at the beginning of the period the free reserves of the insurance company are u, then at the end of
the period they are u + np −

∑n
i=1Xi. If the premium p is greater than the expected size of the

claim (a situation which may be acceptable to the insurance buyer as we saw in the previous section)
then by virtue of the law of large numbers the insurer is likely to profit and extremely unlikely to
be unable to cover the total losses. To see this note that the event that the income from the premi-
ums np plus the initial free reserves u will not suffice to cover the losses, happens with probability
P( 1

n

∑n
i=1Xi > p+ u/n). If p > m then by virtue of the weak law of large numbers we have that

limn→∞ P( 1
n

∑n
i=1Xi > p+ u/n) = 0.

The above limiting argument makes it very implausible that for large but finite n the losses will
exceed the premium income and safety reserves. In order to quantify this a study of the fluctuations
of the sums of random variables is necessary. This study starts with the central limit theorem.

Let us start by setting u/n =: v, the total free reserves per contract and c := p + v. Then,
in order to set the probability that the losses will exceed the available reserves equal to α, (a small
number, typically 0.1% – 1%) we should choose c such that

P (X1 +X2 + · · ·+Xn ≥ nc) = α.

In order to take advantage of the Central Limit theorem (CLT) let us rewrite the above equation as

P
(
X1 +X2 + · · ·+Xn − nm

σ
√
n

≥ c−m
σ

√
n

)
= α. (3.1)

Assuming n to be large enough to justify our appeal to the CLT we then have

c−m
σ

√
n = z1−α

14



where Φ(z1−α) = 1− α. Thus

c = m+ z1−ασ
1√
n

(3.2)

and hence
p =

u

n
+m+ z1−ασ

1√
n
. (3.3)

The above argument often provides the basis for rate setting but it should be used with care. There
are three reasons that could lead to erroneous estimation of the probability of ruin:

a) The risks in the portfolio are inhomogeneous to such a degree that the equidistribution ap-
proach is not justified

b) The claim distribution is heavy tailed (σ =∞) and therefore the CLT cannot be applied

c) We are interested in ”rare” events, out in the tail of the distribution of X1 + X2 + · · · + Xn

where the CLT does not hold

We will have the opportunity to look at the issues raised in a) and b). Regarding c) let us
examine more closely the approximation involved in (3.1). In order to be justified in applying
the CLT we should be prepared to let n → ∞. However, the right hand side of the inequality
in (3.1) also goes to infinity with n and therefore the only thing we learn from the CLT is that
P
(
X1+X2+···+Xn−nm

σ
√
n

> c−m
σ

√
n
)
→ 0 as n→∞ .

Assuming that the CLT approximation can be used,

P
(
X1 +X2 + · · ·+Xn − nm

σ
√
n

>
c−m
σ

√
n

)
≈ Φ

(
c−m
σ

√
n

)
where Φ(x) = 1− Φ(x). Then it is easy to see that

lim
n→∞

1

n
logP

(
X1 +X2 + · · ·+Xn − nm

σ
√
n

>
c−m
σ

√
n

)
= lim

n→∞

1

n
log Φ

(
c−m
σ

√
n

)
.

This last limit will be computed in the next section using the inequalities of proposition 1 and we
will see that

lim
n→∞

1

n
log Φ

(
c−m
σ

√
n

)
= −1

2

(
c−m
σ

)2

.

We conclude from the above analysis that, if the probability of ruin P(X1 + X2 + · · · + Xn ≥
n(c−m)) is set equal to α (a small number) then for large n

1

n
logα ≈ −1

2

(
c−m
σ

)2

or equivalently

c = m+ σ
2 log(1/α)√

n
. (3.4)

This last equation is to be compared with (3.2).
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3.2 Logarithmic Asymptotics

Suppose that Xi, i = 1, 2, 3, . . . , are i.i.d. with distribution function F , corresponding mean m =∫
R xF (dx), variance σ2, and moment generating function M(θ) :=

∫
R e

θxF (dx). The weak law of
large numbers guarantees that

lim
n→∞

P(Sn ≥ nx) = 0 for x > m (3.5)

and similarly that
lim
n→∞

P(Sn ≤ nx) = 0 for x < m (3.6)

Correspondingly, if the premium charged per policy, x, is higher than the expected claim size, m,
then the probability or ruin goes to zero, whereas if the it is less than m then ruin is certain.

One important question however not answered by the weak law of large numbers is how fast do
the above probabilities go to zero. We will see that they go to zero exponentially fast, i.e. that

P(Sn ≥ nx) � e−nI(x) for x > m (3.7)

In the above formula note that the exponential rate of decay I(x) is a function of x. The meaning
of (3.7) is made precise if we state it as

lim
n→∞

1

n
logP(Sn ≥ nx) = −I(x) for x > m. (3.8)

Where does the exponential behavior come from? Write P(Sn ≥ nx) as

P (Sn − nm ≥ n(x−m)) = P
(
Sn − nm
σ
√
n
≥
√
n

(
x−m
σ

))
(3.9)

and appeal to the central limit theorem: For n large Sn−nm
σ
√
n

is approximately normally distributed
with mean 0 and standard deviation 1 and hence

P(Sn ≥ nx) = P
(
Sn − nm
σ
√
n
≥
√
n

(
x−m
σ

))
≈ 1√

2π

∫ ∞
√
n(x−m

σ
)
e−

1
2
u2du

≈ σ

(x−m)
√

2πn
e−n

(x−m)2

2σ2 .

Are the above asymptotics justified? In one case at least yes. Suppose that the r.v.’s Xi, are i.i.d.
are normal with mean m and variance σ2 (N(m,σ2)). Then Sn/n has distribution N

(
m, σ

2

n

)
.

Hence in this case (3.9) becomes an exact relationship and we have

P(Sn ≥ nx) =

∫ ∞
√
n(x−m

σ
)

1√
2π

e−
1
2
u2du. (3.10)

Taking into account the bounds in proposition 1 we have

log
((

1
n1/2

σ
x−m −

1
n3/2

σ3

(x−m)3

)
1√
2π
e−

1
2
n(x−mσ )

2)
≤ logP(Sn ≥ nx)

≤ log

(
1

n1/2
σ

x−m
1√
2π
e−

1
2
n(x−mσ )

2
)
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or

−1

2
log n+ log

(
σ

x−m −
1
n

σ3

(x−m)3

)
− 1

2
log 2π − 1

2
n

(
x−m
σ

)2

≤ logP(Sn ≥ nx)

≤ −1

2
log n+ log σ

x−m −
1
2 log 2π − 1

2n
(
x−m
σ

)2
.

Dividing the above inequality with n and letting n→∞ (taking into account that 1
n log n→ 0) we

obtain

lim
n→∞

1

n
logP(Sn ≥ nx) = −1

2

(
x−m
σ

)2

. (3.11)

Hence, setting I(x) = 1
2

(
x−m
σ

)2 we obtain (3.5) for normal random variables. Can we generalize
this to non–normal random variables? Can we generalize it for sequences that are not independent
and identically distributed?

As we will see the answer is in the affirmative on both counts. We start with a relatively simple
bound known as the Chernoff bound.

3.3 Chernoff bounds

In the same framework as before Xi, i = 1, 2, . . . are assumed to be i.i.d. r.v.’s with moment
generating function M(θ). We start with the obvious inequality

1(Sn ≥ nx)enxθ ≤ eθSn

which holds for all θ ≥ 0 since the exponential is non–negative. Taking expectations in the above
inequality we obtain

P(Sn ≥ nx) ≤ e−nxθE[eθX1+X2+···+Xn ] = e−nxθM(θ)n, θ ≥ 0.

The above inequality provides an upper bound for P(Sn ≥ nx) for each θ ∈ R+. Since the left
hand side in the above inequality does not depend on θ we can obtain the best possible bound by
setting

P(Sn ≥ nx) ≤ inf
θ≥0

e−n{xθ−logM(θ)} = e−n supθ≥0{xθ−logM(θ)}.

Define now the rate function

I(x) := sup
θ∈R
{xθ − logM(θ)} . (3.12)

With this definition the Chernoff bound becomes

P(Sn ≥ nx) ≤ e−nI(x). (3.13)

As we will see in many cases this upper bound can be turned into an asymptotic inequality. This is
the content of Cramér’s theorem.

Theorem 1. The cumulant logM(θ) is a convex function of θ.

17



Proof: To establish this we will show that the second derivative d2

dθ2
logM(θ) is non–negative.

Indeed
d2

dθ2
logM(θ) =

M ′′(θ)

M(θ)
−
(
M ′(θ)

M(θ)

)2

However note that

M ′′(θ) =
d2

dθ2
E[eθX ] = E[X2eθX ]

and hence
M ′′(θ)

M(θ)
= E[X2 eθX

M(θ)
] = EP̃[X2].

Similarly
M ′(θ)

M(θ)
= E[X

eθX

M(θ)
] = EP̃[X]

and thus
d2

dθ2
logM(θ) = EP̃[X2]−

(
EP̃[X]

)2
= EP̃

(
X − EP̃[X]

)2 ≥ 0.

3.4 Examples of rate functions

Bernoulli Random Variables Suppose that P(Xi = 1) = 1 − P(Xi = 0) = p (i.e. the random
variables take only the values 0 and 1 with probabilities 1 − p and p respectively). In this case
logM(θ) = log

(
peθ + 1− p

)
. To maximize xθ − logM(θ) we set its derivative equal to zero:

x = peθ

1−p+peθ or eθ = x
1−x

1−p
p and, taking logarithms,

θ = log
x

1− x
+ log

1− p
p

.

Therefore

I(x) =


x log

x

p
+ (1− x) log

1− x
1− p

, 0 < x < 1

∞, otherwise

Normal N(µ, σ2) Here M(θ) = eθµ+
1
2
θ2σ2

. The rate function is given by

I(x) = sup
θ

[
θx− θµ− 1

2
θ2σ2

]
.

Differentiating we obtain (x− µ)− θσ2 = 0 or θ = x−µ
σ2 . Substituting back we get

I(x) =
1

2

(
x− µ
σ

)2

.

18



Exponential (rate λ) In this case M(θ) = λ
λ−θ and thus the rate function is obtained by maximizing

the expression θx − log λ
λ−θ . The optimal value of θ is obtained by the solution of the equation

x− 1
λ−θ = 0 or θ = λ− 1/x which gives

I(x) =

{
λx− log λx− 1, x > 0
+∞, x ≤ 0

Binomial (number of trials n, probability of success p) HereM(θ) = (1−p+peθ)n (note the close
connection with the Bernoulli distribution) and logM(θ) = n log(1 − p + peθ). Thus, arguing as
in the Bernoulli case, we see that xθ − logM(θ) is maximized for θ∗ = log

(
x(1−p)
(k−x)p

)
and hence

I(x) =


x log

x

p
+ (n− x) log

n− x
1− p

− n log n, 0 < x < n

∞, otherwise

Geometric (probability of success p) Here

M(θ) =
1− p

1− peθ
.

Following the same procedure as before we obtain

I(x) =


x log x− (x+ 1) log(x+ 1) + x log

1

p
− log(1− p), x > 0

+∞, x ≤ 0

In the following graph the rate function of the geometric distribution (with p = 1/2) is shown.

3.5 Properties of the rate function

Let D = {x : I(x) < ∞} be the domain of definition of I . It is easy to see that D is either the
whole of R or an interval that may extend infinitely to the right or the left. If the upper or lower end
of the interval is finite it may or may not belong to D depending on the case. Thus in any case D is
a convex set in R.

1. I(x) is a convex function (on its domain of definition). It suffices to show that, for each
λ ∈ [0, 1], x, y ∈ D, I(xλ+ y(1− λ)) ≤ λI(x) + (1− λ)I(y). Indeed,

I(xλ+ y(1− λ)) = sup
θ
{θ(xλ+ y(1− λ))− logM(θ)}

= sup
θ
{λ(θx− logM(θ)) + (1− λ)(θx− logM(θ))}

≤ λ sup
θ
{θx− logM(θ)}+ (1− λ) sup

θ
{θy − logM(θ)}

= λI(x) + (1− λ)I(y)
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Figure 3.1: Rate function for the geometric distribution

2. I(x) ≥ 0 for all x ∈ D and I(m) = 0. (In particular this implies that I is minimized at
x = m.) We begin with the remark that for θ = 0, θx − logM(θ) = 0. Thus I(x) ≥ 0. Next, use
Jensen’s inequality: M(θ) = EeθX ≥ eθEX for all θ for which M(θ) <∞. Thus logM(θ) ≥ θm
or θm− logM(θ) ≤ 0. Since I(x) ≥ 0, we conclude that I(m) = 0.

3. For each x ∈ D there exists θ∗ such that

M ′(θ∗)

M(θ∗)
= x (3.14)

We will not present a complete proof of this. A justification might be given along the following lines:
since for fixed x the function f(θ) = θx−logM(θ) is convex in θ and smooth (M(θ) has derivatives
of all orders) it suffices to find θ∗ so that f(θ∗) = 0 or equivalently x−M ′(θ∗)/M(θ∗) = 0.

3.6 The twisted distribution

Let F (y) be a distribution function on R with moment generating function M(θ). The distribution
function F̃ (y) defined via

dF̃ (dy) =
eθy

M(θ)
F (dy)

is called the twisted distribution that corresponds to F . It is easy to see that

F̃ (y) =

∫ y

−∞

eθu

M(θ)
F (du)

is a non–decreasing function of y and as y →∞, F̃ (y)→ 1.
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The mean of the twisted distribution is given by∫ ∞
−∞

yF̃ (dy) =
1

M(θ)

∫ ∞
−∞

yeθyF (dy) =
1

M(θ)

d

dθ

∫ ∞
−∞

eθyF (dy) =
M ′(θ)

M(θ)
.

In particular when θ = θ∗, the solution of (3.14),

1

M(θ∗)

∫ ∞
−∞

yeθ
∗yF (dy) =

M ′(θ∗)

M(θ∗)
= x. (3.15)

Regarding our notation, it will be convenient to think of two different probability measures, the
probability measure P, under which the random variables Xi, i = 1, 2, . . . , have distribution F , and
the twisted measure P̃, under which the r.v.’s Xi have distribution F̃ . Expectations with respect to
the probability measure P̃ will be denoted by Ẽ.

3.7 Cramér’s Theorem

Theorem 2. Suppose that {Xn} is an i.i.d. sequence of real random variables with moment gen-
erating function M(θ) which exists in an open neighborhood of zero. Then, if m = EX1 and
Sn := X1 + · · ·+Xn,

lim
n→∞

1

n
logP(Sn ≥ nx) = −I(x), x ≥ m,

lim
n→∞

1

n
logP(Sn ≤ nx) = −I(x), x ≤ m.

The intuitive content of the above theorem is that P(Sn ≥ nx) ≈ e−nI(x) when x > m for large
values of n (with the corresponding approximation, P(Sn ≤ nx) ≈ e−nI(x) holding when x < m).

To see how this works in practice suppose that Xi, i = 1, 2, . . . , n be independent Bernoulli
random variables with P(Xi = 1) = p and P(Xi = 0) = q := 1−p. Thenm = 1 ·p+0 ·q = p. Let
Sn =

∑n
i=1Xi. Then Sn is Binomial and, as we saw in section 3.4, I(x) = x log x

p+(1−x) log 1−x
1−p

for 0 < x < 1. The following program in R computes the probabilities P(Sn ≥ mx) using the
function pbinom(x,m,0.5). for m = 200 and various values of x > 0.5. It also computes the
Large deviation estimate e−mI(x) and plots the two series of values.

# This is a comparison between the tail of the binomial distribution and the
# approximation using Large Deviations theory

a<-0.02

I<-function(x) (x*log(2*x)+(1-x)*log(2*(1-x))) # This is the rate function of
ldp=matrix(0,1,20) # a Bernoulli random variable
m<-200

for (j in 1:20)
{
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Figure 3.2: Tail of the Binomial Distribution

x<- 0.5+ j*a
ldp[j]<- exp(-m*I(x))

}

bb=matrix(0,1,20)
for (j in 1:20) {

bb[j]<- 1-pbinom(m*(0.5+j*a),m,0.5) # Here the tail of the binomial distribution
} # distribution is computed.
plot(ldp[1,]) # The small circles show the Large Deviation
lines(bb[1,]) # estimates. The line shows the exact value

# of the tail probability.
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Chapter 4

Random Walks and the
Cramér-Lundberg Model

4.1 The Simple Random Walk

Let {ξn}, n = 1, 2, . . . be independent, identically distributed random variables with P(ξn = 1) =
p, P(ξn = −1) = q := 1 − p. Consider the process {Xn;n = 0, 1, 2, . . .} defined by X0 := a
(where a ∈ Z the given initial value of the process) and Xn := Xn−1 + ξn, n = 1, 2, . . .. Consider
the following problem known as the gambler’s ruin.

A gambler with initial fortune a each time places a unit bet which he wins with probability
p or loses with probability q = 1 − p. Consecutive outcomes are independent and the process
continues until either the gambler loses all his fortune or when his fortune reaches a predetermined
level b > a. Thus after the n’th bet the gambler’s fortune is Xn and the process stops at time
T = min{n > 0 : Xn = 0, or Xn = b}. Let πa := P(XT = 0) denote the probability of ruin
when the initial fortune of the gambler is a. Then 1 − πa = P(XT = b) is the complementary
probability that the gambler eventually reaches his goal and wins.

The ruin probability can be determined if we consider the initial fortune as a variable parameter.
Then a “first step analysis” shows that

πk = pπk+1 + qπk−1, k = 1, 2, . . . , b− 1. (4.1)

To see this suppose that the initial fortune is k and consider what happens after the first bet. (Math-
ematically this is justified by the independence of the outcomes of the bets, ξ1, ξ2, . . ..) Equation
(4.1) is complemented by the boundary conditions

π0 = 1, πb = 1. (4.2)

Consider solutions to equation (4.1) of the form πk = λk. This is possible only if λk = pλk+1 +
qλk−1 or, equivalently, if λ is a root of the characteristic equation λ = pλ2+q. The general solution
of (4.1) can be written as πk = C1λ

k
1 + C2λ

k
2 where λ1, λ2 are the two roots of the characteristic

equation, λ1 = 1, λ2 = q/p. Thus πk = C1 + C2

(
q
p

)k
, and the unknown constants C1, C2, are
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Figure 4.1: Sample path of a random walk

determined from the two boundary conditions (4.2). Thus the ruin probability is given by

πa =

(
q
p

)a
−
(
q
p

)b
1−

(
q
p

)b . (4.3)

A simulation of the simple random walk using R

a<-10
b<-30
p<-0.55
x<-a
xx<-a

while ( (x>0) & (x<b)){
x<-x+2*rbinom(1,1,p)-1
xx<-c(xx,x)

}
plot(xx,type="l")

The above program gives a single sample path of the process. A realization is shown in figure
4.1. If we need to estimate the probability of ruin many independent replications need to be carried
out. The following programm does this.

a<-10
b<-30
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p<-0.55
replications<-10000
pr<-{}

for (i in 1:replications){
ruin<-0
x<-a
while ( (x>0) & (x<b)){

x<-x+2*rbinom(1,1,p)-1
}

if (x==0) {ruin<-1}
pr<-c(pr,ruin)
}
mean(pr)
sd(pr)

thrp<-function(p,a,b){ (((1-p)/p)ˆa - ((1-p)/p)ˆb)/(1 - ((1-p)/p)ˆb)}
thrp(p,a,b)

In the above program pr is a string with 10000 elements zeros and ones depending on whether
each run ends in non-ruin or ruin respectively. The last two lines provide the function that computes
the theoretically expected value from (4.3). The output given by R is

> mean(pr)
[1] 0.1296
> sd(pr)
[1] 0.3358796
>
> thrp<-function(p,a,b){ (((1-p)/p)ˆa - ((1-p)/p)ˆb)/(1 - ((1-p)/p)ˆb)}
> thrp(p,a,b)
[1] 0.1323227

Note that the mean of pr is 0.1296, which is relatively close to the theoretically expected
value of 0.1323. The standard deviation of the mean is sd(pr)/

√
replications = 0.003359.

Hence, a 95% confidence interval for the true ruin probability is

mean(pr)± 1.96 · sd(pr)/
√
replications = 0.3358796± 1.96 · 0.0033588

Thus the confidence interval is [0.1230168 , 0.1361832] which of course contains the theoretical
value.

4.2 The classical risk model of Cramér and Lundberg

The simplest model that describes the operation of an insurance company consists of the following
elements. Initially the insurance firm starts with initial capital u which increases linearly with
time with rate c because of incoming premiums. At times {Sn}, n = 1, 2, . . ., claims arrive with
respective sizes {Zn}. Hence, a typical realization of this process has the form shown in figure 4.2.
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Figure 4.2: Sample path of the Cramér–Lundberg process

We denote by {Xt; t ∈ R} the process

Xt = u+ ct−
N(t)∑
k=1

Zk.

For any T ≥ 0 let us denote by

Ψ(u;T ) = P{ inf
0≤t≤T

Xt < 0}

the probability that “ruin” occurs within the finite horizon [0, T ]. Similarly, we will denote by

Ψ(u) = P{inf
t≥0

Xt < 0}

the infinite horizon ruin probability. We will also denote by

Φ(u) := 1−Ψ(u)

the infinite horizon non-ruin probability. Suppose that the claim arrival process {Sn} is a Poisson
process with rate λ and the claims {Zi} are i.i.d. random variables with distribution F and mean
µ. Clearly, from the Strong Law of Large Numbers, when c < λµ then X(t) → −∞ w.p. 1 and
hence ruin is certain eventually. Therefore the premium rate c must exceed the rate with which the
company loses money because of the claims which on the average is λµ. (This is called the net
premium rate.) The factor ρ by which the premium rate charged by the company exceeds the net
premium rate is called safety loading i.e.

ρ :=
c

λµ
− 1 or 1 + ρ =

c

λµ
(4.4)

4.3 Integrodifferential Equation for the Non–ruin Probability

We start with

Lemma 1. Φ(u) is non-decreasing in u and limu→∞Φ(u) = 1.
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Proof: Indeed, Φ(u) = P{inft≥0Xt ≥ 0} and Bu := {inft≥0Xt ≥ 0} is a non-decreasing
family of sets in u in the sense that u1 < u2 implies that Bu1 ⊂ Bu2 . Hence, by the mono-
tone continuity of the probability measure, if {un} is a sequence such that un → ∞ as n → ∞,
limn→∞ P{inft≥0Xt ≥ 0} = P (limn→∞{inft≥0Xt ≥ 0}). An argument based on the Strong
Law of Large numbers shows that, since λµ < c, inft≥0{ct−

∑N(t)
k=1 Zk} > −∞ with probability 1

and hence limn→∞ inft≥0{un + ct−
∑N(t)

k=1 Zk} =∞, hence P (limn→∞{inft≥0Xt ≥ 0}) = 1.

A first step analysis gives

Φ(u) = EΦ(u+ cS1 − Z1)

=

∫ ∞
0

λe−λs
∫ u+cs

0
Φ(u+ cs− z)dF (z)ds (4.5)

The change of variables x := u+ cs transforms the above equation into

Φ(u) =
λ

c
eλu/c

∫ ∞
u

e−λx/c
∫ x

0
Φ(x− z)dF (z)dx. (4.6)

Differentiation of the above with respect to u gives

Φ′(u) =
λ

c
Φ(u)− λ

c

∫ u

0
Φ(u− z)dF (z). (4.7)

Integrating again w.r.t. u from 0 to t we obtain

Φ(t)− Φ(0) =
λ

c

∫ t

0
Φ(u)du+

λ

c

∫ t

0

∫ u

0
Φ(u− z) [1− F (z)] dzdu

which can be rewritten (after integration by parts) as

Φ(u) = Φ(0) +
λ

c

∫ u

0
Φ(u− z) [1− F (z)] dz. (4.8)

4.4 Exponentially Distributed Claims

Suppose that F (z) = 1− e−z/µ, i.e. the claim distribution is exponential with mean µ. Then (4.7)
becomes

Φ′(u) =
λ

c
Φ(u)− λ

cµ

∫ u

0
Φ(u− z)e−z/µdz

=
λ

c
Φ(u)− λ

cµ

∫ u

0
Φ(z)e−(u−z)/µdz

=
λ

c
Φ(u)− λ

cµ
e−u/µ

∫ u

0
Φ(z)ez/µdz.

Differentiating w.r.t. u once more we obtain

Φ′′(u) =

(
λ

c
− 1

µ

)
Φ′(u) = − ρ

µ(1 + ρ)
Φ′(u),
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and integrating twice yields
Φ(u) = C1 + C2e

− ρ
µ(1+ρ)

u
.

From the requirement limu→∞Φ(u) = 1 we see that C1 = 1 whereas from the requirement Φ(0) =
ρ

1+ρ it follows that C2 = 1
1+ρ . Thus in the exponential case we have the simple formula Φ(u) =

1− 1
1+ρe

− ρ
µ(1+ρ)

u and for the ruin probability

Ψ(u) = 1
1+ρe

− ρ
µ(1+ρ)

u
. (4.9)

4.5 Simulation of the classic Cramér – Lundberg risk model using R

The following program simulates a risk model with exponentially distributed claims.

Thorizon<-100
x<-{}
h<-0.01
rho<-0.02
cp<-1+rho
u<-15
n<-Thorizon/h
y<-u

for (i in 1:n)
{
x<-c(x,y)
if (rbinom(1,1,h)==0) y<-y+h*cp else y<-y+h*cp-rexp(1,1)
}
plot(x,type="l")

The simulation horizon is 100 time units. We set the time quantum to h = 0.01. In such a small
time interval either there is no claim, or there is a single claim, with probablility 1 − λh and λh
respectively. (λ in the above program is equal to 1 and claims are assumed to be exponential with
mean 1 as well.) In view of the properties of the Poisson process the above is a good approximation
which becomes exact in the limit as h → 0. (Of course it is not practical to do this in a program,
and this is the reason for choosing an appropriately small h compared to λ−1.)

In the next program we simulate this model for 1000 replications and count the number of
replications for which ruin occurs. Also, the philosophy of the program is difference. Time is not
incremented by a fixed quantum h as before. Instead it is updated each time a new claim arrives.
Both the effect of the claim and the income from premiums is taken into account in the statement
y<-y+cp*tinc-claim. The while statement insures that the simulation stops when the time
horizon is reached. This provides an exact picture of the process. (Note that ruin can occur only
when a claim arrives and therefore nothing is lost by observing the process only at claim arrival
epochs.) Also note that a simple counter, ruincount, is used to count the number of replications
for which ruin occurs. Our estimate for the ruin probability is then given by π̂ = ruincount

replications .
The function Thpr computes the theoretical infinite horizon ruin probability given by (4.9).

replications<-1000
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Figure 4.3: Sample path of the Cramér–Lundberg process – R simulation

Thorizon<-1000
u<-15
rho<-0.02
cp<-1+rho
ruincount<-0

for (i in 1:replications)
{
y<-u
t<-0
ruin<-0

while (t < Thorizon)
{
tinc<-rexp(1,1)
claim<-rexp(1,1)
y<-y+cp*tinc-claim
t<-t+tinc
if (y<0) ruin<-1
}

ruincount<-ruincount+ruin
}
probruin<-ruincount/replications
print(probruin)

Thpr<-function(u) {exp(-u*rho/(1+rho))/(1+rho)}
Thpr(u)

The output obtained is
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> probruin<-ruincount/replications
> print(probruin)
[1] 0.735
>
> Thpr<-function(u) {exp(-u*rho/(1+rho))/(1+rho)}
> Thpr(u)
[1] 0.7305773

Thus π̂ = 0.735. We can also obtain an estimate for the standard deviation of the mean (since
each trial results in a success or a failure and therefore we deal with Bernoulli random variables)
as σ̂ =

√
π̂(1− π̂)/

√
999 = 0.006162408. Thus the 95% confidence interval for the ruin prob-

ability is 0.735 ± 1.96 · 0.006162408 or [0.7229217, 0.7470783] which contains the theoretical
value 0.7305773. As we mentioned, however, the theoretical value refers to the infinite horizon ruin
probability and therefore it is higher than the true (and unknown) theoretical value Ψ(u, 1000).
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