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Chapter 1

Introduction

1.1 Discrete Time

Let Ny =4{0,1,2,...} and (2, F,P) a probability space. A discrete time stochastic process is a
family of real random variables {X,,;n € Ny} defined on (2, F,P). Its law is determined by the
family of finite dimensional distributions

Fo(Z1,. .y Zmin1,. ) = P(Xp, <21,...,Xn,, <ZTm), (1.1)
meN, 2z €R, k=1,....m, 0<n; <ny<---<n,; €Ng

The family of distributions must satisfy the consistency conditions
Fri1(T1, ooy Tty Thy Tht 1y -y Tt My e o vy Toh—1y Tohy Mhtly - - -y Tmt1) (1.2)
= Fm(ml, ey L1, Tht1y- -y 1, ML, - M1, Mt 1, - - nm+1)
for all m € N and all z, € R.
Conversely, for any given family of distribution functions {Fp,(z1,...,Zm;n1,...,m); M €
N,z € R™,0 < n3 < --- < ny} that satisfy the consistency conditions (1.2) there exists a
probability space (€2, F,P) and a sequence of measurable functions {X,}, X, : & — R such

that (1.1) holds, i.e. {X,} is a stochastic process with the given family of finite dimensional
distributions. (This statement is Kolmogorov's theorem.)

1.2 Continuous Time

On the probability space (€2, F,P) consider a family of real random variables {X;;¢ € [0,T]}
(where T' > 0). For each ¢t € [0,T] X; is a measurable function from (2, F) to (R, B) (where B



is the Borel o—field on the real line) while, for each w € Q X.(w) : [0,T] — R is a measurable
function. The family of distribution functions

Fo(z1,...,Zmit1, -y tm) = P(Xy <zq,...,X:, <Zpm), (1.3)
meN, 2z €R, k=1,....m, 0<t1<tao<---<t, <T

are the finite dimensional distributions of the process {X;} and must satisfy consistency
conditions analogous to (1.2).

1.2.1 Brownian Motion

Consider the family of finite-dimensional densities

n 1 (2i—24_1)2

f@1, .. Tty tn) = || ———=e G751 (t;:=0). (1.4)
" " 1:1_[1 2m(t; — ti_q)

This family defines a corresponding family of distribution functions which satisfies the con-
sistency conditions. Therefore, by virtue of the Kolmogorov theorem, there exists a process
{Wy;t > 0} with these finite dimensional distributions. It can be shown that there exists a
version of the process that has continuous sample paths with probability 1.

1.2.2 Markov Processes

A process {X;;t € R} has the Markov property if for any n € N, t; < t2 < ... < t,, and any
z1,...,Z, €R

P(Xt, <Tp|Xt, 3 =Tty 1, Xty oy = Tty o, Xty = Tty) = P(Xz, <2p| Xy, , =24, ;). (L.5)

The meaning of the above is that in order to “predict” the value of the process at a future
time ¢, only the most recent known value X;_ , is relevant. Past values, X, ,, X, 4,--., Xt
provide no further information if the process is markovian.

Clearly, a markovian process can be described completely by the so-called transition kernel,
P(y,z;t,s) = P(Xy < y|Xs = z) for all s < t and z,y € R. The process is called time-
homogeneous if P(y, z;t,s) = P(y,z;t—s,0) which means that P(X; < y|Xs =z) = P(X;:_s <
y|Xo = z) = Q(y, z;t — s) for some transition kernel Q. Note that the transition kernel @ for
each fixed ¢t and z is a distribution function on the real line, the conditional distribution of X;
given that Xy = z.

We will in particular consider the case where the kernel possesses a density p(y, z;t)dy =
P(X: € dy|Xo = z). Let us denote by f(zn,Zn-1,...,Z1;tn,tn-1,...,t1)dTpdT,_1...dz; the



joint density P(X;, € dzn, Xt,_, € dTp_1,...,Xt, € dz1). Then
f(mni Tn—1y--+, ml;fEOthtn—l, s 1t1)t0) = f(mo;to)p((ﬂl, $0;t1 - to)p(w2)$1;t2 - tl)
o 'p(mn; Tn—1; tn - tnfl)-

Thus if the initial density f(zo;to) and the transition function p(y,z;t) are given the finite
dimensional distributions and thus the whole process are determined in the Markovian case. In
particular the standard Brownian motion is a Markov process with transition density

1 @=?

p(y,z;t) = N
1.3 The Multivariate Normal Distribution

1.3.1 Symmetric Nonnegative Definite Matrix

Definition 1. A symmetric n x n matric R 1s positive definite if, for all z # 0 in R”,
t TRz > 0. It is non-negative definite if z' Rz > 0.

Recall that any symmetric matrix n x n has n real eigenvalues (not necessarily distinct)
and n corresponding eigenvectors that can be taken to be orthogonal:

R¢i = )\i¢i; 1= 1, .o, Nn, with ¢;F¢J = 61;]', (16)

where §;; = 1 if + = j and 0 otherwise. If ® := [¢1,..., p»], the matrix whose columns are the
eigenvectors of R, and A the diagonal matrix of the eigenvalues, then the above relationship can
also be written as

R=3M\3".

An equivalent restatement of the above is the so-called spectral representation

R=>"Xipid.
1=1

It is easy to see that R is non-negative definite provided that A; > 0 for all 7 and positive definite
if A; > 0 for all z.

If R is non-negative definite then there exists a real square matrix V' such that
R=VV". (1.7)

Indeed, since \; > 0 we can define A1/ as the diagonal matrix with elements A} /2 and then we
can take V := ®A'/2. The non-uniqueness of V' is obvious since we could make the choice —A./>
for some of the diagonal elements. However there are other, more interesting possibilities.



Recalling the LDU decomposition, where L and U are lower and upper triangular matrices
with unit elements on the diagonal and taking into account that R is symmetric we obtain the
decomposition

R=LDL" (1.8)

where D is the diagonal matrix with elements d;. R is positive definite if and only if d; > 0 for
all i. Thus, an essentially different choice for V in the decomposition (1.7) is V = LD//2,

1.3.2 Moment Generating Function and Joint Density

Definition 2. A random vector (Xi,...,Xn) 1s normal with mean p € R™ and covariance
matriz R if its moment generating function 1s

M(uy,...,up) = Bedoioy wiXi — Dlina Yikits Doy viligus, (1.9)

An immediate consequence is the following proposition

Proposition 3. (X1,...,X,) is multivariate normal if and only if > ; a;X; is normal for
any vector (ai,...,an).

Problem 4. Suppose that R 1s an n X n covariance matriz with rank k < n. Show that
there exists an n x k matriz G such that R = GG'. IfU;, i = 1,...,k are independent,
standard normal random variables, then

X1 U:
Xn Uy,

If the rank of R is n (equivalently if all its eigenvalues are strictly positive) then the law of

1,--.,Xn) 18 absolutely continuous with respect to the Lebesgue measure on wi ensity
X X,) is absolutel ti ith t to the Leb R™ with densit
1 1 T p-1
= —z(@—p) R (z—u)
T1,...,Tp) = e 2 . 1.10
f(@1,---12n) (2m)"/2(det R)!/2 (1.10)

Suppose for simplicity that them mean y is zero. It is well known that the joint moments
are given in terms of the moment generating function via the expression

1 6’£1+"'+'in

[Ti=1 %! oult - - Buy

M(uq,...,un) = E[X} ... X (1.11)

U= =uUnp=0

Equivalently, WMX? ... X!r] is the coefficient of ui'u% ---u’» in the Taylor expansion
]:

of M(us,...,u,) around 0. Since M(u1,...,U,) = e3 2w YUITH this series expansion has the
form

o0 1 m
M(ul,...,un)zl—i— E 2m<§ ukulrrl>
m=1 kl
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As a simple illustration consider that
E[X1X2X3X4] = 712734 + T13724 + T14T23.

Similarly
E[X2X2] = ri17rog + 272,
IEpcll.l] = 37‘%11

and generally
E[X?"]=1-3-5---(2n —1).

Also,
E[X%X%Xg] = 711722733 + 27‘11’!‘%3 + 2’!‘227‘%3 + 27‘337‘%2 + 87‘127‘23’!‘31

Can you discover the general pattern? A relevant combinatorial problem is the following:

The number of pairs that that can be formed by 2n different objects is

<2n>n'1: (2n)! :1.3,5...(277,—1).

n Ton o onpl

1.4 Expansion in Orthogonal Functions — Karhunen-Loéve

Here we give a concrete representation for Brownian motion with variance constant o2 in the
interval [0, T']. The covariance function is given by R(s,t) = 0?(s A t), s,t € [0,T].. By analogy
with the discrete case (1.6) we can attempt to solve the eigenvalue problem

/T R(s, {)di(s)ds = Nigi(2). (1.12)
0

This will determine a sequence of eigenvalues {);}, 2 = 1,2, ... and corresponding eigenfunctions
{¢;} that may be taken to be of unit norm, i.e. to satisfy foT ¢?(s)ds = 1. The integral equation
(1.12) then becomes

¢ T
02/ si(s)ds + 02/ é:(s)ds = Nigi(t) . (1.13)
0 ¢
Differentiating with respect to ¢ we obtain
T
o2 / Bi(s)ds = Nidl(2) (1.14)
¢
and differentiating once again
—a2¢i(t) = Nl (2). (1.15)

Setting t = 0 in (1.13) and ¢ = T in (1.14) we obtain the boundary conditions

¢:(0) =0,  ¢i(T)=0. (1.16)



whence

22 2 A .
A= —0 ¢¢(t):1/sin7r<z—), i=1,2,.... (1.17)
2(; _ 1 T 2, T
n2 (i 1)

Thus we obtain the remarkable expression
R(s,t) = d%(sAt) = Z Aii(s)pi(t)
=1

for the covariance function and the following representation for the Brownian motion: If {Z;}
are i.i.d. standard normal random variables then

X = i ZA2gi(t), teo,T] (1.18)
1=1

is Brownian motion with variance constant 2.

1.5 Processes with Stationary Independent Increments

Definition 5. A process {X:;t > 0} with stationary independent increments, also called a
Lévy process, 1s one satisfying the following three conditions.

1) P(Xo = 0) =1 and the process has with probability 1 paths which are right-continuous
with left hand limats.

1) Foralln € N and 0 <ty <ty <...<t, the random variables Xy, — Xy, ,,1=1,...,n
are independent.

112) For all s,t > 0 the random variables X; and X, — X; are identically distributed.

This family includes some of the best known and simplest processes, namely the Poisson
process, the compound Poisson process, and the Brownian motion. The most striking property
of a Lévy process is apparent from the definition. Let ®;(u) := Ee**X¢ denote the characteristic
function of X; and n € N. Then the random variables Xy;/n — X(x—1)t/n, k = 1,2,...,n are
i.i.d. random variables and hence

n n
&, (u) = E[e] = E[H eit(th/n_X(k—l)t/n)] — H E[eit(xkt/n_x(k—l)t/n)] = ®4/n(u)".
k=1 k=1

As we will argue later a consequence of the above identity is that ®:(u) = e*(*) where

o(u) =1uf — %0’2'[1.2 + /jo (e™*® —1 —juzl(z < 1))v(dz) (1.19)
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where B € R, 02 > 0 and v is a o—finite measure on R \ {0} such that

/1 z’v(dz) < co and v(dz) < oo.
-1 |z|>1

The triplet (3,02, v) is called the Lévy triplet and it characterizes the law of the process. We
will see specific examples later on. Suffice it to say at this point that if v = 0 then we obtain
Brownian motion with drift 8 and variance constant o2 since ®;(u) = e =3%"7" whereas if
v(dz) is a finite measure on R we obtain a compound Poisson process.



Chapter 2

Characteristic Functions

Let X a real random variable with distribution function F. We denote by u the correspond-
ing measure induced on the real line by F' via the relationship p(a,b] = F(b) — F(a). The
characteristic function corresponding to X (or equivalently to F or u) is

o(t) = /]Reit"’dF(cc) = /Reitz,u(da:) = Ee'X (2.1)

where 2 = 4/—1 is the imaginary unit and £ € R. Thus f is a function from R to C. Recalling
de Moivre’s formula for the complex exponential, e** = cosz + ¢ sinz we can also write

o) = /Rcos(:z:t)dF(cc)—i—z'/Rsin(cct)dF(:z:)

Suppose that the distribution function F' is symmetric, i.e. P(X > z) = P(X < —z) for every
z, or equivalently 1 — F(z) = F(—z—). Then, taking into account the fact that sinz is an odd
function we can see that the imaginary part of the characteristic function vanishes and we are
left with

(t) = /R cos(zt)dF ()

From the above definition it is obvious that the probability distribution specifies the char-
acteristic function. Later in this discussion we will also prove the uniqueness theorem which
states that the characteristic function uniquely specifies the probability measure. Hence, knowl-
edge of the characteristic function of a random variable is enough to determine its distribution.
We will begin with some useful elementary results.

If f(¢) is a characteristic function then f(0) = 1. This follows by direct substitution into
(2.1).



A characteristic function is uniformly continuous, i.e. Ve > 0 34 > 0 such that |f(t+ h) —
f(t)| < € whenever |h| < § for all ¢ € R. Indeed,

F(E+h) = f@)] = /R ltthe g (z) — /R ¢4 F(z)
< /R ete(e* — 1)| dF(z) = /R (e — 1)| dF (z)

However, |e***—1| < 2 and [ 2dF(z) < oo, hence we can appeal to the Dominated Convergence
theorem to argue that limy o [ ‘(e“’h — 1)‘ dF(z) = 0. Thus the result is established.

zh

If the characteristic function (ch. f.) of the random variable X is f(¢), then the ch. f. of
aX +bis e f(at). This follows immediately from E[e*(2X+?)] = ¢t geilat)X

Let f;(t) = E[e®¥¢], i = 1,2, where X1, X, are independent random variables. Then the
characteristic function of their sum is the product of the characteristic functions: Ee*(X1+X2) —
Ee®X1Ee®X2 — f,(t)fy(t). This of course generalizes to sums of independent random variables
with arbitrarily many terms.

Let X, X' independent random variables with the same distribution and characteristic
function f(¢). Show that EeX+X') = f(¢)2 and Ee®*(X—X") = f(¢)f(t) = |f(t)|*>. This shows
that whenever f(t) is a characteristic function, |f(¢)|?, which is always real-valued, is also a
characteristic function.

Let Z be a standard normal random variable. Then its characteristic function is f(¢) =

e ¥/, Indeed, f(t) = [, \/%e*”:z/zdmemdw = [ \/%642/2 cos(tz)dz since the density
of the standard normal is an even function. Thus differentiating with respect to ¢ inside the
integral and integrating by parts gives

flit)y = _/°° Le /%ﬁn(tm)dmz/i\ﬁsm(tm)d( 7;,;2/2)

= / \/2? 212 cos(tz)dz = —f(t)
Thus, f(t) satisfies the differential equation
i) =—tf(t), f(0)=1

which has the solution f(¢) = e *'/2. From the above it follows that the characteristic function

. . . hy 42 22
of a normal r.v. with mean p and variance o2 is e®#=t°7"/2,

The exponential distribution with density e™*, £ > 0 has characteristic function

o . (o] . 1
/ e e "%dg :/ e 21t dt) gy — —.
0 0 141t

In the same way we can compute the characteristic function of the Laplace distribution with
density 5 le=l#l z € R as

1( 1 N 1 >_ 1
2\1+4t 1—4t) 1+4¢
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If fi(t) are characteristic functions (corresponding to distribution functions Fj(z)), 7 =
1,2,3,...,and p; >0, >, p; = 1, then Y, p; fi(t) is the characteristic function that corresponds
to the distribution ), p;F;(z). This idea of course extends from sums to integrals: If F(z,a)
is a distribution depending with a parameter a with characteristic function f(¢,a) and G is
another distribution function, then [ f(¢,a)dG(a) is the characteristic function of the "mixed"
distribution [ F(z,a)dG(a).

The following table gives examples of distributions and the characteristic functions that
correspond to them.!

Distribution/Density Function Characteristic Function
o 0 z<a ,
1. Deterministic: F(z) = e'ta
1 z>a
0 z<0
2. Bernoulli: F(z) =4 ¢ 0<z< 1 g + pe™
1 z>1
1 0<z<1 o
3. Uniform with density F'(z) = - et/ 23“1(/#
0 otherwise
; o 1 ,—z2/2 —t2/2
4. Standard Normal with density NeTe e
5. Gamma with density ﬁma_le_m (lfit)a
1—|z))T —-1<z<1 . 2
6. | Triangular density F'(z) = (1= =) - (%)
0 otherwise
o 11 —|t
7. Cauchy density = -7 eIt
. _ 1t
8. Geometric P(X = k) =¢* 1p, k =1,2,3,... oo
9. Binomial P(X = k) = (})p*q"~* (q +pe“)n
10. Poisson P(X = k) = o‘k—';e_‘" k=0,1,2... (e =1)
!We denote by z* the positive part of a real number z, i.e. z+ = max(0,z) and by z~ the negative part,
¢~ = —min(0,z). Thusz =z —

10



2.1 The Uniquness Theorem

Before we turn to the central result regarding characteristic functions we need the following fact
from analysis

5 a>0
® sinazr T
/ dz = Tsgn(a):={ 0 a—o0 (2.2)
0 T 2
-5 a<0

It is enough to establish the result for a > 0 as the others follow from a simple change of
variables. To this end, write

® sinaz ® sinaz ® sinz
/ dr = / d(az) = / dz
0 z 0 az 0 T

= / sinz [/ e ““du da::/ {/ e *sinzdz
0 0 0 0

/°° 1 T
= du = —
o 142 2

Theorem 6. [Uniqueness Theorem] The characteristic function uniquely specifies the
probability measure via the relationship

du

(0,0) + ~pfa} + ~u{b} = lim 1/T e et (2.3)
#a, 2#’ 2'u _T—>0027l' . it ' '

Proof: In view of the definition of the characteristic function the integral on the right hand
side of (2.3) is

T —ith _ p—ita . T g—ith _ g—ita
/ — / e dF(z)dt = / / . e dF(z)dt.
-7 1t R RJ_T it

Since for any real y

1 (T ety 1 [Te ety 1 (T sinyt
— —dt = — ——dt = — dt =: S ,
2T /4’ 1t T ./0 21t T /0 t €)

taking into account the above equation, the right hand side of (2.3) becomes

lim | (Sr(z —b) — Sr(z —a))dF(z). (2.4)
T—oo JR

!The interchange of the order of the two integrals here is justified by Fubini’s theorem since

b
—_itb it ot
e " —e “1:—/ ite”"""du
a

—1tb —ita
€ —€ itz
— )€
it

and hence

b
<le) [ e lau= o -al.
a

11



As we have seen from (2.2), lim7_, S7(y) = 3sgn(y). Also, |S7(y)| < c, hence,

/R(ST(:I: —b) — Sp(z — a)) dF(z)

< / |S7(z — b) — Sp(z — a)| dF(z) < 2c/ dF(z) = 2

R R
and we can appeal to the Dominated Convergence Theorem in order to interchange the order
of the limit and the integral in (2.4). Thus

T}ijI;OST(a:—b)—ST(w—a):(a<a:<b)—|—%(a::a)—l—l(:z::b)

and hence

lim | (St(z—0b) — Sr(z —a))dF(z)

T—oo JR
:/R((a<:v<b)+%(m:a)—ké(z:b))#(dm)
= u(a,b) + 3u{a} + u{b}.
[ )

Theorem 7. Suppose that the characteristic function f(t) is integrable, i.e. [ |f(t)|dt < oo.
Then the corresponding distribution function is absolutely continuous with corresponding

density p(z) given by
1 .
p(z) = — /R e~ £ (1)dt. (2.5)

o

Proof: We begin with the remark that if f is integrable, then the corresponding distribution
function has no atoms, i.e. F(z) = F(z—). Indeed, from the uniquness theorem we have

F(z)—F(z—h) . 1 [(T1l—eM
h = A oy /,T an )t
1ieiht

Since ‘%‘iht‘ < 1, the integrand is bounded by ‘ h e‘itmf(:z:)‘ < |f(t)|, and since by assump-
tion f(t) is integrable, we can appeal to the Dominated Convergence Theorem to obtain

. F(z)—F(x—h) . 1 [®1—¢h _
mew = dmae [ 0
1 *° —ite

The above argument establishes that the left derivative of F'(z) exists and is given by the above
expression. An identical argument shows that the right derivative also exists and equals the
same quantity. This completes the proof. [

The behavior of the characteristic function near the origin determines the "heaviness" of
the tails of the deistribution. This idea is formalized in the following inequalities

Theorem 8. [Modulus Inequalities] If we denote by u[—A, A|° the probability P(|X| > A)
for any A >0, then

. 2 rl/A
ul-aar < [ a1 feas (2.6)

12



Proof:

3L = [ o= e[ 00

T costz sin Tz
= = . 2.
/ p(d / dt . Tg p(dz) (2.7)
Note however that
sinTz 1 |z] < 2A
Tz ﬁ |z| > 2A
and hence
sinTz 1 1 1
oo nde) < ul=2A4,241+ (1~ pl-24,24) = (1= ) ul-24,24) +

If we set T = A~1 in the above we obtain

2 “ pa <

> ] u[—24,24] + =

N[ =

From this last inequality, (2.6) follows readily. [ )

2.2 Weak Convergence

In this section we sketch briefly (and mostly without proof) some of the most important results
regarding weak convergence of distribution functions. The set up is the following: Suppose that
a family of random variables {X,} is given with corresponding distribution functions F,. (It is
important to note that we are not concerned at all here with the joint statistics of the family
X, only with their marginal distributions F,(z) = P(X, < z), so the random variables do not
even have to be defined on the same probability space.)

Definition 9. {F,} converges weakly to a distribution function F' if
lim F,(z) = F(z)

n—oo

for each point of continuity of F(z).

. . . . . . d
Weak convergence is often refered to as convergence in distribution and we write F,, — F.

Theorem 10 (Helly). Let {F,} be an arbitrary collection of distribution functions. Then
there exists a subsequence {F,, } such that

F,, — F

for some distribution F'.

13



Theorem 11. {F,} converges weakly to F if and only if

lim [ f(2)dFa(a) = [ f(2)dF(a)

for every bounded, continuous f.

(This is sometimes refered to as Helly’s second theorem.)

As we shall see when we discuss the Central Limit Theorem later on, one of the problems
that arises very often, both in practice and in theory is the following. If we have a family of
distributions {F,} with corresponding characteristic functions f, then,

a) If F, converges weakly to some distribution function F' can we conclude that f, will
converge to the characteristic function f of F'?

b) If f,(t) converges for all ¢t to f(¢), then is f(¢) also a characteristic function, and if it is
and it corresponds to (say) the distribution F', can we conclude from this that F, 4, m?

The first question has an affirmative answer as one can show without much effort (essentially
this follows from Helly’s second theorem). The answer to the second question however is more
complicated as we can see from the following example.

Let
0 < —n
Fp(z)=1{ 2o —n<z<n
1 n<cz

i.e. we have a family of uniform distributions on [—n,n]. Their ch.f.’s are

_ sin(nt)
falt) = nt
We thus see that
) — fy =1 0 17O
1 t=0

It is easy to see that the above limit is not a characteristic function (it is not continuous!). Also,
in this case, F,(z) — 0 for all z so {F,} does not converge to a distribution function. Thus
clearly it is not enough for f, to converge.

Theorem 12. [Convergence Theorem] Let {F,} be probability distributions with charac-
teristic functions {fn}. If

14



a) fn(t) converges for every t and defines a limit function f(t)
b) This limat function f(t) is continuous att =0
then

{F,} converges weakly to some distribution F with characteristic function F'.

2.3 Positive definite functions

Definition 13. A function f : R — C 1s positive definite if for everyn € N, t1,ts,...,t, €R
and ci,¢2,...,¢n € C,
n n
S edif(t— 1) 2 0, (2.)
i=1j5=1

where ¢ denotes the complex conjugate of c.

(The meaning of the above inequality is that the left hand side should be real and nonneg-
ative.) Note that the positive definiteness of f is equivalent to the positive definiteness of the
matrix

f(0) f(ti—t2) f(ti—t3) - f(t1—tn)
flta—t1)  f(0)  f(ta—t3) -+ f(t2—1ts)
flts —t1) f(ts —t2) £(0) s f(ts —ta) (2.9)

f(tn_tl) f(tn_t2) f(tn_tB) f(O)

for every n and t; € R. Also note that we use the term positive in the weak sense following
common usage (in other words, here positive means "nonnegative").

Theorem 14. All characteristic functions are positive definite

Proof: We start with the remark that e*? is positive definite. Indeed,

2
> 0.

Z CiEjei(ti_tj) = Z Cieitim (cjeitj”:) = <Z Cieitiz> (Z cjeitj:”> =
1,7 1,7 1 7

Z ciezti:c
7

To show that a characteristic function is positive definite, it is enough to mimic the above

15



argument, interchanging summations and expectation:

2

Z f(t; — tj)ciéj = Z Cz‘EjE[ei(ti_tj)X] =F Z CiEjei(ti_tj)X =F >0
1,5 1,7 1,3

Z ¢ eztiaz
1

More interesting and far-reaching however is the fact that the converse is also true, namely that
All positive definite functions f : R — C are characteristic functions of some measure on the
real line. This result will be established latter on. We first establish some of the properties of
positive definite functions.

1. If f is positive definite, then f(0) > 0 (as before part of the assertion is that f(0) is
real). Indeed, (2.8) with n = 1 gives cZf(0) = |c|>f(0) > 0.

2. f(t) = f(—t). In particular this means that a real positive definite function must be
even, i.e. it must satisfy f(¢) = f(—t). To prove this assertion apply (2.8) with n = 2, ¢; =0,
tz = t, Cl1 = Cy = 1 to obtain

2f(0) + () + f(=t) 2 0
which implies? that f(¢) + f(—t) is real, hence Sf(¢) + Sf(—t) =0, or

$7(t) = —SF () (2.10)
If we choose ¢; = 1, ¢o = ¢ we obtain
F(O) +4f(t) —if(—t) — f(0) > 0
which implies that f(¢) — f(—t) is pure imaginary, hence Rf(t) — Rf(—t) =0, or
Rf(t) = Rf(-1). (2.11)
Equations (2.10) and (2.11) together establish that

ft) = 7(=t). (2.12)

3. |f(t)] < f(0) for every t € R. To show this, take c; = f(t), ca = —|f(t)| to obtain
2£(0)|£(t)]? — 2| f(¢)]*> > 0, whence the inequality follows.

4. Any positive definite function for which f(0) = 1, satisfies the following inequality:

[f(t+h) = F(B)] < 21— f(R)P. (2.13)

(The normalizing assumption f(0) = 1 simplifies the algebra without harming the generality
of the statement.) The importance of this inequality lies in the fact that it implies that if a
positive definite function is continuous at 0 then it must be continuous (and in fact uniformly

%If ¢ = a + 1b is a complex number (a, b € R) we denote its real part by Rc = a and its imaginary part by
Sc=1bd)
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continuous) on R. We have already seen this for characteristic functions. To prove this assertion,
we will use the positive definiteness of the matrix

f(@) 1 f(=h) (2.14)
fE+n) f(h) 1

which is obtained from (2.9) with n = 3,¢; =0, ta = ¢, t3 =t + h and f(0) = 1. (2.14) is
positive definite if
L-|f®)F >0

L+ f(=t)f(=R)f(t + k) + F(O)F(R) (=t = h) = |f(R)]? = ()1 = |f(t + R)|* > 0.

Making use of (2.12), this last inequality can be rewritten as

L+ f(&)f(R)F(E+R) + F(R)F(R)F( + R) = 1) — IF(R)I* — |f(t+A)I* >0
or
1+ 2R{f(t)f(R)F(t+R)} — |F (1)1 — |f(R)* = (¢ + R)* >0,
which gives
[fE+R)P+F () <1—[f(R) +2R{F(&)f(h)f(t+ A)}.
We are now ready to show (2.13)

[F@)F +[f(E+h)P = F@)F(E+R) — F)F(E+R)

[F@OP + I+ h)P - 2R{f()F(t + h)}

L= [F(R)I? + 2R{f(£)f(R)F(t + R)} — 2R{f () f(t + h)}

L= [f(h)I? + 2R{f(t)f( + A)[f(R) — 1]}

L= |f(R) + 21— f(R)| (2.15)

|f(t) = f(t+h)?

AN VAN

where in this last inequality we have used the fact that

R{F@)F(t + R)[f(R) — 1]}

IF@)FE+R)f@) =1 < IF@OFE+h)] 1= f(@)
11— F(?)]

(since |f(t)| < f(0) = 1). Finally, note that 1 — |f(h)| = |1 — |f(Rh)|| < |1 — f(h)| and hence
(2.15) gives

<
<

f(t) = ft+h)? (=17 DA+ [f(R)]) +2[1 = f(R)] < [1 = F(A)| (1 +[f(R)] + 2)

41— f(h)]

As we have seen, characteristic functions of probability measures are positive definite and
positive definite functions that are continuous at zero have the same properties as characteristic
functions. This is far from accidental. In fact as the next theorem shows these two classes of
functions coincide.
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Theorem 15 (Bochner). Suppose that a function f : R — C is positive definite with
f(0) = 1 and continuous at 0. Then there exists a probability distribution F on R such
that f(t) = [z e*®dF(z).

Proof: Fix T > 0 and consider the function

1 T T . .
pr(z) = 772/0 /0 f(t — s)e" e "*%dsdt > 0. (2.16)

It is clear that pr(z) is real and nonnegative since the double integral is the limit of Riemann
sums 3. 3", f(t; — si)e®e k¥ At; As), which are nonnegative by positive definiteness. Chang-
ing variables in (2.16) gives

pr(a) = /_ i( - ';,') f(t)e itdt. (2.17)

Remark: For any L > 0,

1/Ld /yemdm = 1/Ld /y2costa:da:— 2/Lsint d
L ¥, r) W) 7i ), sintydy

_ 21 —cos Lt
N Lt?
Hence,
1k y 1 /T |t|\ 1 — cosLt
— d dz = 2— 1— =) ———f(t)dt
L/o y/_ypT(w)m 27r/_T< T) iz )
1 [ ||\ T 1 — cos Lt
= = 1—-=) —=
s /700 ( T) Lt? fe)at
Define
It "

)= (1-5) £ (2.18)
and note that |fr(t)] < 1. Also, note that ‘ff’oo %dt‘ < o0o. Hence, by dominated conver-
gence,

1 e 1 —cost 1 [ 1—cost
o — fr(¢/L) t2 at T [oo t2 at

We thus have that ffy pr(z)dz T 1 as y 1 co. (Here we are using the following result: If g is an

increasing function and 4 fOX 9(z)dz — a as X — oo, then g(z) — a as z — oo. fi/y pr(z)dz
must be an increasing function of y, since pr(z) > 0 for all z. We have thus shown that pr(z)
is integrable with [°)_ pr(z)dz = 1, hence pr(z) is the probability density of some distribution.

We also have
1 e |t| * —itx
pr(z) = —/ 1——= 1] f@)e"%dz

2T /oo T
Hence, for each T, fr(t) is the characteristic function of some distribution function. As T — oo,
iAW
fr(t)=1(1- T f(t) — f(t) forallt e R
and f(t) is by assumption continuous at 0. Therefore the convergence theorem of the previous
section guarrantees that f(¢) must also be a characteristic function [ )
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2.4 Second Order Stationary Processes

Let {X:;t € R} a stochastic process with EX; = u(t). Define & := X; — u(t). The function
R(s,t) := E&s&; is called the covariance function of the process X. A process X is called
Gaussian if, for any n € N and any t1,ts,...,tn, (Xty, Xtoy- -+, Xt,) ~ N (@, L) where

- q Var(X4,) Cov(Xy,, Xt,) -+ Cov(Xy,Xe,)
141
COV(Xt2 , th) Var(th) tee COV()Q1 , th)
%) .
p= , =
COV(th, th) COV(th, th) Tt Var(th, th)
fin

A process {X:;t € R} is a second order stationary process if

1) EX: = p, B(X: — p)? = 02 < o0, for all t € R,

11) There exists a real function 7 : R — R such that E(X, — p)(X: — u) = r(t — s) for all
s,t € R,

112) The process is mean-square continuous, i.e.

lim B(Xn — X:)> =0
h—0

Let us now examine some of the consequences of the above properties. First, since Var(X;) =
Cov(Xz, X3) if follows that 7(0) = o2. Also, B(X;h — Xt)? = 02 + 02 — 2r(h) = 2(r(h) — r(0))
and hence, property %) is equivalent to the requirement that » be continuous at zero, i.e.
r(h) — 7(0) as h — 0. Cauchy-Schwartz implies |r(t)| < o2 Vt. Without loss of generality
suppose o0 = 1.

Theorem 16. 7(t) s a positive definite function.

Proof:

.
0 < |SraXz| = (D0 Xez) (D8 Xuz)

Taking expectations we have

0< ZziszXfith = Zr(tj — ti)zﬁj
2, )
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This establishes that the covariance function of any stationary second order process is positive
definite. Hence Bochner's theorem guarantees that there exists a uniquely determined proba-
bility measure on R such that

r(t) = /_ Z ¢* R(dz)

In particular, since 7 is an even function,

r(t) = 2 /0 * cos(tz)R(dz) (2.19)

2.4.1 An example of a stationary second order process

Let N(t) be a Poisson process with rate A and X(0) a random variable with P(X(0) = 1) =
P(X(0) = —1) = 1/2, independent of the Poisson process. Consider the process

X(t) = X(0)(—1)N® (2.20)

Clearly, X alternates between the values 1, and —1, changing value at each Poisson point. It is
easy to see that EX(t) = EX(0)E(—1)¥® = 0 (since EX(0) = 0). The covariance function is
easily computed as follows:

EXt)X(t+s)=E [X(0)2(_1)N(t)N(t+s)] - E [(_1)N(t+s)—N(t)]
Using the stationary increments property the above expectation is

. s A 2n e o A 2n+1
B(-)" = ;((22)! e e ((2;)+ e

= cosh(\s)e ** —sinh(As)e ** = e 2.

—AS

Hence the covariance function is given by

EX(t)X(s) =r(t—s) = e 28,

The spectral measure can be easily computed in this case: We must have r(t) = e 2t =

[ _e®*2R(dz) and hence

[e e}

1 1

Rdz) = S T @/2n

2d:1;.
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Chapter 3

Infinitely Divisible Laws

Let X be a real random variable with characteristic function ¢(t) := Ee®X and distribution
function F(z) = P(X < z). We say that X is infinitely divisible (or, equivalently, that F', or
¢ are infinitely divisible) if, for every integer n there exist independent, identically distrtibuted
random variables X;, 1 = 1,2,...,n, such that

XL X+ X044 Xn

Equivalently we say that the characteristic function ¢(¢) is infinitely divisible if, for every n,
there exists a characteristic function ¢,(t) such that

¢(t) = (#n(2))" (3.1)

A few examples will convince us that this definition is not vacuous: If X is N (0, 1) then for
each n it can be expressed as a sum of n independent normal N (0,1) r.v’s. For another
example consider a Gamma distributed r.v. with shape parameter a and scale parameter 8 and

. .- . 8\ . B a/n . .-
corresponding characteristic function ¢(t) = ( ﬁ_it) . Since ( = it) is also a characteristic
function (of a Gamma distribution with shape parameter a/n and scale parameter again §) we
see that (3.1) is satisfied, hence the Gamma distribution is infinitely divisible.

Theorem 17. The characteristic function of an ¢.d. r.v. does not vanish for any real t.

Theorem 18. The distribution function of a sum of independent r.v.’s having infinitely
divisible distribution function s also infinitely divisible

Proof: Let X;, 2 = 1,2,...,k be independent r.v.’s with infinitely divisible characteristic
functions ¢;(t). Set X = X1 + --- + X and denote by ¢(t) = Ee*® its characteristic function.
Clearly ¢(t) = ¢1(t)p2(t) - -- dr(t). Since X; is infinitely divisible, for every integer n ¢}/n(t)
is also a characteristic function. Hence, since the product of characteristic functions is also a
characteristic function, ¢/"(¢) = ¢1/™(£)ps " () - - ¢/ ™(¢) is a characteristic function and ¢(¢)
is infinitely divisible.
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Theorem 19. The limait distribution function of a sequence of infinitely divisible distribu-
tion functions s itself infinitely divisible, i.e. if F,(z) is a sequence of inifinitely divisible
distribution functions such that F,(z) — F(z) for all continuity points of the distribution
function F, then F 1is infinitely divisible.

Proof: Let ¢,(t) denote the characteristic function of F,(z) and ¢(¢) the ch.f. of F(z).
By the convergence theorem we know that ¢,(¢) — ¢(¢) for all ¢, and in fact this convergence
is uniform in ¢. Since F,, is infinitely divisible, ¢}-/ * is also a characteristic function, and by the
continuity of the square root

Theorem 20. [Lévy—Khinchine Representation| A distribution function F with finite
variance (and corresponding characteristic function ¢(t)) s infinitely divisible if and only
if it has the representation

log ¢(t) = it + /oo (eit”: —1- it:z:) %dG(m) (3.2)

where v s a real constant and G a nondecreasing function of bounded variation.

Proof: Suppose that ¢(¢) is i.d. Then from (3.1) for any n we have

log ¢(t) = nlog ¢n(t) = nlog (1 + ¢n(t) — 1)

However, for any T > 0, as n — 00, ¢,(t) — 1 uniformly in || < T. Hence we can write
log (1 4+ ¢n(t) — 1) = (¢n(t) — 1) (1 + €,) where e, — 0 as » — oo and

IOg ¢(t) =n (¢n(t) - 1) (1 + En)

Denote by F), the distribution function corresponding to the characteristic function ¢,. We

then have

#nlt) =1 = [ (e~ 1) dFo(a)

R

Also,

n/ zdFy,(z) = / zdF(z) = 7.

R R
Hence
log ¢(t) = iyt + lim n/ (emc —-1- it:z:) dF,(z) (3.3)
n—oo R

Set

z

Gn(z) := n/ u?dFy,(u)

— 00

Then {G,(z)} is a sequence of increasing functions. Also {G,(o0)} is bounded. Indeed,

© 1
n/ u?dF,(u) = 0® + 572

— o0

With these definitions,

) ) et® — 1 — itz
log §(t) = iyt + lim /R £ dGaa)

[e e}
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Helly’s first theorem asserts that there exists a subsequence nj; and an increasing function G(z)
t2

such that G, (z) — G(z) for all continuity points of G(z). On the other hand et olite| < .

ite 1— 3t
log $(t) = iyt + / C T 46(a).
R z

Uniquness of specification: By differentiating twice the above relationship with respect to ¢ we

see that
2

d 4
e log ¢(t) = /Rel ?dG(z).
Hence, to a given ¢(t) there corresponds a unique function G(z) by the uniqueness theorem for
characteristic functions.

3.1 Examples of infinitely divisible distributions

The following infinitely divisible distributions are described by means of their characteristic
functions

e The deterministic distribution e®®

e The Normal distribution e—7"t’

e The gamma distribution ﬁ, a>0

e The Poisson distribution e *(1—¢")

e The compound Poisson distribution e *(1~¥(*) where 9(t) is the characteristic function
of some random variable

e The symmetric stable distribution of exponent a: e “I!/* where 0 < @ < 2 and ¢ > 0.

In the next example we compute the characteristic measure for the gamma distribution:
Starting with ¢(t) = (1 — it)~ we see that %log@(t) = *%;. But I = [;°e"®e ®dz and
hence, integrating with respect to ¢, log ¢(t)—log ¢(0) = iax [;° [f[f e“‘zdu] e ®dz =oa [5° (em - 1) e dz.

Hence, taking into account that [j°e~?dz = 1, we have the representation

) ” ) 1 ) 0 <0
log ¢(t) = it +/ (eI F_1- zt:z:) —dG(z) with dG(z) =
R Z —z
aze z>0

This corresponds to G(z) = a (1 — (1 +z)e™®) for £ > 0 and G(z) = 0 for z < 0.

Poisson random variables with non—integer values. Let N be a Poisson random
variable with parameter A: P(N = k) = %)\ke”, k=0,1,2,...,and a > 0. Then the random

23



variable X = aN has distribution P(),a) given by P(X = ka) = %)\ke”‘, k=0,1,2,..., ie.
it takes values on the integer multiples of a. Its characteristic function is

e}\(eitail) .

The geometric distribution. Let X be a random variable with distribution P(X = k) = ¢*p,
k=0,1,2,...,. We will show that X is infinitely divisible. Its characteristic function is given
by

(o)
_ praitXy k, ikt _
#t) = Ble™ = 2, a'pe™ = 75
Since 0 < g < 1, log(1 — q), and log(1 — ge*) are well defined, so

o0

log (t) = log(1 — q) — log(1 — ge*) = Z %qk (eikt _ 1) .
k=1

Hence

¢(t) _ ﬁ e%qk(eikt_l) —. 10_0[ (Pk(t),
k=1 k=1

where, each of the characteristic functions ¢g(t) corresponds to a Poisson random variable.
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Chapter 4

Homogeneous and Non-Homogeneous
Poisson Processes.

In this chapter we discuss the definition and the basic properties of homogeneous and non-
homogeneous Poisson process on the real line.

4.1 Counting Processes

A real-valued stochastic process {N(t);¢ > 0} is said to be a counting process if it satisfies the
following

(i) N(0) =0,
(ii) N(t) is integer valued,

(iii) N (%) is an increasing function of ¢, i.e. if s < ¢, then N(s) < N(¢).

We may think of N(t) as the total number of ’events’ that have occurred up to time ¢.
In particular, for s < ¢, N(¢) — N(s) equals the number of events that have occurred in the
interval (s,t]. The counting process is said to be simple if it only has jumps of unit size. A
counting process has independent increments if the number of events that occur in disjoint
time intervals are independent. This means in particular that the number of events that have
occurred by time ¢, must be independent of the number of events occurring between times ¢ and
t + s (that is, N(¢) must be independent of N(¢ + s) — N(%)).

A counting process possesses stationary increments if the distribution of the number of
events that occur in any time interval depends only on the length of the interval. In other words,
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the process has stationary increments if the number of events in the interval (¢; + s,¢2 + s has
the same distribution as the number of events in the interval (¢;,%;] for all 0 < ¢; < t5, and
s> 0.

4.2 Poisson Process

The Poisson process is the simplest and most widely used counting process for modelling pur-
poses in numerous practical applications, e.g. to model arrival processes for queuing systems
or demand processes for inventory systems. It is empirically found that in a wide variety of
circumstances a Poisson process can represent quite adequately the occurrence of events in time
or points in space. An explanation of this fact can be based on limit theorems that establish
that in the situation of many individual events, each having a small probability of occurrence,
the actual number of events occurring approximately follows a Poisson distribution. Of course
the simplest and best known among them is the theorem that establishes the convergence of
the binomial distribution to the Poisson distribution when the number of binomial trials goes
to infinity while the probability of success goes to zero in such a fashion that their product
converge to a strictly positive number.

There are several equivalent definitions of the Poisson process (e.g. see Tijms, 1986). We
give the following

Definition 21. The counting process {N(t);t > 0} is a Poisson process with rate A > 0, if

(i) N(0) =
(ii) N(t) is piece-wise constant with unit jumps.
(iii) The process has independent increments.

)

(iv) The number of events in any interval of length ¢ is Poisson distributed with mean A¢. That
is, for all s, ¢t > 0,

P{N(t+s)—N(s)=n}=e n, n=0,1,... (4.1)

Note that condition (iv) implies that the Poisson process has stationary increments and
also that E[N(t)] = At, which explains why A is called the rate of the process.

Recall the Landau o(-) notation: The function f is said to be o(h) in the vicinity of 0 if

i £ (P)

lim == =0 (4.2)

Theorem 22. The counting process {N(t);t > 0} s a Poisson process with rate A > 0, if
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(x) N(0) =0.

(1) The process has stationary and independent increments.
(w12) P{N(h) =1} = Ah + o(h).
(ww) P{N(h) > 2} = o(h).

For the proof of the above we refer the reader to any text on stochastic processes, e.g.
(Tijms, 1986).

4.3 The Memoryless Property of the Poisson Process

Next we discuss a memoryless property that characterizes the Poisson process (see Tijms, 1986).
For each t > 0, define the residual life variable <, which is the amount of time that elapses
from ¢ until the next arrival. For any ¢ we have

P{p <u}=1-e™, u>0, (4.3)

that is, at each point in time the waiting time until the next arrival has the same exponential
distribution as the original interarrival time, regardless of how long it has been since the last
arrival occurred. The Poisson process is the only renewal process with this memoryless property.
The lack of memory of the Poisson process explains the mathematical tractability of this process,
since in specific problems the analysis does not require a state variable indicating the time
elapsed since the last arrival.

4.4 Interarrival and Waiting Time Distribution

Consider a Poisson process, and let X; denote the time of the first event. Further, for n > 1, let
X, denote the interarrival time between the (n — 1)** and the n®* event. {X,;n > 1} is called
the sequence of interarrival times.

We shall now determine the distribution of X,,. To do so we first note that the event
{X1 > t} takes place if and only if no events of the Poisson process occur in the interval [0, ¢]
and thus

P{X; >t} = P{N(t) = 0} = e~ ™.

Hence, X; has an exponential distribution with mean % To obtain the distribution of X»

condition on X;. This gives

P{Xs>t|X;=s} = P{0eventsin (s,s+t]| X1 =s}
= P{Oeventsin (s,s+t]} =e ™
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Therefore, from the above we conclude that X5 is also an exponential random variable with
mean %, and furthermore, that X5 is independent of X;. Repeating the same argument yields
the following

Proposition 23. The interarrival times of a Poisson process X,, n = 1,2, are independent
identically distributed erponential random variables having mean %

The proposition should not surprise us. The assumption of stationary and independent
increments is equivalent to asserting that, at any point in time, the process probabilistically
restarts itself. That is, the process from any point on is independent of all events that have oc-
curred previously (by the independent increments property), and also has the same distribution
as the original process (by the stationarity of increments). In other words, the process has no
memory, and hence exponential interarrival times are to be expected.

Another quantity of interest is S, the occurrence time of the nth event, also called the
waiting time until the n* event. Since

it is easy to show, using moment generating functions, that Proposition 1 implies that S,, has a
gamma distribution with parameters n and A. That is, its probability density is

()t

FE) =A™ 0

t>0. (4.4)

The above could also have been derived by noting that the n** event occurs prior to, or at,
time ¢t if and only if the number of events occurring by time ¢ is at least n, that is

Nit)>ne S, <t
Hence

P{S, <t} = P{N(t) >n} = f: —xe (M) ’\t _”i —At()‘t)

which upon differentiation shows that the dens1ty function of S, is given by (4.4).

4.5 Simulation of Homogeneous Poisson Process

Suppose that we wanted to generate the first n event times of a Poisson process with rate A.
To do so we make use of the result that the times between successive events for such a process
are independent, exponential random variables each with rate A. Thus, one way to generate the
process is to generate these interarrival times. So if we generate m random numbers, uniform
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in [0, 1] and independent, say Ui, Us,...,Uy,, and set X; = —% log U;, then X; can be regarded
as the time between the (¢ — 1)th and the ith event of the Poisson process. Since the actual
time of the 7th event will equal the sum of the first j interarrival times, it thus follows that the
generated values of the first n event times are

If we want to generate the first 7" time units of the Poisson process, we can follow the above
procedure of successively generating the interarrival times, stopping when their sum exceeds 7'
The following algorithm can thus be used to generate all the event times occurring in (0,7T) of
a Poisson process having rate A. In the algorithm ¢ refers to time, N is the number of events
that have occurred by time ¢, and S(N) is the most recent event time.

Generating the first T times units of a Poisson process with rate A

STEP 1: t=0, N =0.

STEP 2: Generate a random number U.
STEP 3: t=t—ilogU. If t<T, stop.
STEP 4: N=N+1, S(N)=t.

STEP 5: Go to step 2.

The final value of N in the above algorithm will represent the number of events that occur
by time T, and the values S(1), S(2),...,S(IN) will be the N event times in increasing order.
This algorithm can be easily modified to generate any arrival process where the interarrival
times are i.i.d. random variables, whether or not they are exponential.

There is another approach for simulating the first T" time units of a Poisson process that is
also quite efficient (see Ross, 1997) and has the added advantage that it generalizes to Poisson
processes in higher dimensions. It starts by generating N(T'), the total number of events that
occur by time 7', and then makes use of a property of the Poisson process according to which,
given N(T'), the times at which these events occur are distributed independently and uniformly
over (0,T) (see Ross, 1996). Hence we can start by generating the value of N(T'), a Poisson
random variable with mean AT. If the generated value of N(T') is n, we then generate n uniform
random numbers in [0, 1]-call them Uy, Us, ..., U, and, as T'U; will be uniformly distributed over
(0,T), the set of event times will thus be {T'Uy,...,TU,}. If we were to stop here, this approach
would certainly be more efficient than simulating the exponentially distributed interarrival times.
However, we usually desire the event times in increasing order (e.g. so as to be able to know
N(s) for all s < T'); thus, we would also need to sort the values TU;, 2 = 1,...,n in ascending
order.
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4.6 Stationary Processes

A stochastic process {X(t);t > 0} is said to be stationary (see Karlin and Taylor, 1975) if for
all n, s,t1,...,t,, the random variables X(¢1),...,X(¢,) and X (¢1 +s),..., X (¢, + s) have the
same joint distribution. In other words, a process is stationary if choosing any fixed point as the
origin, the ensuing process has the same probability law. Some examples of stationary processes
are

1. A continuous-time Markov chain {X(¢);¢ > 0} with countable state space, S, where the
initial distribution is chosen to be equal to the equilibrium distribution of the chain,
P{X(0)=s}="PF;,j€S.

2. {X(t);t > 0} where X (t) is the age at time ¢ of an equilibrium renewal process,

);
3. {X(t);t > 0} where X(t) = N(t+ L) — N(¢t),t > 0, with L > 0 a fixed constant, and
{N(t),t > 0} a Poisson process with rate .

The first two of the above processes are stationary for the same reason: they are Markov
processes whose initial state is chosen according to the limiting state distribution. That the third
example, where X () represents the number of events of a Poisson process that occur between ¢
and t + L, is stationary follows from the stationary and independent increment property of the
Poisson process.

In a number of situations, when the condition for a process to be stationary appears rather
stringent, one may define the process {X(¢),t > 0} to be second-order stationary, or stationary
wn the wide sense if E[X(t)] = ¢ and Cov(X(t), X (¢t + s)) does not depend on ¢. That is, a
process is second-order stationary if the first two moments of X (¢) do not depend on ¢ and the
covariance between X (s) and X(¢) depends only on |t — s| i.e. Cov(X(t),X(s +t)) = R(s).
Clearly, every stationary process with finite second moments is also second-order stationary.
The converse is of course not true in general. However, it is true for Gaussian processes since, in
that case, the finite-dimensional distributions are determined by their means and covariances.
Thus, it follows that a second-order stationary Gaussian process is stationary.

4.7 Nonhomogeneous Poisson Processes

From a modelling point of view a major restriction in using the ordinary Poisson process is the
assumption that in intervals of the same length we have the same distribution for the number
of events that occur, regardless of the position of the interval in the real line. A generalization
which relaxes this assumption leads to the so-called nonhomogeneous or non-stationary process
Poisson process (see Ross, 1996).
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Definition 24. The counting process {N(t);t > 0} 1s satd to be a nonhomogeneous Poisson
process with intensity function A(t), t > 0, if

(i) N(0) =0.
(1) {N(t);t > 0} has independent increments.
(iii) P{N(t+ h) — N(t) > 2} = o(h).

(iv) P{N(t+ k) — N(t) = 1} = A()h + o(h).

The quantity A(¢), called the intensity at time ¢, indicates how likely it is that an event will
occur (approximately) at time ¢. (see v in the definition above). The function

t
At) = / A(s)ds (4.5)
0
is called the mean-value function. Then the following holds.

Theorem 25. If{N(t);t > 0} is a non-stationary Poisson process with mean-value function
A(t), then N(t + s) — N(t) s a Poisson random variable with mean A(t + s) — A(t):
e T A A+ 5) - A"

P{N(t +s) — N(t) = n} = = , n>0. (4.6)

Proof The proof of (4.6) is along the lines of the proof of Theorem 1 with a slight modifi-
cation: Fix ¢t and define
P,(s) = P{N(t+s)— N(t) =n} (4.7)

Then,
Py(s+h) = P{N(t+s+h)—N(t)=0}
P {0 eventsin (¢,t+ h),0 eventsin (¢t +s,t+s+h)}
P {0 events in (¢,t+ s)}P{0 eventsin (t+ s,t+s+h)}
= Py(s)[1—A(t+s)h+o(h)]

where the next-to-last equality follows from (ii) and the last from (iii) and (iv). Hence,

Po(s + h}i = o) =—-A(t+s)Po(s) + OELh)

Letting h — 0 yields

%Po(s) — _A(t+5) By(s)

from which, taking into account that Py(0) = 1, we obtain
S
log Py(s) = —/ A(t+u)du
0
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or
Py(s) = e (Alt+s)-A(E)

The remainder of the verification of (4.6) follows similarly. |

An alternative argument, which will be useful in the sequel, is based on the generating
functions. The probabilities P,(s) defined in (4.7) satisfy the system of differential equations

d

£P0(s) = —=A(t+s)Py(s)
dispn(s) C A(t+ ) Pa(s) L A(E+ ) Paa(s), m=1,2,...

Define the probability generating function

(o]
G(z,s) = Z 2" P,(s).
n=0
Multiplying the nth equation in the above system by 2™ and adding from 0 to infinity we obtain

(oo} d [oe] o0
2" —P,(8)=—-A(t+s 2P (s) +A(t+38)z 2" P, (s
30 g Pals) = A+ 9) TS Pals) F A 92 2 1(s)
or

%G(z,s) = (z— DA (t+ 5)G(z, ).

The solution of this differential equation gives
G(z,s) = C(z)e 2 Jo Merwdn,

The unknown function, C(z), is determined by setting s = 0 in the above equation to obtain
G(2,0) =1 = C(z). Thus, taking into account (4.5) we obtain the following expression for the
probability generating function,

Gz, 5) = e~ (1-DA(E+e)-A)]

which corresponds to a Poisson distribution with parameter A(t + s) — A(%).

The importance of the nonhomogeneous Poisson process resides in the fact that we no longer
require stationary increments, and so we allow for the possibility that events may be more likely
to occur at certain times.

When the intensity function A(¢) is bounded, we can think of the nonhomogeneous process
as being a random sample from a homogeneous Poisson process. Specifically, let A be such that
A(t) < A, for all t > 0 and consider a Poisson process with rate \. Now if we suppose that
an event of the Poisson process that occurs at time ¢ is counted with probability @, then the
process of counted events is a nonhomogeneous Poisson process with intensity function A(%).

32



This last statement easily follows from Definition 1. For instance (i), (ii), and (iii) follow since
they are also true for the homogeneous Poisson process. (iv) follows since

P {one event in, (¢,t+h)} = P {oneeventin, (t,¢t+ h)} )\g\t) +o(h)
_ )\h>\§\t) +o(h)
= A({t)h+o(h).

The simulation of the NHPP is discussed in the following section.

4.8 Simulation of Non Homogeneous Poisson Process

We begin with a discussion of the procedure for simulating a Non Homogeneous Poisson Process
NHPP. It is tempting to modify the algorithm used to simulate a homogeneous Poisson process
which we have already discussed in chapter 1, to generate ¢; given ¢,_; by substituting A(¢;,_;) in
step 2 for A\. However, this would be incorrect, as can be seen from figure 3.1. (This figure might
represent traffic arrival rates at an intersection over a 24-hour day.) If ¢{;_; = 5, for example,
this erroneous "algorithm” would tend to generate a large interarrival time before ¢;, since A(5)
is low compared with A(s) for s between 6 and 9. Thus, we would miss this upcoming rise in the
arrival rate and would not generate the high traffic density associated with the morning rush;
indeed if ¢; turned out to be 11, we would miss the morning rush altogether.

Care must be taken, then, to generate a Non Homogeneous Poisson Process in a valid way.
There are two methods that can be used, one based on a rejection scheme while the other on
the inverse transform method

4.8.1 Simulation based on the acceptance-rejection method

A general and simple method proposed by Lewis and Shedler (see Ross, 1997) known as thinning
can be used. We present a special case of the thinning algorithm, which works when A\* =
Supg<s<r A(S) is finite. We generate a stationary Poisson process with constant rate A* and
arrival times {t;} (by generating exponential interarrival times with rate A\*, as described in
the algorithm for the simulation of a Poisson process with constant rate), then "thin out” the
arrival epochs {t!} by throwing away (rejecting) each ¢} as an arrival, with probability 1 — ’\(;E ),
independently of all others. Thus, we are more likely to accept ¢} as an arrival if A(¢}) is high,
yielding the desired property that arrivals will occur more frequently in intervals for which A(s)
is high. An equivalent algorithm, in a more convenient recursive form, is as follows (we assumed

that ¢;,_; has been validly generated and we want to generate the net arrival time ¢;):

1. Initialize: t;=0,2=0.
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2. 8et 1=1+1, t=1t;_1.

3. Generate U; and Us, independent, U(0,1), and also independent of all
previously generated random variables.

4. Replace t by t — 5 log(U7).

A(t)
A*

5. If U < set t; =t and return to step 2. Else go to step 3.

If the evaluation of A(%) is slow (which might be the case if, for example, A(¢) is a compli-
cated function involving exponential and trigonometric calculations), computation time might
be saved in step 5 by adding an acceptance pretest; i.e., the current value for ¢ is accepted as
the next arrival time if Uy < i—:, where A, = info<,<7 A(s). This would be useful, especially
when A(s) is fairly flat.

4.8.2 Simulation based on the inverse transform method

An alternative method for simulating the non-homogeneous Poisson process is based on the
inverse transform method. Set

At) = /0 ‘As)ds,  t>0,
and define the inverse function via
A'(u) =inf{t: A(t) >u}, u>0.
If {Sn;n € N} is a unit rate homogeneous Poisson process then
T, =A"%S,), nEN,

defines a non-homogeneous Poisson process with rate A(s). The usefulness of the above method
in practice depends of course on the ease with which one can obtain the inverse function, A~ *(u),
in closed form, suitable for computation.

The above suggests the following recursive generation of the consecutive points of the time
varying process. If we denote by X,, := T}, — T,,_1 the inter—event time for the time-varying
process and by Y;, := S, —S,_1 the corresponding inter—event time for the unit rate homogeneous
process (using the convention Sq = Ty = 0) we then have X; = A~!(Y;) and, generally, T, =
A~1(S,). Hence

Xpi1=Tpy1—Tp = A (Yny1 + Sn) — A7H(S,).

In the special case where A is absolutely continuous and A(t) = [ A(s)ds with A(s) > 0 for all
s > 0 then A1 is also absolutely continuous with A=1(¢) = fg ﬁds. In this case

Yni1 ds
Xni1 = _.
+ /0 )\(8 + Sn)
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4.9 The Poisson Process in Euclidean Spaces

In this section we describe how one can define a Poisson process on the Euclidean space, R™. Let
B(R™) denote the Borel subsets of R” and let M denote the set of all c—finite point measures on
R™. Let also M denote the sigma field of subsets of M generated by the sets {m € M :m(B) = k}
where k € N and B € B(R"). A random point process N of R™ defined on the probability space
(2, F, P) is defined as a measurable mapping N : (2, F) — (M,M). The distribution of N is
given by specifying P(N(B) = k) in a consistent fashion. From the above definition it follows
that {w: N(B,w) =k} € F for all k € N and B € B(R").

Definition 26. The random point measure N is a homogeneous Poisson process on R™ if
the following two conditions hold

1. For any Borel set B € B(R"),

P(N(B)=k) = “':;We—w, k=0,1,2,...,

where |B| denotes the Lebesgue measure of and A > 0.

2. Foranyn €N, if B;, 1 = 1,2,...,n are disjoint Borel sets in R™ then the random
variables N(B;), 1t =1,2,...,n are independent.

More generally, let A denote a o—finite measure on R”. If

A(B)*
P(N(B) =k) = (k')e—A(B), k=0,1,2,...,
for all B € B(R™), then N is a Poisson random measure on R™ with mean measure A. In
particular, if A is absolutely continuous with respect to the Lebesgue measure on R™ then A(B) =
/5 A(z)dz for some non-negative Borel function A which will be called stochastic intensity of
the non-homogeneous Poisson random measure N.

35



Chapter 5

Compound Poisson Processes

5.1 The Homogeneous Compound Poisson Process

Compound Poisson processes (both stationary and non-stationary) are extremely useful mod-
elling tools in many areas of application of probability theory, including queuing models, risk
theory and insurance mathematics, reliability, finance, and many others. The homogeneous
compound Poisson process is a particularly simple stochastic process with independent, sta-
tionary increments. Suppose that {N(t);t > 0} is a stationary Poisson process with rate A
and {¢;;¢ = 1,2,...} an i.i.d. sequence of real-valued random variables, independent from the
Poisson process, with common distribution 7' and corresponding Laplace transform

P(s) := Be ¢ = /oo e **dF(z).

Set
N(t)
Xe=> &
=1

The process {X;;t > 0} is then called a compound poisson process with poisson rate A and incre-
ment distribution F. It is easy to see that this process has independent, stationary increments
with distribution

P(Xeru— X, <2) = P(Xu <2) = > P(N(u) = n)P(6s + - + &n < 2).

n=0

If we denote by F** := F % F % --- % F the k—fold convolution of F with itself, then the above
can also be written as

e M F™(z).

(Aw)™
!

(o]
P(Xpru—Xe<z)= ) -

n=0
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In general, evaluation of the above convolution is not simple. A simpler expression can be
obtained for the Laplace transform of the increments as follows

Ee—sxt — Eefs Ziv:(;) & — ef)\t i (}‘t)nEe—s(£1+~~-+£n) — e*)(ﬁ i (At¢(5))n
= n! o 7!

o M(1-8(s))

5.2 The Gamma Process

A useful generalization of the compound Poisson process is the so-called Gamma process de-
scribed in the sequel. We consider again a Poisson process on the quarter plane R™ x R™,
this time with mean measure given by Adt x z e ?®dz, t > 0,z > 0. Note however that this
case cannot be put in the framework of the preceding sections since lim,|q [° ¢ ~dz = oo
and thus we cannot define a proper distribution function F' for the size of the jumps. Non-
theless, the Poisson process in the quarter plane is well defined. One detail that needs to be
taken care of, before we proceed is the problem of numbering the points since now, in the strip
D; :={(t,z);0 <t <T,0 < z} we have a countably infinite number of points with probability 1.
Thus we can use the following numbering scheme: divide the strip into parallel stripes according
to some sequence that converges to zero such as % and then number the points from right to
left starting with those in the first stripe and continuing with those in subsequent stripes. This
numbering scheme is illustrated in the figure ?? below. We proceed by defining a sequence of
processes indexed by n € N as follows: The process {Z*;t € [0, T]} is defined by means of

[e o]
ZP =5 o l(T; < t;o; > 1/n).
1=1

Clearly, for each n, Z* is a compound Poisson process with parameters

00 p—VY

An = A dy
1/n Y
and .
T ef'” d
Fae)= T W sy,
l/n y dy

The process {Z[*;t € [0, T]} is then a process with independent increments and Laplace trans-
form given by

log Be %% = —\,t (1—/ e—"“’Fn(dz))
0

= —At(/ ¢ d:z;—/ e’eme d:z:)
1/TL Z 1/n T

[e o) —vzT

= )Xt n (1 — e’ez) er:z:.
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Expressed in this fashion, it becomes clear that the limit lim,_,, log Ee 9% := —&(6) exists

and -
= At / —9“’ ¢ iz
T

This last integral can be computed explicitly by setting % = [;° e “®du and using Fubini’s
theorem to interchange the order of integration as follows

B(0) = M / e — g (010)) dcc =Xt / / “wtv)e _ g (wtvtO)eydg gy,

1 1
= At / ( ) du.
0 u+v utv+6
This last integral can be easily computed if we express it as
M M M
lim ( 1 _ 1 > du = lim / 1 du — / édu
M=o Jg u+v u+v+8 M- \Jo u-+v o u+v+46

. M M
= lim (logv —logv+9>

M—oo

v+ 6

= log

It is thus clear that for all t € [0,T], Z]* 1 Z; with

Xt
Fe—0%t — g—Xtlog*t¢ _ ( v ) ‘
v+ 0

This justifies the name Gamma process since the marginal distributions of this process are
Gamma with shape parameter that depends on the time.

5.3 Non-Homogeneous Compound Poisson Process

We can envision a non-homogeneous Poisson point process by assuming that {N(¢);¢ > 0} is a
Poisson process with time varying intensity A(¢), ¢ > 0, in the model of section 1. More generally,
however, we would like the distribution of each jump to depend on the time of the occurence of
the jump. Suppose that {F;;t > 0} is a family of distribution functions that describe the size of
the jumps, given their time of occurrence, {T3;¢ =1, 2,...}. We can define a non-homogeneous
compound Poisson process by setting

N(t)

e
=1

where
P(l1<zi,....6n S zu|N() =niT1 =ty,...,Tn HFtl (5.1)

We will assume without much loss of generality that the distributions Ft are absolutely contin-
uous and thus we have a family of densities { f;;£ > 0} indexed by the time of occurence of the
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corresponding event. A better way to describe this process is to consider a Poisson point process
on the half-plane denoted by N, = {N(z,1);(z,t) € R+ x R} and assumed to have intensity
A(z,t) > 0 with respect to the Lebesgue measure on ]Ri for every (z,t) € Ri. The time com-
ponent of N, is a Poisson point process {N(t); ¢ > 0}, with intensity A(¢) = [;° A(z,t)dz which
we will assume to be finite for all ¢ € R;. Under the above assumptions, for any ¢ there are,
with probability 1, a finite number of points of the process and thus counting them from right
to left we can label them {(T%, £x); k € N}. T} will be interpreted as the kth time of occurrence
while £, as the kth jump size. Also, N(t) is the number of jumps that have occurred in the time
interval (0,¢]. In the above framework, the conditional density of a jump, given that it occurs

at time ¢, is given by
A(y,t)
At)

The conditional distribution functions in (5.1) are then obtained by integration of the above
conditional densities. Also, from standard results on non-homogeneous Poisson processes on
the real line, the times of occurrence of the jumps in an interval (0, ¢], conditional on the event
{N(t) = k}, k > 0, have the order statistics of £ independent random variables with density

fe(y) = (5.2)

he(s) = 8, 0<s<t,

where
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Chapter 6

Collective Risk Theory

6.1 The classical risk process

The simplest model that describes the operation of an insurance company is the following.
Initially the insurance firm starts with capital « which increases linearly with time with rate c
because of incoming premiums. At times {S,}, n =1,2,..., claims arrive with respective sizes
{Z,}. Hence, a typical realization of this process has the following form

Figure 1: Sample realization of a risk process

We denote by u the initial capital and by X(¢) the process ct — ZkN:(tl) Zy. Let ¥(u) =

P{info<tu + X¢ < 0} denote the probability of ruin at some point in the future and &(u) =
1 — ¥(u) denote the non-ruin probability.

Lemma 27. ®(u) is non-decreasing in v and lim,_, . $(u) = 1.

Proof: Indeed, ®(u) := P{info<; X(¢) > —u} which is non-decreasing in u.

Suppose that the claim arrival process {S,} is a Poisson process with rate A and the claims
{Z;} are i.i.d. random variables with distribution F' and mean p. Clearly, from the Strong Law
of Large Numbers, when ¢ < Ay then X () — —oo w.p. 1 and hence ruin is certain eventually.
Therefore the premium rate ¢ must exceed the rate with which the company loses money because
of the claims which on the average is au. (This is called the net premium rate.) The factor
p by which the premium rate charged by the company exceeds the net premium rate is called
safety loading i.e.

C C
= or tP=5 (6.1)
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6.2 Integrodifferential Equation for the Non—ruin Probability

A first step analysis gives

o0 u-+tcs
B(u) = B(u + ¢S, — 72y) = / e / &(u + cs — 2)dF(2)ds (6.2)
0 0
The change of variables z := u + cs transforms the above equation into
>\ (o] T
B(u) = SeN/e / g Hele / &(z — 2)dF(2)da. (6.3)
u 0

Differentiation of the above with respect to u gives
#'(u) = 28(u) - % /0 " B(u— 2)dF(2). (6.4)
Integrating again w.r.t. u from 0 to ¢ we obtain
B(t) — 3(0) = 2/; &(u)du + 2/; /Ou B(u— 2)[1 — F(z)| dzdu (6.5)

which can be rewritten (after integration by parts) as

B(u) = 3(0) + 2/()“ B(u - 2)[1 - F(2)]dz (6.6)

6.3 Exponentially Distributed Claims

Suppose that F(z) =1 — e %/t ie. the claim distribution is exponential with mean . Then
(6.4) becomes

@ = 282 ["atu aeiar = dagw) - 2 [ st
®'(u) = c@(u) e Jo ®(u —2)e dz = c@(u) e Jo ®(2)e dz
= é<i>(u) - Ae‘“/" /u d(z)e*/ dz.
c cu 0

Differentiating w.r.t. u once more we obtain

A1

¥ = (- ) o) = L),

c W p(1+ p)

and integrating twice yields
—_pr
@(u) =C1 + Cee e

From the requirement lim, ., $(u) = 1 we see that C;y = 1 whereas from the requirement

®(0) = ﬁ it follows that Cy = ﬁp. Thus in the exponential case we have the simple formula

d(u)=1- J_—pefu(lip)” and for the ruin probability

ekl (6.7)

Y(u) =

1+p

41



Chapter 7

Finite horizon ruin probabilities—A
Monte Carlo approach

Here we assume that the times between claims, {L;,72 = 1,2,...} are i.i.d. with distribution G
while the claim sizes {Z;,7 = 1, 2,...} are also i.i.d. with distribution F. The initial capital is, as
usual, denoted by u and the premium rate by ¢. To simulate this process let {U;, V;,2 =1,2,...}
be independent random variables, uniformly distributed in [0, 1].

Theorem 28. Inverse Transform Method: If U is a random wvariable, uniformly dis-
tributed on [0,1] and F~! is the inverse function of F then X := F Y(U) 1s a random
variable with distribution F.

Proof. We will show that X has distribution F i.e. that P(X < z) = F(z) for all z. Indeed,
P(X <z)=P(FYU) <z)=P{U < F(z)) = F(z). (Note that F(z) is always a number
between 0 and 1.) O

As before we will denote by Y (¢) = ct — Eiv:(tl) Zy, the risk process which gives the capital
(risk reserve) of the company at time ¢ and by {S;,7 = 1,2...} the times at which claims occur.
Thus S; = Ly + La + --- + L;. Let W—; = Y (S;—) denote the risk reserve of the company at
the moment right before the i’th claim occurs and WT; the risk reserve right after the i’th
clatm occurs. Thus

W, = W', +cG H(Uy),

wi = w;y - Flv),
S, = Si1+G Y.

AA
N N
N
~— N

The above equations, together with the initial conditions Wo+ =u, Sp = 0, allow us to simulate
the risk process.
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For instance suppose that claims arrive according to a Poisson process with rate A and that
the claim sizes follow a Pareto distribution with density f(z) = Azf.;‘% for z > c. In this case
G(z) = 1—e~* and thus to obtain L; we have to solve the equation G(L;) = U; or e % = 1-U;
which gives!

1
L; = X log(1 —Uy) (7.4)

Similarly for the claim sizes, in order to determine F ! we have to solve the equation F(V;) = Z;

which, in the Pareto case becomes (Zi)a =1—-V;or

Z; = ce alo8(1-U:), (7.5)

'In these notes the function log always designates the natural logarithm. Many software packages however
still reserve this notation for the decimal logarithm (rarely used anymore) while the natural logarithm is denoted
by ln.
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Chapter 8

Large Deviations

Suppose that X;, 2 = 1,2,3,..., are i.i.d. with distribution function F, corresponding mean
m = [y zF(dz), variance o2, and moment generating function M () := [; e?*F(dz). The weak
law of large numbers guarantees that

lim P(S, >nz)=0 forz >m (8.1)
n—oo

and similarly that
lim P(S, <nz)=0 forz <m (8.2)
n—oo

One important question is how fast do the above probabilities go to zero. We will see that
they go to zero exponentially fast, i.e. that

P(S, > nz) < e ™M@ forz >m (8.3)
In the above formula note that the exponential rate of decay /(z) is a function of z. The meaning
of (8.3) is made precise if we state it as

1
lim —log P(S, > nz) = —I(z) for z > m. (8.4)

n—oo n,

Where does the exponential behavior come from? Write P(S,, > nz) as P (S, — nm > n(z —m)) =
Spn—nm

P (S’j;# > /n(z — m)) and appeal to the central limit theorem: For n large Sedn is ap-
proximately normally distributed with mean 0 and standard deviation 1 and hence
S, —nm

n T—m 1 e 1.2
> = _— > N — u .
P($n 2 na) P( oyn — ﬁ( o )) \/2?/\/5(1—”)6 P du

o

Before we continue we need some results concerning the tail of the standard normal distribution.
Define

—oo V 21
. . . 1 1,2
and correspondingly the tail 1 — $(z) = [° —=¢ 2% du. Then
11
1-d(z) < ———e 2% z >0, (8.5)
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and

1 1 1 1.2
1-& > |- — = | ——e 27 0. 8.6
(m)—<m :133) \/ﬁe ’ e (8:6)

The upper bound for the tail (8.5) follows immediately from the inequality [ ° e~ 3% du <

[ tem3W dy = 1 [*e73%°g(Ly?) = le=3%" (remember that z > 0).

To obtain the lower bound (8.6) we start with the following integration by parts formulas
/oo %e‘éuzdu = —%e‘élﬂ o + /oo 3e_%“zdu = %e_%“’z + /oo %e‘éuzdu.
z u U T U T T U

and

@]
=
~~
0o
o
N
oY)
=]
[oN
~~
oo
(@]
N
g
(¢]
=
2V
<
[¢]
o+
=
oY)
-+
/N
8|
|
w"“
N———
VAN
n
H
= 8
8 [—
V)
VAN
8|~
e
=
el
(<7}

Are the above asymptotics justified? In one case at least yes. Suppose that the r.v.’s X;,
are i.i.d. are normal with mean m and variance 02 (N(m,o?)). Then S,/n has distribution
N (m, %) Hence in this case (8.4) becomes an exact relationship

o0 1,2
P(S, > nz) = / e 2% du (8.7)
Vn(557)

Taking into account the bounds (8.5), (8.6) we have

T—m 2
].Og (( 1 o 1 a8 ) Leién( 2 ) ) S ].OgP(Sn Z nm)

nl/2z—m n3/2 (z—m)3 ) /2x
1 - 1 7ln(z7m)2
log <n1/2 (z—m) Jamo T )

IN

or

1 o 1 o8 1 1 [(z—m\?
_2logn+log(m_m—n(m_m)3)—210g27r—2n< 5 ) < log P(S, > nz)

1 - 1 1 (z—-m\?
< —2logn+log<zm—)—210g27r—2n( - )

Dividing the above inequality with n and letting n — oo (taking into account that X logn — 0)
we obtain

n—oon g

1 _ 2
lim — log P(S, > nz) = — (m m) (8.8)

Hence, setting I(z) = (%)2 we obtain (8.1) for normal random variables. Can we gener-
alize this to non-normal random variables? Can we generalize it for sequences that are not
independent and identically distributed?

As we will see the answer is in the affirmative on both counts. We start with a relatively
simple bound known as the Chernoff bound.
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8.0.1 Chernoff bounds

In the same framework as before X;, ¢ = 1,2,... are assumed to be i.i.d. r.v.’s with moment
generating function M(6). We start with the obvious inequality

1(S, > nz)e™? < 5

which holds for all real 8 since the exponential is non—negative. Taking expectations in the
above inequality we obtain

P(Sn 2 TL.’E) S e—ntE[eeX1+X2+---+Xn] — e—ntM(a)n

The above inequality provides an upper bound for P(S, > nz) for each § € R*. Since the left
hand side in the above inequality does not depend on # we can obtain the best possible bound

by setting
P(Sn > TL(E) < inf efn{:veflogM(G)} — e—nsupgzo{me—logM(B)}
= = 6>0

Define now the rate function

I(z) :=sup{z6 —log M(6)}. (8.9)
9k

With this definition the Chernoff bound becomes
P(S, > nz) < e ™M@ (8.10)

As we will see in many cases this upper bound can be turned into an asymptotic inequality.
This is the content of Cramér’s theorem.

Lemma 29. The cumulant log M(8) s a convez function of 6.

Proof: To establish this we will show that the second derivative %log M(6) is non-
negative. Indeed

d2 M"(6) [ M'(6)\°
—log M(8) = —
267 08 M) = 31 (M(9)>
However note that M"(6) = %E[eex] = E[X?e%X] and hence JJV\I/I”((:)) = E[X? 1\‘}9();)] = B3[X?]
.. M'(8 o6X
Similarly 372 = B[X 755 = B(X] and thus
d? 9 2 2
g log M(6) = B3l X’] - (Bs(x])” = B5 (X - E5lx]) > 0.
Let 8* be the solution of
o - M) _, (8.11)
M(6*) ‘
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8.1 Examples of rate functions

Bernoulli Random Variables (1) Suppose that P(X; =1) =1— P(X; =0) = p (i.e. the random
variables take only the values 0 and 1 with probabilities 1 — p and p respectively). In this case
log M(0) = log (pee +1-— p). To maximize z6 — log M (6) we set its derivative equal to zero:

z= kﬁfpee or ef = ﬁlp%p and taking logarigthms 6 = log 2= + log 1’%”. Therefore

zlogZ +(1—z)logi=f 0<z<1

3

I(z) =
00 otherwise

Normal N (g, 02) Here M(8) = e®%36°7" | The rate function is given by I(z) = sup, [6:1: —fu — 16%2|.
Differentiating we obtain (z — u) — 802 = 0 or § = Z#. Substituting back we get

I(z) = % (:1:;'“>2

Exponential (rate \) M(6) = ;*; and thus the rate function is obtained by maximizing the
expression 6z — log )\—ie. The optimal value of 8 is obtained by the solution of the equation
Z — 525 =0 or § = XA — 1/z which gives

Az —logAz—1 >0
I(z) =
+00 z<0

Binomial (number of trials k, probability of success p) M(6) = (1 — p + pef)*

Geometric (probability of success p) Here M(6) = 11—;};9' Following the same procedure as
before we obtain

zlogz — (z + 1) log(z + 1) + zlog 2 —log(l —p) z >0
I(z) = P

In the following graph the rate function of the geometric distribution (with p = 1/2) is shown.

We will next establish Cramér’s theorem by showing that

liminf P(S, > nz) > —I(z) for z > m. (8.12)

n—oo
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8.1.1 The twisted distribution

Let F(z) be a distribution function on R with moment generating function M(6). The distri-
bution function F(z) defined via

bz

dF(dz) = 3(6)

F(dz)

is called the twisted distribution that corresponds to F. (It is easy to see that F(z) =
[ %F(du) is a non—decreasing function of z and as z — oo, Fi(z) — 1.

The mean of the twisted distribution is given by [ zF(dz) = ﬁff"m e F(dz) =

(o] T _ M/ (4
ﬁ% o e F(dz) = —M((e)).

In particular when 8 = 6*, the solution of (8.11),

1
M(6*)

/o:o ze’ °F(dz) = M6 =z (8.13)

Regarding our notation, it will be convenient to think of two different probability measures,
the probability measure P, under which the random variables X;, 2 = 1,2,..., have distribution
F, and the twisted measure P, under which the r.v.’s X; have distribution F. Expectations
with respect to the probability measure P will be denoted by E.

Start with the inequality

P(S, >nz)>P(n(z+e€)>S,>nz)=E[l(n(z+e€) > S, > nz) (8.14)
P(S, >nz) > e "IN )E [J\;i;ﬁ;nl(n(m +¢€) > S, > nz) (8.15)
— e ety (6*)n B (\/ﬁe > S”\}nm > 0) (8.16)

The twisted distribution can be used to establish (8.12) as follows: Set § = 6* so that,
under P, the mean of X; is z.

P(n(z+e€)>8S,>nz)=P (\/ﬁe > S”\}nm > 0) (8.17)

Since EX = x, we can appeal to the Central Limit Theorem to conclude that

~ Sn —nz 1
lim P > — > = —. 1
Jim (\/'71,6 N O> 5 (8.18)

Hence,
(8.19)

N | =

lin%infﬁ (Sp, > nz) > lin%infﬁ (n(z+¢€) > S, >nz) >
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Write P (n(z + €) > S, > nz) = E[1(n(z+¢€) > S, > nz)| = E [%1(71(:1: +e)>S5, > na:)]

We thus have
log P(S, > nz) > —n(z + €)8* + nlog M(8*) + log P (n(z + €) > S, > nz)
from which we obtain
limninf % log P(S, > nz) > (8.20)
—(z +€)0* +1log M(6) + lim inf % log P (n(z +¢€) > Sp, > nz)
In view of (8.18) and the fact that e was arbitrary we obtain
lin}linf%log P(S, > nz) > —(z6* — log M(6%)) = —I(z),

the last equality following from the fact that 6* is the value that maximizes the quantity z6 —
log M(6).

8.1.2 The principle of the largest term

Suppose that a;, 2 =1,2,...,n are nonnegative real numbers. Then

Pt + e 2% NS e OnT « pTTMming oy

8.1.3 Legendre Transforms

The rate function has been defined as
I(z) = sup[fz — log M (0)].
peR

Define now

A(8) =sup [0z — I(z)].
z€R

We will show that A(8) = log M(0). Indeed, we have

A(6) = sup |6z —sup[nz — log M(n)]

zcR neR

= sup inf [z(6 — n) + log M (n)]
zcR NER

= inf sup[z(6 —n) + log M(n)] = log M(0)
nER zcR

The last equality is due to the fact that if  # 7 then sup, g[z(0 — ) +1log M(n)] = +o0, while
on the other hand, if 8 = 7 sup,r[z(6 —n) + log M(n)] = log M (9).
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8.2 Large Deviation Heuristics for the Analysis of Risk Processes

As we have seen, the infinite horizon ruin probability for a risk process is defined as

Y(u)="P (sup (—ct + % Zk> > u) .

¢20 k=1

Consider a discretization {t;}, + = 0,1,2,..., of [0,00), tc = 0, t; = ¢J, where § > 0 and set
& = zﬁgNti_lﬂ Zy — c6. Note that &; is the sum of all the claims that occur in the interval
(ti—1,t;] from which we subtract cd, the premium income during this period. (If Ny, , = Ny,
then the sum in the definition of &; is empty and its value is zero. Note that

A(e) = Eeefi — 6—659+>\5(M(9)—1)

where M(#) = Ee®?, the moment generating function of the claim distribution. In particular
E¢;, = 0(—c + Ap) where p = EZ;, the mean claim size. We assume that ¢ > Ap and hence
E¢; < 0. Then, the ruin probability is approximately (and exactly in the limit, as § — 0,)

T(u,t) = ]P’( sup Z£i>u>:P<G{Z£¢>u}>

j:1127“'i:1 =1
© J
< P &i>ul. (8.21)
7=1 =1

From Cramér’s theorem we have the asymptotic relationship (for large 7)

J
P (Z ¢ > u)  o—il(u/d)

=1

where
I(z) :=sup {0z — log A(6)} = sup {fz + 8dc — A6(M(0) — 1)} .
R R

It can be shown that -
. . I(u/3)
T(u) =< Y e ) < Z

(u) =1 ¢ 1I£Ja§Xn ¢ ’

From the principle of the largest term it seems plausible that

I(y)

T(u) x e "0 T = gmer (8.22)
where !
7 := inf 1y) (8.23)
y>0 ¥
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We can easily express r in terms of M(6) as follows:

r:sup{ezﬁgjf) Va:}
< r=sup{f:0z—I(z) <0 Vz}
= r= sup{e :sup [0z — I(z)] < 0}
— r=sup{f: loaé A(F) <0}

Therefore 7 is the largest root of the equation log A(6) = 0 or equivalently

—cdf + A6(M(6) — 1) = 0.
or
_ch
Y
It can be seen that the above equation has precisely two roots: 8 = 0 and 8 = r > 0 provided
that u = M'(0) <AL

M) -1
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