The Binomial Theorem

Let $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$. We define

$$
\binom{\alpha}{n}:=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)}{n!} \text { for } n=1,2, \ldots, \text { and }\binom{\alpha}{0}:=1
$$

Since

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha)=\alpha(\alpha-1) \Gamma(\alpha-1)=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1) \Gamma(\alpha+1-n)
$$

we can also write

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1) \Gamma(\alpha+1-n)}{\Gamma(\alpha+1-n) n!}=\frac{\Gamma(\alpha+1)}{n!\Gamma(\alpha+1-n)} .
$$

The Binomial Theorem of Newton states that,

$$
\begin{equation*}
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n} \quad \text { for }|x|<1 \tag{1}
\end{equation*}
$$

Note that when α is a positive integer then the above series terminates after a finite number of terms. To give an example for the case where α is not a positive integer, suppose $\alpha=-r, k \in \mathbb{N}$. Then

$$
\binom{-k}{n}=\frac{(-k)(-k-1)(-k-2) \cdots(-k-n+1)}{n!}=(-1)^{n} \frac{k(k+1) \cdots(n+k-1)}{n!}=\binom{n+k-1}{k-1}
$$

and (1) gives

$$
\frac{1}{(1+x)^{-k}}=\sum_{n=0}^{\infty}\binom{-k}{n} x^{n}=\sum_{n=0}^{\infty}\binom{n+k-1}{k-1}(-1)^{n} x^{n}
$$

As a second example consider the case $\alpha=-1 / 2$.

$$
\begin{align*}
\binom{-1 / 2}{n} & =\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right) \cdots\left(-\frac{1}{2}-n+1\right)}{n!}=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} n!} \\
& =(-1)^{n} \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots(2 n-1) \cdot(2 n)}{2^{n} n!\cdot 2 \cdot 4 \cdot 6 \cdots 2 n}=(-1)^{n} \frac{(2 n)!}{2^{2 n} n!n!}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n} \tag{2}
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{1}{(1+x)^{\frac{1}{2}}}=\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n} x^{n}=\sum_{n=0}^{\infty}\binom{2 n}{n}(-1)^{n}\left(\frac{x}{4}\right)^{n} . \tag{3}
\end{equation*}
$$

1 Problems

1. a) The negative binomial distribution is the distribution

$$
p_{n}:=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) n!} p^{\alpha} q^{n}, \quad \alpha>0, \quad n=0,1,2, \ldots
$$

where $p, q>0$ and $p+q=1$. Use the binomial theorem to show that its probability generating function is $\sum_{n=0}^{\infty} p_{n} z^{n}=\frac{p^{\alpha}}{(1-q z)^{\alpha}}$.
b) What is the probability generating function of the Poisson distribution given by $p_{n}=\frac{\lambda^{n}}{n!} e^{-\lambda}, n=$
$0,1,2, \ldots$?
c) Suppose now that in the Poisson distribution above the mean λ is itself a random variable with Gamma distribution given by $\beta \frac{(\lambda \beta)^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta \lambda}, \alpha, \beta>0$. What is the resulting distribution? (Use the generating function obtained in part b.)
2. Suppose that $\left\{X_{i}\right\}$ is an i.i.d. sequence of exponential random variables with rate 1. Also $\left\{\xi_{i}\right\}$, $i=1,2, \ldots$, is an i.i.d. sequence (and also independent of $\left\{X_{i}\right\}$). The ξ_{i} take only two values, +1 and -1 with $\mathbb{P}\left(\xi_{1}=+1\right)=p, \mathbb{P}\left(\xi_{1}=-1\right)=q=1-p$. Finally let N is a geometric random variable with $\mathbb{P}(N=n)=(1-\alpha) \alpha^{n-1}, n=1,2, \ldots$, and $\alpha \in(0,1)$, independent of all the other random variables. Let $Y=\sum_{i=1}^{N} \xi_{i} \cdot X_{i}$. Find the moment generating function $M(\theta)=\mathbb{E}\left[e^{\theta Y}\right]$.

