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Chapter 1

Introduction

1.1 Discrete Time
Let N0 = f0; 1; 2; : : :g and (
;F ;P) a probability space. A discrete time stochastic process is afamily of real random variables fXn;n 2 N0g de�ned on (
;F ;P). Its law is determined by thefamily of �nite dimensional distributions
Fm(x1; : : : ; xm;n1; : : : ; nm) = P(Xn1 � x1; : : : ; Xnm � xm); (1.1)m 2 N; xk 2 R; k = 1; : : : ;m; 0 � n1 < n2 < � � � < nm 2 N0:

The family of distributions must satisfy the consistency conditions
Fm+1(x1; : : : ; xk�1; xk; xk+1; : : : ; xm+1;n1; : : : ; nk�1; nk; nk+1; : : : ; nm+1) (1.2)= Fm(x1; : : : ; xk�1; xk+1; : : : ; xm+1;n1; : : : ; nk�1; nk+1; : : : ; nm+1)

for all m 2 N and all xk 2 R.
Conversely, for any given family of distribution functions fFm(x1; : : : ; xm;n1; : : : ; nm); m 2N; x 2 Rm; 0 � n1 < � � � < nmg that satisfy the consistency conditions (1.2) there exists aprobability space (
;F ;P) and a sequence of measurable functions fXng, Xn : 
 ! R suchthat (1.1) holds, i.e. fXng is a stochastic process with the given family of �nite dimensionaldistributions. (This statement is Kolmogorov's theorem.)

1.2 Continuous Time
On the probability space (
;F ;P) consider a family of real random variables fXt; t 2 [0; T ]g(where T > 0). For each t 2 [0; T ] Xt is a measurable function from (
;F) to (R;B) (where B
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is the Borel ���eld on the real line) while, for each ! 2 
 X�(!) : [0; T ] ! R is a measurablefunction. The family of distribution functions
Fm(x1; : : : ; xm; t1; : : : ; tm) = P(Xt1 � x1; : : : ; Xtm � xm); (1.3)m 2 N; xk 2 R; k = 1; : : : ;m; 0 � t1 < t2 < � � � < tm � T

are the �nite dimensional distributions of the process fXtg and must satisfy consistencyconditions analogous to (1.2).

1.2.1 Brownian Motion
Consider the family of �nite-dimensional densities

f(x1; : : : ; xn; t1; : : : ; tn) = nY
i=1

1p2�(ti � ti�1) e�
(xi�xi�1)22(ti�ti�1) (t0 := 0): (1.4)

This family de�nes a corresponding family of distribution functions which satis�es the con-sistency conditions. Therefore, by virtue of the Kolmogorov theorem, there exists a processfWt; t � 0g with these �nite dimensional distributions. It can be shown that there exists aversion of the process that has continuous sample paths with probability 1.

1.2.2 Markov Processes
A process fXt; t 2 Rg has the Markov property if for any n 2 N, t1 < t2 < : : : < tn and anyx1; : : : ; xn 2 R
P(Xtn � xnjXtn�1 = xtn�1 ; Xtn�2 = xtn�2 : : : ; Xt1 = xt1) = P(Xtn � xnjXtn�1 = xtn�1): (1.5)

The meaning of the above is that in order to �predict� the value of the process at a futuretime tn, only the most recent known value Xtn�1 is relevant. Past values, Xtn�2 ; Xtn�3 ; : : : ; Xt1provide no further information if the process is markovian.
Clearly, a markovian process can be described completely by the so-called transition kernel,P (y; x; t; s) := P(Xt � yjXs = x) for all s < t and x; y 2 R. The process is called time-homogeneous if P (y; x; t; s) = P (y; x; t� s; 0) which means that P(Xt � yjXs = x) = P(Xt�s �yjX0 = x) = Q(y; x; t � s) for some transition kernel Q. Note that the transition kernel Q foreach �xed t and x is a distribution function on the real line, the conditional distribution of Xtgiven that X0 = x.
We will in particular consider the case where the kernel possesses a density p(y; x; t)dy =P(Xt 2 dyjX0 = x). Let us denote by f(xn; xn�1; : : : ; x1; tn; tn�1; : : : ; t1)dxndxn�1 : : : dx1 the
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joint density P(Xtn 2 dxn; Xtn�1 2 dxn�1; : : : ; Xt1 2 dx1). Then
f(xn; xn�1; : : : ; x1; x0; tn; tn�1; : : : ; t1; t0) = f(x0; t0)p(x1; x0; t1 � t0)p(x2; x1; t2 � t1)� � � p(xn; xn�1; tn � tn�1):

Thus if the initial density f(x0; t0) and the transition function p(y; x; t) are given the �nitedimensional distributions and thus the whole process are determined in the Markovian case. Inparticular the standard Brownian motion is a Markov process with transition density
p(y; x; t) = 1p2�te� (y�x)22t :

1.3 The Multivariate Normal Distribution
1.3.1 Symmetric Nonnegative De�nite Matrix
De�nition 1. A symmetric n � n matrix R is positive de�nite if, for all x 6= 0 in Rn,x>Rx > 0. It is non-negative de�nite if x>Rx � 0.

Recall that any symmetric matrix n � n has n real eigenvalues (not necessarily distinct)and n corresponding eigenvectors that can be taken to be orthogonal:
R�i = �i�i; i = 1; : : : ; n; with �>i �j = �ij ; (1.6)

where �ij = 1 if i = j and 0 otherwise. If � := [�1; : : : ; �n], the matrix whose columns are theeigenvectors of R, and � the diagonal matrix of the eigenvalues, then the above relationship canalso be written as R = ���>:
An equivalent restatement of the above is the so-called spectral representation

R = nX
i=1 �i�i�>i :

It is easy to see that R is non-negative de�nite provided that �i � 0 for all i and positive de�niteif �i > 0 for all i.
If R is non-negative de�nite then there exists a real square matrix V such that

R = V V >: (1.7)
Indeed, since �i � 0 we can de�ne �1=2 as the diagonal matrix with elements �1=2i and then wecan take V := ��1=2. The non-uniqueness of V is obvious since we could make the choice ��1=2ifor some of the diagonal elements. However there are other, more interesting possibilities.
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Recalling the LDU decomposition, where L and U are lower and upper triangular matriceswith unit elements on the diagonal and taking into account that R is symmetric we obtain thedecomposition
R = LDL> (1.8)

where D is the diagonal matrix with elements di. R is positive de�nite if and only if di > 0 forall i. Thus, an essentially di�erent choice for V in the decomposition (1.7) is V = LD1==2.

1.3.2 Moment Generating Function and Joint Density
De�nition 2. A random vector (X1; : : : ; Xn) is normal with mean � 2 Rn and covariancematrix R if its moment generating function is

M(u1; : : : ; un) := EePni=1 uiXi = ePni=1 ui�i+ 12Pni;j=1 uiRijuj : (1.9)
An immediate consequence is the following proposition

Proposition 3. (X1; : : : ; Xn) is multivariate normal if and only if Pni=1 aiXi is normal forany vector (a1; : : : ; an).
Problem 4. Suppose that R is an n � n covariance matrix with rank k � n. Show thatthere exists an n � k matrix G such that R = GG>. If Ui, i = 1; : : : ; k are independent,standard normal random variables, then2664

X1...Xn
3775 = G

2664
U1...Uk

3775

If the rank of R is n (equivalently if all its eigenvalues are strictly positive) then the law of(X1; : : : ; Xn) is absolutely continuous with respect to the Lebesgue measure on Rn with density
f(x1; : : : ; xn) = 1(2�)n=2(detR)1=2 e� 12 (x��)>R�1(x��): (1.10)

Suppose for simplicity that them mean � is zero. It is well known that the joint momentsare given in terms of the moment generating function via the expression
1Qnj=1 ij ! @i1+���+in@ui11 � � � @uinn M(u1; : : : ; un)

�����u1=���=un=0 = E[Xi11 � � �Xinn ]: (1.11)
Equivalently, 1(Pnj=1 ij)!E[Xi11 � � �Xinn ] is the coe�cient of ui11 ui22 � � �uinn in the Taylor expansion
of M(u1; : : : ; un) around 0. Since M(u1; : : : ; un) = e 12Pkl ukulrkl this series expansion has theform

M(u1; : : : ; un) = 1 + 1X
m=1

12m
 X

kl ukulrrl
!m
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As a simple illustration consider that
E[X1X2X3X4] = r12r34 + r13r24 + r14r23:

Similarly E[X21X22 ] = r11r22 + 2r212;E[X41 ] = 3r411;and generally E[X2n1 ] = 1 � 3 � 5 � � � (2n� 1):
Also, E[X21X22X23 ] = r11r22r33 + 2r11r223 + 2r22r213 + 2r33r212 + 8r12r23r31

Can you discover the general pattern? A relevant combinatorial problem is the following:
The number of pairs that that can be formed by 2n di�erent objects is 2nn

!n! 12n = (2n)!2nn! = 1 � 3 � 5 � � � (2n� 1):

1.4 Expansion in Orthogonal Functions � Karhunen-Loève
Here we give a concrete representation for Brownian motion with variance constant �2 in theinterval [0; T ]. The covariance function is given by R(s; t) = �2(s ^ t), s; t 2 [0; T ].. By analogywith the discrete case (1.6) we can attempt to solve the eigenvalue problemZ T

0 R(s; t)�i(s)ds = �i�i(t): (1.12)
This will determine a sequence of eigenvalues f�ig, i = 1; 2; : : : and corresponding eigenfunctionsf�ig that may be taken to be of unit norm, i.e. to satisfy R T0 �2i (s)ds = 1. The integral equation(1.12) then becomes

�2 Z t
0 s�i(s)ds+ �2 Z T

t �i(s)ds = �i�i(t) : (1.13)
Di�erentiating with respect to t we obtain

�2 Z T
t �i(s)ds = �i�0i(t) (1.14)

and di�erentiating once again ��2�i(t) = �i�00i (t): (1.15)
Setting t = 0 in (1.13) and t = T in (1.14) we obtain the boundary conditions

�i(0) = 0; �0i(T ) = 0: (1.16)
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whence
�i = �2T 2

�2 �i� 12�2 ; �i(t) =
s 2T sin� �i� 12

� tT ; i = 1; 2; : : : : (1.17)

Thus we obtain the remarkable expression
R(s; t) = �2(s ^ t) = 1X

i=1 �i�i(s)�i(t)
for the covariance function and the following representation for the Brownian motion: If fZigare i.i.d. standard normal random variables then

Xt := 1X
i=1Zi�1=2i �i(t); t 2 [0; T ] (1.18)

is Brownian motion with variance constant �2.

1.5 Processes with Stationary Independent Increments
De�nition 5. A process fXt; t � 0g with stationary independent increments, also called aLévy process, is one satisfying the following three conditions.

i) P(X0 = 0) = 1 and the process has with probability 1 paths which are right-continuouswith left hand limits.
ii) For all n 2 N and 0 � t0 < t1 < : : : < tn the random variables Xti �Xti�1, i = 1; : : : ; nare independent.
iii) For all s; t > 0 the random variables Xt and Xt+s �Xt are identically distributed.

This family includes some of the best known and simplest processes, namely the Poissonprocess, the compound Poisson process, and the Brownian motion. The most striking propertyof a Lévy process is apparent from the de�nition. Let �t(u) := EeiuXt denote the characteristicfunction of Xt and n 2 N. Then the random variables Xkt=n � X(k�1)t=n, k = 1; 2; : : : ; n arei.i.d. random variables and hence
�t(u) = E[eiXt ] = E[ nYk=1 eit(Xkt=n�X(k�1)t=n)] = nY

k=1E[eit(Xkt=n�X(k�1)t=n)] = �t=n(u)n:
As we will argue later a consequence of the above identity is that �t(u) = et�(u) where

�(u) = iu� � 12�2u2 +
Z 1
�1(eiux � 1� iux1(x � 1))�(dx) (1.19)
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where � 2 R, �2 � 0 and � is a ���nite measure on R n f0g such thatZ 1
�1 x2�(dx) <1 and Zjxj>1 �(dx) <1:

The triplet (�; �2; �) is called the Lévy triplet and it characterizes the law of the process. Wewill see speci�c examples later on. Su�ce it to say at this point that if � � 0 then we obtainBrownian motion with drift � and variance constant �2 since �t(u) = eit�� 12u2�2 whereas if�(dx) is a �nite measure on R we obtain a compound Poisson process.
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Chapter 2

Characteristic Functions

Let X a real random variable with distribution function F . We denote by � the correspond-ing measure induced on the real line by F via the relationship �(a; b] = F (b) � F (a). Thecharacteristic function corresponding to X (or equivalently to F or �) is
�(t) = Z

R
eitxdF (x) = Z

R
eitx�(dx) = EeitX (2.1)

where i = p�1 is the imaginary unit and t 2 R. Thus f is a function from R to C. Recallingde Moivre's formula for the complex exponential, eix = cosx+ i sinx we can also write
�(t) = Z

R
cos(xt)dF (x) + i Z

R
sin(xt)dF (x)

Suppose that the distribution function F is symmetric, i.e. P (X > x) = P (X < �x) for everyx, or equivalently 1� F (x) = F (�x�). Then, taking into account the fact that sinx is an oddfunction we can see that the imaginary part of the characteristic function vanishes and we areleft with �(t) = Z
R
cos(xt)dF (x)

From the above de�nition it is obvious that the probability distribution speci�es the char-acteristic function. Later in this discussion we will also prove the uniqueness theorem whichstates that the characteristic function uniquely speci�es the probability measure. Hence, knowl-edge of the characteristic function of a random variable is enough to determine its distribution.We will begin with some useful elementary results.
If f(t) is a characteristic function then f(0) = 1. This follows by direct substitution into(2.1).
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A characteristic function is uniformly continuous, i.e. 8� > 0 9� > 0 such that jf(t+h)�f(t)j < � whenever jhj < � for all t 2 R. Indeed,
jf(t+ h)� f(t)j = ����Z

R
ei(t+h)xdF (x)� Z

R
eitxdF (x)����

� Z
R

���eitx(eixh � 1)��� dF (x) = Z
R

���(eixh � 1)��� dF (x)
However, jeixh�1j � 2 and RR 2dF (x) <1, hence we can appeal to the Dominated Convergencetheorem to argue that limh!0 RR ���(eixh � 1)��� dF (x) = 0. Thus the result is established.

If the characteristic function (ch. f.) of the random variable X is f(t), then the ch. f. ofaX + b is eitbf(at). This follows immediately from E[eit(aX+b)] = eitbEei(at)X .
Let fi(t) = E[eitXi ], i = 1; 2, where X1, X2 are independent random variables. Then thecharacteristic function of their sum is the product of the characteristic functions: Eeit(X1+X2) =EeitX1EeitX2 = f1(t)f2(t). This of course generalizes to sums of independent random variableswith arbitrarily many terms.
Let X, X 0 independent random variables with the same distribution and characteristicfunction f(t). Show that Eeit(X+X 0) = f(t)2 and Eeit(X�X 0) = f(t)f(t) = jf(t)j2. This showsthat whenever f(t) is a characteristic function, jf(t)j2, which is always real�valued, is also acharacteristic function.
Let Z be a standard normal random variable. Then its characteristic function is f(t) =e�t2=2. Indeed, f(t) = R1�1 1p2�e�x2=2dxeitxdx = R1�1 1p2�e�x2=2 cos(tx)dx since the densityof the standard normal is an even function. Thus di�erentiating with respect to t inside theintegral and integrating by parts gives

f 0(t) = � Z 1
�1 1p2�e�x2=2x sin(tx)dx = Z 1

�1 1p2� sin(tx)d(e�x2=2)
= � Z 1

�1 1p2�e�x2=2 cos(tx)dx = �f(t)
Thus, f(t) satis�es the di�erential equation

f 0(t) = �tf(t); f(0) = 1
which has the solution f(t) = e�t2=2. From the above it follows that the characteristic functionof a normal r.v. with mean � and variance �2 is eit��t2�2=2.

The exponential distribution with density e�x, x � 0 has characteristic functionZ 1
0 e�xe�itxdx = Z 1

0 e�x(1+it)dx = 11 + it :In the same way we can compute the characteristic function of the Laplace distribution withdensity 12e�jxj, x 2 R as 12
� 11 + it + 11� it

� = 11 + t2
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If fi(t) are characteristic functions (corresponding to distribution functions Fi(x)), i =1; 2; 3; : : :, and pi � 0, Pi pi = 1, then Pi pifi(t) is the characteristic function that correspondsto the distribution Pi piFi(x). This idea of course extends from sums to integrals: If F (x; a)is a distribution depending with a parameter a with characteristic function f(t; a) and G isanother distribution function, then R f(t; a)dG(a) is the characteristic function of the "mixed"distribution R F (x; a)dG(a).
The following table gives examples of distributions and the characteristic functions thatcorrespond to them.1

Distribution/Density Function Characteristic Function
1. Deterministic: F (x) =

8><>: 0 x < a
1 x � a eita

2. Bernoulli: F (x) =
8>>>>><>>>>>:

0 x < 0
q 0 � x < 1
1 x � 1

q + peit

3. Uniform with density F 0(x) =
8><>: 1 0 � x < 1

0 otherwise eit=2 sin(t=2)t=2
4. Standard Normal with density 1p2�e�x2=2 e�t2=2
5. Gamma with density 1�(�)x��1e�x � 11�it��
6. Triangular density F 0(x) =

8><>: (1� jxj)+ �1 � x � 1
0 otherwise

� sin(t=2)t=2 �2
7. Cauchy density 1� 11+x2 e�jtj
8. Geometric P (X = k) = qk�1p, k = 1; 2; 3; : : : peit1�qeit9. Binomial P (X = k) = �nk�pkqn�k �q + peit�n
10. Poisson P (X = k) = �kk! e�� k = 0; 1; 2 : : : e�(eit�1)
1We denote by x+ the positive part of a real number x, i.e. x+ = max(0; x) and by x� the negative part,

x� = �min(0; x). Thus x = x+ � x�
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2.1 The Uniquness Theorem
Before we turn to the central result regarding characteristic functions we need the following factfrom analysis

Z 1
0 sin axx dx = �2 sgn(a) :=

8>>>>><>>>>>:
�2 a > 0
0 a = 0

��2 a < 0
(2.2)

It is enough to establish the result for a > 0 as the others follow from a simple change ofvariables. To this end, writeZ 1
0 sin axx dx = Z 1

0 sin axax d(ax) = Z 1
0 sinxx dx

= Z 1
0 sinx �Z 1

0 e�uxdu� dx = Z 1
0
�Z 1

0 e�xu sinxdx� du
= Z 1

0 11 + u2 du = �2
Theorem 6. [Uniqueness Theorem] The characteristic function uniquely speci�es theprobability measure via the relationship

�(a; b) + 12�fag+ 12�fbg = limT!1 12�
Z T
�T e

�itb � e�itait f(t)dt: (2.3)
Proof: In view of the de�nition of the characteristic function the integral on the right handside of (2.3) isZ T

�T e
�itb � e�itait

Z
R
eitxdF (x)dt = Z

R

Z T
�T e

�itb � e�itait eitxdF (x)dt:
Since for any real y

12�
Z T
�T e

ityit dt = 1�
Z T
0 eity � e�ity2it dt = 1�

Z T
0 sin ytt dt =: ST (y);

taking into account the above equation, the right hand side of (2.3) becomes
limT!1

Z
R
(ST (x� b)� ST (x� a)) dF (x): (2.4)

1The interchange of the order of the two integrals here is justi�ed by Fubini's theorem since

e�itb � e�ita = �
Z b
a ite�itudu

and hence ����e�itb � e�ita
it

eitx���� � jeitxjZ b
a je�itujdu = jb� aj:

.
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As we have seen from (2.2), limT!1 ST (y) = 12sgn(y). Also, jST (y)j � c, hence,����Z
R
(ST (x� b)� ST (x� a)) dF (x)���� � Z

R
jST (x� b)� ST (x� a)j dF (x) � 2c Z

R
dF (x) = 2c

and we can appeal to the Dominated Convergence Theorem in order to interchange the orderof the limit and the integral in (2.4). Thus
limT!1ST (x� b)� ST (x� a) = (a < x < b) + 12(x = a) + 12(x = b)

and hence
limT!1

Z
R
(ST (x� b)� ST (x� a)) dF (x)
= Z

R

�(a < x < b) + 12(x = a) + 12(x = b)��(dx)
= �(a; b) + 12�fag+ 12�fbg:

�
Theorem 7. Suppose that the characteristic function f(t) is integrable, i.e. RR jf(t)jdt <1.Then the corresponding distribution function is absolutely continuous with correspondingdensity p(x) given by p(x) = 12�

Z
R
e�itxf(t)dt: (2.5)

Proof: We begin with the remark that if f is integrable, then the corresponding distributionfunction has no atoms, i.e. F (x) = F (x�). Indeed, from the uniquness theorem we have
F (x)� F (x� h)h = limT!1 12�

Z T
�T 1� eihtith e�itxf(t)dt:

Since ���1�eihtith ��� � 1, the integrand is bounded by ���1�eihtith e�itxf(x)��� � jf(t)j, and since by assump-tion f(t) is integrable, we can appeal to the Dominated Convergence Theorem to obtain
limh!0 F (x)� F (x� h)h = limh!0 12�

Z 1
�1 1� eihtith e�itxf(t)dt

= 12�
Z 1
�1 e�itxf(t)dt:

The above argument establishes that the left derivative of F (x) exists and is given by the aboveexpression. An identical argument shows that the right derivative also exists and equals thesame quantity. This completes the proof. �
The behavior of the characteristic function near the origin determines the "heaviness" ofthe tails of the deistribution. This idea is formalized in the following inequalities

Theorem 8. [Modulus Inequalities] If we denote by �[�A;A]c the probability P (jXj > A)for any A > 0, then
�[�A;A]c � 2A

Z 1=A
�1=A[1� f(t)]dt: (2.6)
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Proof:

12T
Z T
�T f(t)dt = 12T

Z T
�T
Z
R
eitx�(dx)dt = 12T

Z
R
�(dx) Z T

�T eitxdt
!

= Z
R
�(dx) Z T

0 cos txT dt = Z
R

sinTxTx �(dx): (2.7)
Note however that ����sinTxTx

���� � 1
8><>: 1 jxj � 2A12TA jxj > 2A

and henceZ
R

sinTxTx �(dx) � �[�2A; 2A] + 12TA(1� �[�2A; 2A]) = �1� 12TA
��[�2A; 2A] + 12TA:

If we set T = A�1 in the above we obtain�����A2
Z A�1
�A�1 f(t)dt

����� � 12�[�2A; 2A] + 12 :
From this last inequality, (2.6) follows readily. �

2.2 Weak Convergence
In this section we sketch brie�y (and mostly without proof) some of the most important resultsregarding weak convergence of distribution functions. The set up is the following: Suppose thata family of random variables fXng is given with corresponding distribution functions Fn. (It isimportant to note that we are not concerned at all here with the joint statistics of the familyXn, only with their marginal distributions Fn(x) = P (Xn � x), so the random variables do noteven have to be de�ned on the same probability space.)
De�nition 9. fFng converges weakly to a distribution function F if

limn!1Fn(x) = F (x)
for each point of continuity of F (x).

Weak convergence is often refered to as convergence in distribution and we write Fn d�! F .
Theorem 10 (Helly). Let fFng be an arbitrary collection of distribution functions. Thenthere exists a subsequence fFnkg such that

Fnk d�! F
for some distribution F .
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Theorem 11. fFng converges weakly to F if and only if
limn

Z
R
f(x)dFn(x) = Z

R
f(x)dF (x)

for every bounded, continuous f .
(This is sometimes refered to as Helly's second theorem.)
As we shall see when we discuss the Central Limit Theorem later on, one of the problemsthat arises very often, both in practice and in theory is the following. If we have a family ofdistributions fFng with corresponding characteristic functions fn then,

a) If Fn converges weakly to some distribution function F can we conclude that fn willconverge to the characteristic function f of F?
b) If fn(t) converges for all t to f(t), then is f(t) also a characteristic function, and if it isand it corresponds to (say) the distribution F , can we conclude from this that Fn d�! F?
The �rst question has an a�rmative answer as one can show without much e�ort (essentiallythis follows from Helly's second theorem). The answer to the second question however is morecomplicated as we can see from the following example.
Let

Fn(x) =
8>>>>><>>>>>:

0 x < �nx+n2n �n � x < n
1 n � x

i.e. we have a family of uniform distributions on [�n; n]. Their ch.f.'s are
fn(t) = sin(nt)nt

We thus see that
fn(t) �! f(t) =

8><>: 0 if t 6= 0
1 t = 0

It is easy to see that the above limit is not a characteristic function (it is not continuous!). Also,in this case, Fn(x) ! 0 for all x so fFng does not converge to a distribution function. Thusclearly it is not enough for fn to converge.
Theorem 12. [Convergence Theorem] Let fFng be probability distributions with charac-teristic functions ffng. If
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a) fn(t) converges for every t and de�nes a limit function f(t)
b) This limit function f(t) is continuous at t = 0

then
fFng converges weakly to some distribution F with characteristic function F .

2.3 Positive de�nite functions
De�nition 13. A function f : R! C is positive de�nite if for every n 2 N, t1; t2; : : : ; tn 2 Rand c1; c2; : : : ; cn 2 C, nX

i=1
nX
j=1 ci�cjf(ti � tj) � 0; (2.8)

where �c denotes the complex conjugate of c.
(The meaning of the above inequality is that the left hand side should be real and nonneg-ative.) Note that the positive de�niteness of f is equivalent to the positive de�niteness of thematrix 26666666666666664

f(0) f(t1 � t2) f(t1 � t3) � � � f(t1 � tn)
f(t2 � t1) f(0) f(t2 � t3) � � � f(t2 � tn)
f(t3 � t1) f(t3 � t2) f(0) � � � f(t3 � tn)
f(tn � t1) f(tn � t2) f(tn � t3) � � � f(0)

37777777777777775
(2.9)

for every n and ti 2 R. Also note that we use the term positive in the weak sense followingcommon usage (in other words, here positive means "nonnegative").
Theorem 14. All characteristic functions are positive de�nite

Proof: We start with the remark that eitx is positive de�nite. Indeed,
X
i;j ci�cjei(ti�tj) =

X
i;j cieitix

�cjeitjx� =  X
i cieitix!

0@Xj cjeitjx
1A = �����Xi cieitix

�����
2 � 0:

To show that a characteristic function is positive de�nite, it is enough to mimic the above
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argument, interchanging summations and expectation:
X
i;j f(ti � tj)ci�cj =

X
i;j ci�cjE[ei(ti�tj)X ] = EXi;j ci�cjei(ti�tj)X = E �����Xi cieitix

�����
2 � 0

More interesting and far�reaching however is the fact that the converse is also true, namely thatAll positive de�nite functions f : R �! C are characteristic functions of some measure on thereal line. This result will be established latter on. We �rst establish some of the properties ofpositive de�nite functions.
1. If f is positive de�nite, then f(0) � 0 (as before part of the assertion is that f(0) isreal). Indeed, (2.8) with n = 1 gives c�cf(0) = jcj2f(0) � 0.
2. f(t) = f(�t). In particular this means that a real positive de�nite function must beeven, i.e. it must satisfy f(t) = f(�t). To prove this assertion apply (2.8) with n = 2, t1 = 0,t2 = t, c1 = c2 = 1 to obtain 2f(0) + f(t) + f(�t) � 0

which implies2 that f(t) + f(�t) is real, hence =f(t) + =f(�t) = 0, or
=f(t) = �=f(�t) (2.10)

If we choose c1 = 1, c2 = i we obtain
f(0) + if(t)� if(�t)� f(0) � 0

which implies that f(t)� f(�t) is pure imaginary, hence <f(t)�<f(�t) = 0, or
<f(t) = <f(�t): (2.11)

Equations (2.10) and (2.11) together establish that
f(t) = f(�t): (2.12)

3. jf(t)j � f(0) for every t 2 R. To show this, take c1 = f(t), c2 = �jf(t)j to obtain2f(0)jf(t)j2 � 2jf(t)j3 � 0, whence the inequality follows.
4. Any positive de�nite function for which f(0) = 1, satis�es the following inequality:

jf(t+ h)� f(t)j � 2j1� f(h)j2: (2.13)
(The normalizing assumption f(0) = 1 simpli�es the algebra without harming the generalityof the statement.) The importance of this inequality lies in the fact that it implies that if apositive de�nite function is continuous at 0 then it must be continuous (and in fact uniformly

2If c = a + ib is a complex number (a, b 2 R) we denote its real part by <c = a and its imaginary part by
=c = b)
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continuous) on R. We have already seen this for characteristic functions. To prove this assertion,we will use the positive de�niteness of the matrix2666664
1 f(�t) f(�t� h)
f(t) 1 f(�h)
f(t+ h) f(h) 1

3777775 (2.14)

which is obtained from (2.9) with n = 3, t1 = 0, t2 = t, t3 = t + h and f(0) = 1. (2.14) ispositive de�nite if 1� jf(t)j2 � 0
1 + f(�t)f(�h)f(t+ h) + f(t)f(h)f(�t� h)� jf(h)j2 � jf(t)j2 � jf(t+ h)j2 � 0:

Making use of (2.12), this last inequality can be rewritten as
1 + f(t)f(h)f(t+ h) + f(t)f(h)f(t+ h)� jf(t)j2 � jf(h)j2 � jf(t+ h)j2 � 0

or 1 + 2<ff(t)f(h)f(t+ h)g � jf(t)j2 � jf(h)j2 � jf(t+ h)j2 � 0;
which gives jf(t+ h)j2 + jf(t)j2 � 1� jf(h)j2 + 2<ff(t)f(h)f(t+ h)g:
We are now ready to show (2.13)

jf(t)� f(t+ h)j2 = jf(t)j2 + jf(t+ h)j2 � f(t)f(t+ h)� f(t)f(t+ h)= jf(t)j2 + jf(t+ h)j2 � 2<ff(t)f(t+ h)g� 1� jf(h)j2 + 2<ff(t)f(h)f(t+ h)g � 2<ff(t)f(t+ h)g= 1� jf(h)j2 + 2<ff(t)f(t+ h)[f(h)� 1]g� 1� jf(h)j2 + 2j1� f(h)j (2.15)
where in this last inequality we have used the fact that

<ff(t)f(t+ h)[f(h)� 1]g � jf(t)f(t+ h)[f(t)� 1]j � jf(t)j jf(t+ h)j j1� f(t)j� j1� f(t)j
(since jf(t)j � f(0) = 1). Finally, note that 1 � jf(h)j = j1 � jf(h)jj � j1 � f(h)j and hence(2.15) gives
jf(t)� f(t+ h)j2 � (1� jf(h)j)(1 + jf(h)j) + 2j1� f(h)j � j1� f(h)j (1 + jf(h)j+ 2)� 4j1� f(h)j
As we have seen, characteristic functions of probability measures are positive de�nite andpositive de�nite functions that are continuous at zero have the same properties as characteristicfunctions. This is far from accidental. In fact as the next theorem shows these two classes offunctions coincide.
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Theorem 15 (Bochner). Suppose that a function f : R ! C is positive de�nite withf(0) = 1 and continuous at 0. Then there exists a probability distribution F on R suchthat f(t) = R
R eitxdF (x).

Proof: Fix T > 0 and consider the function
pT (x) = 1T 2 Z T

0
Z T
0 f(t� s)eitxe�isxdsdt � 0: (2.16)

It is clear that pT (x) is real and nonnegative since the double integral is the limit of RiemannsumsPjPk f(tj�sk)eitjxe�iskx�tj�sk which are nonnegative by positive de�niteness. Chang-ing variables in (2.16) gives
pT (x) = Z T

�T
�1� jtjT

� f(t)e�itxdt: (2.17)
Remark: For any L > 0,1L

Z L
0 dy Z y

�y eitxdx = 1L
Z L
0 dy Z y

0 2 cos tx dx = 2Lt
Z L
0 sin ty dy

= 21� cosLtLt2
Hence, 1L

Z L
0 dy Z y

�y pT (x)dx = 2 12�
Z T
�T
�1� jtjT

� 1� cosLtLt2 f(t)dt
= 1�

Z 1
�1

�1� jtjT
�+ 1� cosLtLt2 f(t)dt

De�ne fT (t) := �1� jtjT
�+ f(t) (2.18)

and note that jfT (t)j � 1. Also, note that ���R1�1 1�cos tt2 dt��� < 1. Hence, by dominated conver-gence, limL!1 1�
Z 1
�1 fT (t=L)1� cos tt2 dt = 1�

Z 1
�1 1� cos tt2 dt = 1:

We thus have that R y�y pT (x)dx " 1 as y " 1. (Here we are using the following result: If g is anincreasing function and 1X RX0 g(x)dx ! a as X ! 1, then g(x) ! a as x ! 1. R y�y pT (x)dxmust be an increasing function of y, since pT (x) � 0 for all x. We have thus shown that pT (x)is integrable with R1�1 pT (x)dx = 1, hence pT (x) is the probability density of some distribution.We also have pT (x) = 12�
Z 1
�1

�1� jtjT
�+ f(t)e�itxdx

Hence, for each T , fT (t) is the characteristic function of some distribution function. As T !1,
fT (t) = �1� jtjT

�+ f(t)! f(t) for all t 2 R
and f(t) is by assumption continuous at 0. Therefore the convergence theorem of the previoussection guarrantees that f(t) must also be a characteristic function �
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2.4 Second Order Stationary Processes
Let fXt; t 2 Rg a stochastic process with EXt = �(t). De�ne �t := Xt � �(t). The functionR(s; t) := E�s�t is called the covariance function of the process X. A process X is calledGaussian if, for any n 2 N and any t1; t2; : : : ; tn, (Xt1 ; Xt2 ; : : : ; Xtn) � N (�;�) where

� =
2666666664

�1
�2...
�n

3777777775
; � =

26666666666664

Var(Xt1) Cov(Xt1 ; Xt2) � � � Cov(Xt1 ; Xtn)
Cov(Xt2 ; Xt1) Var(Xt2) � � � Cov(Xt1 ; Xtn)... ... . . . ...
Cov(Xtn ; Xt1) Cov(Xtn ; Xt2) � � � Var(Xtn ; Xt1)

37777777777775
:

A process fXt; t 2 Rg is a second order stationary process if
i) EXt = �, E(Xt � �)2 = �2 <1, for all t 2 R,
ii) There exists a real function r : R �! R such that E(Xs � �)(Xt � �) = r(t � s) for alls; t 2 R,
iii) The process is mean-square continuous, i.e.

limh!0E(Xt+h �Xt)2 = 0
Let us now examine some of the consequences of the above properties. First, since Var(Xt) =

Cov(Xt; Xt) if follows that r(0) = �2. Also, E(Xt+h �Xt)2 = �2 + �2 � 2r(h) = 2(r(h)� r(0))and hence, property iii) is equivalent to the requirement that r be continuous at zero, i.e.r(h) ! r(0) as h ! 0. Cauchy�Schwartz implies jr(t)j � �2 8t. Without loss of generalitysuppose � = 1.
Theorem 16. r(t) is a positive de�nite function.

Proof:

0 � ���Pnj=1Xtjzj���2 = �Pnj=1Xtjzj� (Pni=1Xtizi)= Pni=1Pnj=1 zizjXtiXtj :
Taking expectations we have

0 �Xi;j zizjEXtiXtj =X
i;j r(tj � ti)zizj
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This establishes that the covariance function of any stationary second order process is positivede�nite. Hence Bochner's theorem guarantees that there exists a uniquely determined proba-bility measure on R such that r(t) = Z 1
�1 eitxR(dx)

In particular, since r is an even function,
r(t) = 2 Z 1

0 cos(tx)R(dx) (2.19)

2.4.1 An example of a stationary second order process
Let N(t) be a Poisson process with rate � and X(0) a random variable with P (X(0) = 1) =P (X(0) = �1) = 1=2, independent of the Poisson process. Consider the process

X(t) = X(0)(�1)N(t) (2.20)
Clearly, X alternates between the values 1, and �1, changing value at each Poisson point. It iseasy to see that EX(t) = EX(0)E(�1)N(t) = 0 (since EX(0) = 0). The covariance function iseasily computed as follows:

EX(t)X(t+ s) = E hX(0)2(�1)N(t)N(t+s)i = E h(�1)N(t+s)�N(t)i
Using the stationary increments property the above expectation is

E(�1)N(s) = 1X
n=0

(�s)2n(2n)! e��s �
1X
n=0

(�s)2n+1(2n+ 1)!e��s
= cosh(�s)e��s � sinh(�s)e��s = e�2�s:

Hence the covariance function is given by
EX(t)X(s) = r(t� s) = e�2�jt�sj:

The spectral measure can be easily computed in this case: We must have r(t) = e�2�jtj =R1�1 eitxR(dx) and hence
R(dx) = 12�� 11 + (x=2�)2 dx:
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Chapter 3

In�nitely Divisible Laws

Let X be a real random variable with characteristic function �(t) := EeitX and distributionfunction F (x) = P (X � x). We say that X is in�nitely divisible (or, equivalently, that F , or� are in�nitely divisible) if, for every integer n there exist independent, identically distrtibutedrandom variables Xi, i = 1; 2; : : : ; n, such that
X d= X1 +X2 + � � �+Xn

Equivalently we say that the characteristic function �(t) is in�nitely divisible if, for every n,there exists a characteristic function �n(t) such that
�(t) = (�n(t))n (3.1)

A few examples will convince us that this de�nition is not vacuous: If X is N (0; 1) then foreach n it can be expressed as a sum of n independent normal N (0; 1n) r.v's. For anotherexample consider a Gamma distributed r.v. with shape parameter � and scale parameter � andcorresponding characteristic function �(t) = � ���it��. Since � ���it��=n is also a characteristicfunction (of a Gamma distribution with shape parameter �=n and scale parameter again �) wesee that (3.1) is satis�ed, hence the Gamma distribution is in�nitely divisible.
Theorem 17. The characteristic function of an i.d. r.v. does not vanish for any real t.
Theorem 18. The distribution function of a sum of independent r.v.'s having in�nitelydivisible distribution function is also in�nitely divisible

Proof: Let Xi, i = 1; 2; : : : ; k be independent r.v.'s with in�nitely divisible characteristicfunctions �i(t). Set X = X1 + � � �+Xk and denote by �(t) = Eeitx its characteristic function.Clearly �(t) = �1(t)�2(t) � � ��k(t). Since Xi is in�nitely divisible, for every integer n �1=ni (t)is also a characteristic function. Hence, since the product of characteristic functions is also acharacteristic function, �1=n(t) = �1=n1 (t)�1=n2 (t) � � ��1=nk (t) is a characteristic function and �(t)is in�nitely divisible.
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Theorem 19. The limit distribution function of a sequence of in�nitely divisible distribu-tion functions is itself in�nitely divisible, i.e. if Fn(x) is a sequence of ini�nitely divisibledistribution functions such that Fn(x)! F (x) for all continuity points of the distributionfunction F , then F is in�nitely divisible.
Proof: Let �n(t) denote the characteristic function of Fn(x) and �(t) the ch.f. of F (x).By the convergence theorem we know that �n(t) ! �(t) for all t, and in fact this convergenceis uniform in t. Since Fn is in�nitely divisible, �1=kn is also a characteristic function, and by thecontinuity of the square root

Theorem 20. [Lévy�Khinchine Representation] A distribution function F with �nitevariance (and corresponding characteristic function �(t)) is in�nitely divisible if and onlyif it has the representation
log �(t) = i
t+ Z 1

�1
�eitx � 1� itx� 1x2 dG(x) (3.2)

where 
 is a real constant and G a nondecreasing function of bounded variation.
Proof: Suppose that �(t) is i.d. Then from (3.1) for any n we have

log �(t) = n log �n(t) = n log (1 + �n(t)� 1)
However, for any T > 0, as n ! 1, �n(t) ! 1 uniformly in jtj < T . Hence we can writelog (1 + �n(t)� 1) = (�n(t)� 1) (1 + �n) where �n ! 0 as n!1 and

log �(t) = n (�n(t)� 1) (1 + �n)
Denote by Fn the distribution function corresponding to the characteristic function �n. Wethen have �n(t)� 1 = Z

R

�eitx � 1� dFn(x)
Also, n Z

R
xdFn(x) = Z

R
xdF (x) = 
:

Hence log �(t) = i
t+ limn!1n
Z
R

�eitx � 1� itx� dFn(x) (3.3)
Set Gn(x) := n Z x

�1 u2dFn(u)
Then fGn(x)g is a sequence of increasing functions. Also fGn(1)g is bounded. Indeed,

n Z 1
�1 u2dFn(u) = �2 + 1n
2

With these de�nitions,
log �(t) = i
t+ limn!1

Z
R

eitx � 1� itxx2 dGn(x):
22



Helly's �rst theorem asserts that there exists a subsequence nk and an increasing function G(x)such that Gnk(x)! G(x) for all continuity points of G(x). On the other hand ���eitx�1�itxx2 ��� � t22
log �(t) = i
t+ Z

R

eitx � 1� itxx2 dG(x):
Uniquness of speci�cation: By di�erentiating twice the above relationship with respect to t wesee that � d2dt2 log �(t) =

Z
R
eitxdG(x):

Hence, to a given �(t) there corresponds a unique function G(x) by the uniqueness theorem forcharacteristic functions.

3.1 Examples of in�nitely divisible distributions
The following in�nitely divisible distributions are described by means of their characteristicfunctions

� The deterministic distribution eita
� The Normal distribution e��2t2
� The gamma distribution 1(1�it)� , � > 0
� The Poisson distribution e��(1�eit)
� The compound Poisson distribution e��(1� (t)) where  (t) is the characteristic functionof some random variable
� The symmetric stable distribution of exponent �: e�cjtj� where 0 < � < 2 and c > 0.
In the next example we compute the characteristic measure for the gamma distribution:Starting with �(t) = (1 � it)�� we see that ddt log �(t) = i�1�it . But 11�it = R10 eitxe�xdx andhence, integrating with respect to t, log �(t)�log �(0) = i� R10 hR t0 eiuxdui e�xdx = � R10 �eitx � 1� exx dx.Hence, taking into account that R10 e�xdx = 1, we have the representation
log �(t) = it�+ Z

R

�eitx � 1� itx� 1x2 dG(x) with dG(x) =
8><>: 0 x < 0
�xe�x x � 0

This corresponds to G(x) = � (1� (1 + x)e�x) for x � 0 and G(x) = 0 for x < 0.
Poisson random variables with non�integer values. Let N be a Poisson randomvariable with parameter �: P (N = k) = 1k!�ke��, k = 0; 1; 2; : : : ; and a > 0. Then the random
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variable X = aN has distribution P(�; a) given by P (X = ka) = 1k!�ke��, k = 0; 1; 2; : : : ; i.e.it takes values on the integer multiples of a. Its characteristic function is
e�(eita�1):

The geometric distribution. Let X be a random variable with distribution P (X = k) = qkp,k = 0; 1; 2; : : :, . We will show that X is in�nitely divisible. Its characteristic function is givenby
�(t) = E[eitX ] = 1X

k=0 qkpeikt =
1� q1� qeit :

Since 0 < q < 1, log(1� q), and log(1� qeit) are well de�ned, so
log �(t) = log(1� q)� log(1� qeit) = 1X

k=1
1kqk �eikt � 1� :

Hence �(t) = 1Y
k=1 e

1k qk(eikt�1) =: 1Y
k=1'k(t);where, each of the characteristic functions 'k(t) corresponds to a Poisson random variable.
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Chapter 4

Homogeneous and Non-Homogeneous
Poisson Processes.

In this chapter we discuss the de�nition and the basic properties of homogeneous and non-homogeneous Poisson process on the real line.

4.1 Counting Processes
A real-valued stochastic process fN(t); t � 0g is said to be a counting process if it satis�es thefollowing
(i) N(0) = 0,
(ii) N(t) is integer valued,
(iii) N(t) is an increasing function of t, i.e. if s < t, then N(s) � N(t).

We may think of N(t) as the total number of 'events' that have occurred up to time t.In particular, for s < t, N(t) � N(s) equals the number of events that have occurred in theinterval (s; t]. The counting process is said to be simple if it only has jumps of unit size. Acounting process has independent increments if the number of events that occur in disjointtime intervals are independent. This means in particular that the number of events that haveoccurred by time t, must be independent of the number of events occurring between times t andt+ s (that is, N(t) must be independent of N(t+ s)�N(t)).
A counting process possesses stationary increments if the distribution of the number ofevents that occur in any time interval depends only on the length of the interval. In other words,
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the process has stationary increments if the number of events in the interval (t1 + s; t2 + s] hasthe same distribution as the number of events in the interval (t1; t2] for all 0 < t1 < t2, ands > 0.

4.2 Poisson Process
The Poisson process is the simplest and most widely used counting process for modelling pur-poses in numerous practical applications, e.g. to model arrival processes for queuing systemsor demand processes for inventory systems. It is empirically found that in a wide variety ofcircumstances a Poisson process can represent quite adequately the occurrence of events in timeor points in space. An explanation of this fact can be based on limit theorems that establishthat in the situation of many individual events, each having a small probability of occurrence,the actual number of events occurring approximately follows a Poisson distribution. Of coursethe simplest and best known among them is the theorem that establishes the convergence ofthe binomial distribution to the Poisson distribution when the number of binomial trials goesto in�nity while the probability of success goes to zero in such a fashion that their productconverge to a strictly positive number.

There are several equivalent de�nitions of the Poisson process (e.g. see Tijms, 1986). Wegive the following
De�nition 21. The counting process fN(t); t � 0g is a Poisson process with rate � > 0, if
(i) N(0) = 0:
(ii) N(t) is piece-wise constant with unit jumps.
(iii) The process has independent increments.
(iv) The number of events in any interval of length t is Poisson distributed with mean �t. Thatis, for all s, t � 0,

PfN(t+ s)�N(s) = ng = e��t (�t)nn! ; n = 0; 1; : : : (4.1)
Note that condition (iv) implies that the Poisson process has stationary increments andalso that E[N(t)] = �t, which explains why � is called the rate of the process.
Recall the Landau o(�) notation: The function f is said to be o(h) in the vicinity of 0 if

limh!0f(h)h = 0 . (4.2)
Theorem 22. The counting process fN(t); t � 0g is a Poisson process with rate � � 0, if
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(i) N(0) = 0:
(ii) The process has stationary and independent increments.
(iii) PfN(h) = 1g = �h+ o(h):
(iv) PfN(h) � 2g = o(h).

For the proof of the above we refer the reader to any text on stochastic processes, e.g.(Tijms, 1986).

4.3 The Memoryless Property of the Poisson Process
Next we discuss a memoryless property that characterizes the Poisson process (see Tijms, 1986).For each t > 0, de�ne the residual life variable 
t, which is the amount of time that elapsesfrom t until the next arrival. For any t we have

Pf
t � ug = 1� e��u; u � 0; (4.3)
that is, at each point in time the waiting time until the next arrival has the same exponentialdistribution as the original interarrival time, regardless of how long it has been since the lastarrival occurred. The Poisson process is the only renewal process with this memoryless property.The lack of memory of the Poisson process explains the mathematical tractability of this process,since in speci�c problems the analysis does not require a state variable indicating the timeelapsed since the last arrival.

4.4 Interarrival and Waiting Time Distribution
Consider a Poisson process, and let X1 denote the time of the �rst event. Further, for n � 1, letXn denote the interarrival time between the (n� 1)th and the nth event. fXn;n � 1g is calledthe sequence of interarrival times.

We shall now determine the distribution of Xn. To do so we �rst note that the eventfX1 > tg takes place if and only if no events of the Poisson process occur in the interval [0; t]and thus PfX1 > tg = PfN(t) = 0g = e��t:
Hence, X1 has an exponential distribution with mean 1� . To obtain the distribution of X2condition on X1. This gives

PfX2 > t j X1 = sg = Pf0 events in (s; s+ t] j X1 = sg= Pf0 events in (s; s+ t]g = e��t
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Therefore, from the above we conclude that X2 is also an exponential random variable withmean 1� , and furthermore, that X2 is independent of X1. Repeating the same argument yieldsthe following
Proposition 23. The interarrival times of a Poisson process Xn, n = 1; 2; are independentidentically distributed exponential random variables having mean 1� .

The proposition should not surprise us. The assumption of stationary and independentincrements is equivalent to asserting that, at any point in time, the process probabilisticallyrestarts itself. That is, the process from any point on is independent of all events that have oc-curred previously (by the independent increments property), and also has the same distributionas the original process (by the stationarity of increments). In other words, the process has nomemory, and hence exponential interarrival times are to be expected.
Another quantity of interest is Sn, the occurrence time of the nth event, also called thewaiting time until the nth event. Since

Sn = nX
i=1Xi; n � 1

it is easy to show, using moment generating functions, that Proposition 1 implies that Sn has agamma distribution with parameters n and �. That is, its probability density is
f(t) = �e��t (�t)n�1(n� 1)! ; t � 0: (4.4)

The above could also have been derived by noting that the nth event occurs prior to, or at,time t if and only if the number of events occurring by time t is at least n, that is
N(t) � n, Sn � t:

Hence
PfSn � tg = PfN(t) � ng = 1X

j=ne��t
(�t)jj! = 1� n�1X

j=0e��t
(�t)jj!

which upon di�erentiation shows that the density function of Sn is given by (4.4).

4.5 Simulation of Homogeneous Poisson Process
Suppose that we wanted to generate the �rst n event times of a Poisson process with rate �.To do so we make use of the result that the times between successive events for such a processare independent, exponential random variables each with rate �. Thus, one way to generate theprocess is to generate these interarrival times. So if we generate n random numbers, uniform
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in [0; 1] and independent, say U1; U2; : : : ; Un, and set Xi = � 1� logUi, then Xi can be regardedas the time between the (i � 1)th and the ith event of the Poisson process. Since the actualtime of the jth event will equal the sum of the �rst j interarrival times, it thus follows that thegenerated values of the �rst n event times are
Sj = jX

i=1Xi; j = 1; : : : ; n:

If we want to generate the �rst T time units of the Poisson process, we can follow the aboveprocedure of successively generating the interarrival times, stopping when their sum exceeds T .The following algorithm can thus be used to generate all the event times occurring in (0; T ) ofa Poisson process having rate �. In the algorithm t refers to time, N is the number of eventsthat have occurred by time t, and S(N) is the most recent event time.
Generating the �rst T times units of a Poisson process with rate �
STEP 1: t = 0, N = 0.
STEP 2: Generate a random number U.
STEP 3: t = t� 1� logU. If t < T, stop.

STEP 4: N = N + 1, S(N) = t.
STEP 5: Go to step 2.

The �nal value of N in the above algorithm will represent the number of events that occurby time T , and the values S(1); S(2); : : : ; S(N) will be the N event times in increasing order.This algorithm can be easily modi�ed to generate any arrival process where the interarrivaltimes are i.i.d. random variables, whether or not they are exponential.
There is another approach for simulating the �rst T time units of a Poisson process that isalso quite e�cient (see Ross, 1997) and has the added advantage that it generalizes to Poissonprocesses in higher dimensions. It starts by generating N(T ); the total number of events thatoccur by time T; and then makes use of a property of the Poisson process according to which,given N(T ), the times at which these events occur are distributed independently and uniformlyover (0; T ) (see Ross, 1996). Hence we can start by generating the value of N(T ), a Poissonrandom variable with mean �T . If the generated value of N(T ) is n, we then generate n uniformrandom numbers in [0; 1]-call them U1; U2; : : : ; Un and, as TUi will be uniformly distributed over(0; T ), the set of event times will thus be fTU1; : : : ; TUng. If we were to stop here, this approachwould certainly be more e�cient than simulating the exponentially distributed interarrival times.However, we usually desire the event times in increasing order (e.g. so as to be able to knowN(s) for all s < T ); thus, we would also need to sort the values TUi, i = 1; : : : ; n in ascendingorder.
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4.6 Stationary Processes
A stochastic process fX(t); t � 0g is said to be stationary (see Karlin and Taylor, 1975) if forall n; s; t1; : : : ; tn; the random variables X(t1); : : : ; X(tn) and X(t1 + s); : : : ; X(tn + s) have thesame joint distribution. In other words, a process is stationary if choosing any �xed point as theorigin, the ensuing process has the same probability law. Some examples of stationary processesare

1. A continuous-time Markov chain fX(t); t � 0g with countable state space, S, where theinitial distribution is chosen to be equal to the equilibrium distribution of the chain,PfX(0) = jg = Pj ; j 2 S.
2. fX(t); t � 0g where X(t) is the age at time t of an equilibrium renewal process,
3. fX(t); t � 0g where X(t) = N(t + L) � N(t) , t � 0, with L > 0 a �xed constant, andfN(t); t � 0g a Poisson process with rate �.
The �rst two of the above processes are stationary for the same reason: they are Markovprocesses whose initial state is chosen according to the limiting state distribution. That the thirdexample, where X(t) represents the number of events of a Poisson process that occur between tand t+ L; is stationary follows from the stationary and independent increment property of thePoisson process.
In a number of situations, when the condition for a process to be stationary appears ratherstringent, one may de�ne the process fX(t); t � 0g to be second-order stationary, or stationaryin the wide sense if E[X(t)] = c and Cov(X(t); X(t + s)) does not depend on t. That is, aprocess is second-order stationary if the �rst two moments of X(t) do not depend on t and thecovariance between X(s) and X(t) depends only on jt � sj i.e. Cov(X(t); X(s + t)) = R(s).Clearly, every stationary process with �nite second moments is also second-order stationary.The converse is of course not true in general. However, it is true for Gaussian processes since, inthat case, the �nite-dimensional distributions are determined by their means and covariances.Thus, it follows that a second-order stationary Gaussian process is stationary.

4.7 Nonhomogeneous Poisson Processes
From a modelling point of view a major restriction in using the ordinary Poisson process is theassumption that in intervals of the same length we have the same distribution for the numberof events that occur, regardless of the position of the interval in the real line. A generalizationwhich relaxes this assumption leads to the so-called nonhomogeneous or non-stationary processPoisson process (see Ross, 1996).
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De�nition 24. The counting process fN(t); t � 0g is said to be a nonhomogeneous Poissonprocess with intensity function �(t); t � 0; if
(i) N(0) = 0.
(ii) fN(t); t � 0g has independent increments.
(iii) PfN(t+ h)�N(t) � 2g = o(h).
(iv) PfN(t+ h)�N(t) = 1g = �(t)h+ o(h).

The quantity �(t), called the intensity at time t, indicates how likely it is that an event willoccur (approximately) at time t. (see iv in the de�nition above). The function
�(t) := Z t

0 �(s)ds (4.5)
is called the mean-value function. Then the following holds.
Theorem 25. If fN(t); t � 0g is a non-stationary Poisson process with mean-value function�(t), then N(t+ s)�N(t) is a Poisson random variable with mean �(t+ s)� �(t):

PfN(t+ s)�N(t) = ng = e�f�(t+s)��(t)g [�(t+ s)� �(t)]nn! ; n � 0: (4.6)
Proof The proof of (4.6) is along the lines of the proof of Theorem 1 with a slight modi�-cation: Fix t and de�ne Pn(s) = PfN(t+ s)�N(t) = ng (4.7)

Then,
P0(s+ h) = P fN (t+ s+ h)�N (t) = 0g= P f0 events in (t; t+ h) ,0 events in (t+ s; t+ s+ h)g= P f0 events in (t; t+ s)gPf0 events in (t+ s; t+ s+ h)g= P0(s) [1� � (t+ s)h+ o (h)]

where the next-to-last equality follows from (ii) and the last from (iii) and (iv). Hence,
P0(s+ h)� P0(s)h = �� (t+ s)P0(s) + o (h)hLetting h! 0 yields ddsP0(s) = �� (t+ s)P0(s)

from which, taking into account that P0(0) = 1; we obtain
logP0(s) = � Z s

0 � (t+ u) du
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or P0(s) = e�(�(t+s)��(t)):
The remainder of the veri�cation of (4.6) follows similarly.

An alternative argument, which will be useful in the sequel, is based on the generatingfunctions. The probabilities Pn(s) de�ned in (4.7) satisfy the system of di�erential equations
ddsP0(s) = �� (t+ s)P0(s)ddsPn(s) = �� (t+ s)Pn(s) + � (t+ s)Pn�1(s); n = 1; 2; : : :

De�ne the probability generating function
G(z; s) := 1X

n=0 znPn(s):
Multiplying the nth equation in the above system by zn and adding from 0 to in�nity we obtain1X

n=0 zn
ddsPn(s) = �� (t+ s) 1X

n=0 znPn(s) + � (t+ s) z 1X
n=1 zn�1Pn�1(s)or @@sG(z; s) = (z � 1)� (t+ s)G(z; s):

The solution of this di�erential equation gives
G(z; s) = C(z)e�(1�z) R s0 �(t+u)du:

The unknown function, C(z); is determined by setting s = 0 in the above equation to obtainG(z; 0) = 1 = C(z): Thus, taking into account (4.5) we obtain the following expression for theprobability generating function,
G(z; s) = e�(1�z)[�(t+s)��(t)]

which corresponds to a Poisson distribution with parameter �(t+ s)� �(t):
The importance of the nonhomogeneous Poisson process resides in the fact that we no longerrequire stationary increments, and so we allow for the possibility that events may be more likelyto occur at certain times.
When the intensity function �(t) is bounded, we can think of the nonhomogeneous processas being a random sample from a homogeneous Poisson process. Speci�cally, let � be such that�(t) � �, for all t � 0 and consider a Poisson process with rate �. Now if we suppose thatan event of the Poisson process that occurs at time t is counted with probability �(t)� , then theprocess of counted events is a nonhomogeneous Poisson process with intensity function �(t).
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This last statement easily follows from De�nition 1. For instance (i), (ii), and (iii) follow sincethey are also true for the homogeneous Poisson process. (iv) follows since
P fone event in, (t; t+ h)g = P fone event in, (t; t+ h)g � (t)� + o (h)

= �h� (t)� + o (h)
= � (t)h+ o (h) :

The simulation of the NHPP is discussed in the following section.

4.8 Simulation of Non Homogeneous Poisson Process
We begin with a discussion of the procedure for simulating a Non Homogeneous Poisson ProcessNHPP. It is tempting to modify the algorithm used to simulate a homogeneous Poisson processwhich we have already discussed in chapter 1, to generate ti given ti�1 by substituting �(ti�1) instep 2 for �. However, this would be incorrect, as can be seen from �gure 3.1. (This �gure mightrepresent tra�c arrival rates at an intersection over a 24-hour day.) If ti�1 = 5, for example,this erroneous �algorithm� would tend to generate a large interarrival time before ti, since �(5)is low compared with �(s) for s between 6 and 9. Thus, we would miss this upcoming rise in thearrival rate and would not generate the high tra�c density associated with the morning rush;indeed if ti turned out to be 11, we would miss the morning rush altogether.

Care must be taken, then, to generate a Non Homogeneous Poisson Process in a valid way.There are two methods that can be used, one based on a rejection scheme while the other onthe inverse transform method

4.8.1 Simulation based on the acceptance-rejection method
A general and simple method proposed by Lewis and Shedler (see Ross, 1997) known as thinningcan be used. We present a special case of the thinning algorithm, which works when �� =sup0�s�T �(s) is �nite. We generate a stationary Poisson process with constant rate �� andarrival times ft�i g (by generating exponential interarrival times with rate ��, as described inthe algorithm for the simulation of a Poisson process with constant rate), then �thin out� thearrival epochs ft�i g by throwing away (rejecting) each t�i as an arrival, with probability 1� �(t�i )�� ;independently of all others. Thus, we are more likely to accept t�i as an arrival if �(t�i ) is high,yielding the desired property that arrivals will occur more frequently in intervals for which �(s)is high. An equivalent algorithm, in a more convenient recursive form, is as follows (we assumedthat ti�1 has been validly generated and we want to generate the net arrival time ti):

1. Initialize: t0 = 0; i = 0:
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2. Set i = i+ 1, t = ti�1:
3. Generate U1 and U2; independent, U(0; 1); and also independent of all

previously generated random variables.

4. Replace t by t� 1�� log(U1):
5. If U2 � �(t)�� set ti = t and return to step 2. Else go to step 3.

If the evaluation of �(t) is slow (which might be the case if, for example, �(t) is a compli-cated function involving exponential and trigonometric calculations), computation time mightbe saved in step 5 by adding an acceptance pretest; i.e., the current value for t is accepted asthe next arrival time if U2 � ���� , where �� = inf0�s�T �(s). This would be useful, especiallywhen �(s) is fairly �at.

4.8.2 Simulation based on the inverse transform method
An alternative method for simulating the non-homogeneous Poisson process is based on theinverse transform method. Set

�(t) = Z t
0 �(s)ds; t � 0;

and de�ne the inverse function via
��1(u) = inf ft : �(t) > ug ; u � 0:

If fSn;n 2 Ng is a unit rate homogeneous Poisson process then
Tn = ��1(Sn); n 2 N;

de�nes a non-homogeneous Poisson process with rate �(s): The usefulness of the above methodin practice depends of course on the ease with which one can obtain the inverse function, ��1(u),in closed form, suitable for computation.
The above suggests the following recursive generation of the consecutive points of the timevarying process. If we denote by Xn := Tn � Tn�1 the inter�event time for the time�varyingprocess and by Yn := Sn�Sn�1 the corresponding inter�event time for the unit rate homogeneousprocess (using the convention S0 = T0 = 0) we then have X1 = ��1(Y1) and, generally, Tn =��1(Sn). Hence Xn+1 = Tn+1 � Tn = ��1(Yn+1 + Sn)� ��1(Sn):In the special case where � is absolutely continuous and �(t) = R t0 �(s)ds with �(s) > 0 for alls > 0 then ��1 is also absolutely continuous with ��1(t) = R t0 1�(s)ds. In this case

Xn+1 = Z Yn+10 ds�(s+ Sn) :
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4.9 The Poisson Process in Euclidean Spaces
In this section we describe how one can de�ne a Poisson process on the Euclidean space, Rn. LetB(Rn) denote the Borel subsets of Rn and let M denote the set of all ���nite point measures onRn. Let alsoM denote the sigma �eld of subsets ofM generated by the sets fm 2 M :m(B) = kgwhere k 2 N and B 2 B(Rn). A random point process N of Rn de�ned on the probability space(
;F ; P ) is de�ned as a measurable mapping N : (
;F) ! (M;M). The distribution of N isgiven by specifying P (N(B) = k) in a consistent fashion. From the above de�nition it followsthat f! : N(B;!) = kg 2 F for all k 2 N and B 2 B(Rn).
De�nition 26. The random point measure N is a homogeneous Poisson process on Rn ifthe following two conditions hold

1. For any Borel set B 2 B(Rn);
P (N(B) = k) = (� jBj)kk! e��jBj; k = 0; 1; 2; : : : ;

where jBj denotes the Lebesgue measure of and � > 0.
2. For any n 2 N; if Bi; i = 1; 2; : : : ; n are disjoint Borel sets in Rn then the randomvariables N(Bi), i = 1; 2; : : : ; n are independent.
More generally, let � denote a ���nite measure on Rn. If

P (N(B) = k) = �(B)kk! e��(B); k = 0; 1; 2; : : : ;
for all B 2 B(Rn), then N is a Poisson random measure on Rn with mean measure �. Inparticular, if � is absolutely continuous with respect to the Lebesgue measure on Rn then �(B) =RB �(x)dx for some non-negative Borel function � which will be called stochastic intensity ofthe non-homogeneous Poisson random measure N .
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Chapter 5

Compound Poisson Processes

5.1 The Homogeneous Compound Poisson Process
Compound Poisson processes (both stationary and non-stationary) are extremely useful mod-elling tools in many areas of application of probability theory, including queuing models, risktheory and insurance mathematics, reliability, �nance, and many others. The homogeneouscompound Poisson process is a particularly simple stochastic process with independent, sta-tionary increments. Suppose that fN(t); t � 0g is a stationary Poisson process with rate �and f�i; i = 1; 2; : : :g an i.i.d. sequence of real-valued random variables, independent from thePoisson process, with common distribution F and corresponding Laplace transform

�(s) := Ee�s� = Z 1
�1 e�sxdF (x):

Set
Xt = N(t)X

i=1 �i:The process fXt; t � 0g is then called a compound poisson process with poisson rate � and incre-ment distribution F . It is easy to see that this process has independent, stationary incrementswith distribution
P (Xt+u �Xt � x) = P (Xu � x) = 1X

n=0P (N(u) = n)P (�1 + � � �+ �n � x):
If we denote by F k� := F � F � � � � � F the k�fold convolution of F with itself, then the abovecan also be written as

P (Xt+u �Xt � x) = 1X
n=0

(�u)nn! e��uFn�(x):
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In general, evaluation of the above convolution is not simple. A simpler expression can beobtained for the Laplace transform of the increments as follows
Ee�sXt = Ee�sPN(t)i=1 �i = e��t 1X

n=0
(�t)nn! Ee�s(�1+���+�n) = e��t 1X

n=0
(�t�(s))nn!

= e��t(1��(s)):

5.2 The Gamma Process
A useful generalization of the compound Poisson process is the so-called Gamma process de-scribed in the sequel. We consider again a Poisson process on the quarter plane R+ � R+,this time with mean measure given by �dt � x�1e�vxdx; t � 0; x > 0: Note however that thiscase cannot be put in the framework of the preceding sections since lima#0 R1a e�vxx dx = 1and thus we cannot de�ne a proper distribution function F for the size of the jumps. Non-theless, the Poisson process in the quarter plane is well de�ned. One detail that needs to betaken care of, before we proceed is the problem of numbering the points since now, in the stripDt := f(t; x); 0 � t � T; 0 � xg we have a countably in�nite number of points with probability 1.Thus we can use the following numbering scheme: divide the strip into parallel stripes accordingto some sequence that converges to zero such as 1n and then number the points from right toleft starting with those in the �rst stripe and continuing with those in subsequent stripes. Thisnumbering scheme is illustrated in the �gure ?? below. We proceed by de�ning a sequence ofprocesses indexed by n 2 N as follows: The process fZnt ; t 2 [0; T ]g is de�ned by means of

Znt = 1X
i=1 �i1(Ti � t;�i > 1=n):

Clearly, for each n, Znt is a compound Poisson process with parameters
�n = � Z 1

1=n e
�vyy dy

and
Fn(x) =

R x1=n e�vyy dyR11=n e�vyy dy ; x � 1=n:
The process fZnt ; t 2 [0; T ]g is then a process with independent increments and Laplace trans-form given by

logEe��Znt = ��nt�1� Z 1
0 e��xFn(dx)�

= ��t Z 1
1=n e

�vxx dx� Z 1
1=n e��x e

�vxx dx!

= ��t Z 1
1=n

�1� e��x� e�vxx dx:
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Expressed in this fashion, it becomes clear that the limit limn!1 logEe��Znt := ��(�) existsand �(�) := �t Z 1
0
�1� e��x� e�vxx dx:

This last integral can be computed explicitly by setting 1x = R10 e�uxdu and using Fubini'stheorem to interchange the order of integration as follows
�(�) = �t Z 1

0
�e�vx � e�(�+v)x� 1xdx = �t Z 1

0
Z 1
0 (e�(u+v)x � e�(u+v+�)x)dxdu

= �t Z 1
0
� 1u+ v � 1u+ v + �

� du:
This last integral can be easily computed if we express it as

limM!1
Z M
0
� 1u+ v � 1u+ v + �

� du = limM!1
 Z M

0 1u+ vdu�
Z M
0 1u+ v + �du

!

= limM!1
�log Mv � log Mv + �

�
= log v + �v :

It is thus clear that for all t 2 [0; T ]; Znt " Zt with
Ee��Zt = e��t log v+�v = � vv + �

��t :
This justi�es the name Gamma process since the marginal distributions of this process areGamma with shape parameter that depends on the time.

5.3 Non-Homogeneous Compound Poisson Process
We can envision a non-homogeneous Poisson point process by assuming that fN(t); t � 0g is aPoisson process with time varying intensity �(t); t � 0; in the model of section 1. More generally,however, we would like the distribution of each jump to depend on the time of the occurence ofthe jump. Suppose that fFt; t � 0g is a family of distribution functions that describe the size ofthe jumps, given their time of occurrence, fTi; i = 1; 2; : : :g. We can de�ne a non-homogeneouscompound Poisson process by setting

Xt = N(t)X
i=1 �i

where P (�1 � x1; : : : ; �n � xnjN(t) = n;T1 = t1; : : : ; Tn = tn) = nY
i=1Fti(xi): (5.1)

We will assume without much loss of generality that the distributions Ft are absolutely contin-uous and thus we have a family of densities fft; t � 0g indexed by the time of occurence of the
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corresponding event. A better way to describe this process is to consider a Poisson point processon the half�plane denoted by Np = fN(x; t); (x; t) 2 R+ � Rg and assumed to have intensity�(x; t) � 0 with respect to the Lebesgue measure on R2+ for every (x; t) 2 R2+. The time com-ponent of Np is a Poisson point process fN(t); t � 0g, with intensity �(t) = R10 �(x; t)dx whichwe will assume to be �nite for all t 2 R+. Under the above assumptions, for any t there are,with probability 1, a �nite number of points of the process and thus counting them from rightto left we can label them f(Tk; �k); k 2Ng: Tk will be interpreted as the kth time of occurrencewhile �k as the kth jump size. Also, N(t) is the number of jumps that have occurred in the timeinterval (0; t]: In the above framework, the conditional density of a jump, given that it occursat time t; is given by ft(y) = �(y; t)�(t) : (5.2)
The conditional distribution functions in (5.1) are then obtained by integration of the aboveconditional densities. Also, from standard results on non�homogeneous Poisson processes onthe real line, the times of occurrence of the jumps in an interval (0; t], conditional on the eventfN(t) = kg, k > 0; have the order statistics of k independent random variables with density

ht(s) = �(s)�(t) ; 0 < s � t;
where �(t) = Z t

0 �(s)ds:
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Chapter 6

Collective Risk Theory

6.1 The classical risk process
The simplest model that describes the operation of an insurance company is the following.Initially the insurance �rm starts with capital u which increases linearly with time with rate cbecause of incoming premiums. At times fSng, n = 1; 2; : : :, claims arrive with respective sizesfZng. Hence, a typical realization of this process has the following form

Figure 1: Sample realization of a risk process
We denote by u the initial capital and by X(t) the process ct �PN(t)k=1 Zk. Let 	(u) =Pfinf0�t u + Xt < 0g denote the probability of ruin at some point in the future and �(u) =1�	(u) denote the non-ruin probability.

Lemma 27. �(u) is non-decreasing in u and limu!1�(u) = 1.
Proof: Indeed, �(u) := Pfinf0�tX(t) � �ug which is non-decreasing in u.
Suppose that the claim arrival process fSng is a Poisson process with rate � and the claimsfZig are i.i.d. random variables with distribution F and mean �. Clearly, from the Strong Lawof Large Numbers, when c < �� then X(t)! �1 w.p. 1 and hence ruin is certain eventually.Therefore the premium rate cmust exceed the rate with which the company loses money becauseof the claims which on the average is ��. (This is called the net premium rate.) The factor� by which the premium rate charged by the company exceeds the net premium rate is calledsafety loading i.e. � := c�� � 1 or 1 + � = c�� (6.1)
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6.2 Integrodi�erential Equation for the Non�ruin Probability
A �rst step analysis gives

�(u) = E�(u+ cS1 � Z1) = Z 1
0 �e��s Z u+cs

0 �(u+ cs� z)dF (z)ds (6.2)
The change of variables x := u+ cs transforms the above equation into

�(u) = �c e�u=c
Z 1
u e��x=c Z x

0 �(x� z)dF (z)dx: (6.3)
Di�erentiation of the above with respect to u gives

�0(u) = ac�(u)� �c
Z u
0 �(u� z)dF (z): (6.4)

Integrating again w.r.t. u from 0 to t we obtain
�(t)� �(0) = �c

Z t
0 �(u)du+ �c

Z t
0
Z u
0 �(u� z) [1� F (z)] dzdu (6.5)

which can be rewritten (after integration by parts) as
�(u) = �(0) + �c

Z u
0 �(u� z) [1� F (z)] dz (6.6)

6.3 Exponentially Distributed Claims
Suppose that F (z) = 1 � e�z=�, i.e. the claim distribution is exponential with mean �. Then(6.4) becomes

�0(u) = �c�(u)� �c�
Z u
0 �(u� z)e�z=�dz = �c�(u)� �c�

Z u
0 �(z)e�(u�z)=�dz

= �c�(u)� �c�e�u=�
Z u
0 �(z)ez=�dz:

Di�erentiating w.r.t. u once more we obtain
�00(u) = ��c � 1�

��0(u) = � ��(1 + �)�0(u);and integrating twice yields �(u) = C1 + C2e� ��(1+�)u:From the requirement limu!1�(u) = 1 we see that C1 = 1 whereas from the requirement�(0) = �1+� it follows that C2 = 11+� . Thus in the exponential case we have the simple formula�(u) = 1� 11+�e� ��(1+�)u and for the ruin probability

	(u) = 11 + �e� ��(1+�)u : (6.7)
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Chapter 7

Finite horizon ruin probabilities�A
Monte Carlo approach

Here we assume that the times between claims, fLi; i = 1; 2; : : :g are i.i.d. with distribution Gwhile the claim sizes fZi; i = 1; 2; : : :g are also i.i.d. with distribution F . The initial capital is, asusual, denoted by u and the premium rate by c. To simulate this process let fUi; Vi; i = 1; 2; : : :gbe independent random variables, uniformly distributed in [0; 1].
Theorem 28. Inverse Transform Method: If U is a random variable, uniformly dis-tributed on [0; 1] and F�1 is the inverse function of F then X := F�1(U) is a randomvariable with distribution F .
Proof. We will show that X has distribution F i.e. that P (X � x) = F (x) for all x. Indeed,P (X � x) = P (F�1(U) � x) = P (U � F (x)) = F (x). (Note that F (x) is always a numberbetween 0 and 1.)

As before we will denote by Y (t) = ct �PN(t)k=1 Zk the risk process which gives the capital(risk reserve) of the company at time t and by fSi; i = 1; 2 : : :g the times at which claims occur.Thus Si = L1 + L2 + � � � + Li. Let W�i = Y (Si�) denote the risk reserve of the company atthe moment right before the i'th claim occurs and W+i the risk reserve right after the i'thclaim occurs. Thus
W�i = W+i�1 + cG�1(Ui); (7.1)W+i = W�i � F (Vi); (7.2)Si = Si�1 +G�1(Ui): (7.3)

The above equations, together with the initial conditions W+0 = u, S0 = 0, allow us to simulatethe risk process.
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For instance suppose that claims arrive according to a Poisson process with rate � and thatthe claim sizes follow a Pareto distribution with density f(x) = � c�xa+1 for x > c. In this caseG(x) = 1�e��x and thus to obtain Li we have to solve the equation G(Li) = Ui or e��Li = 1�Uiwhich gives1 Li = � 1� log(1� Ui) (7.4)
Similarly for the claim sizes, in order to determine F�1 we have to solve the equation F (Vi) = Ziwhich, in the Pareto case becomes � cZi�� = 1� Vi or

Zi = ce� 1� log(1�Ui): (7.5)

1In these notes the function log always designates the natural logarithm. Many software packages however
still reserve this notation for the decimal logarithm (rarely used anymore) while the natural logarithm is denoted
by ln.
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Chapter 8

Large Deviations

Suppose that Xi, i = 1; 2; 3; : : : ; are i.i.d. with distribution function F , corresponding meanm = R
R xF (dx), variance �2, and moment generating function M(�) := R

R e�xF (dx). The weaklaw of large numbers guarantees that
limn!1P (Sn � nx) = 0 for x > m (8.1)

and similarly that limn!1P (Sn � nx) = 0 for x < m (8.2)
One important question is how fast do the above probabilities go to zero. We will see thatthey go to zero exponentially fast, i.e. that

P (Sn � nx) � e�nI(x) for x > m (8.3)
In the above formula note that the exponential rate of decay I(x) is a function of x. The meaningof (8.3) is made precise if we state it as

limn!1 1n logP (Sn � nx) = �I(x) for x > m: (8.4)
Where does the exponential behavior come from? Write P (Sn � nx) as P (Sn � nm � n(x�m)) =P �Sn�nm�pn � pn(x�m)� and appeal to the central limit theorem: For n large Sn�nm�pn is ap-proximately normally distributed with mean 0 and standard deviation 1 and hence

P (Sn � nx) = P �Sn � nm�pn � pn�x�m�
�� � 1p2�

Z 1pn(x�m� ) e� 12u2du:
Before we continue we need some results concerning the tail of the standard normal distribution.De�ne �(x) := Z x

�1 1p2�e� 12u2du
and correspondingly the tail 1� �(x) = R1x 1p2�e� 12u2du. Then

1� �(x) � 1x 1p2�e� 12x2 x > 0; (8.5)
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and 1� �(x) � �1x � 1x3
� 1p2�e� 12x2 x > 0: (8.6)

The upper bound for the tail (8.5) follows immediately from the inequality R1x e� 12u2du �R1x uxe� 12u2du = 1x R1x e� 12u2d(12u2) = 1xe� 12x2 (remember that x > 0).
To obtain the lower bound (8.6) we start with the following integration by parts formulasZ 1

x 3u4 e� 12u2du = � 1u3 e� 12u2 j1x + Z 1
x 3u3 e� 12u2du = 1x3 e� 12x2 + Z 1

x 3u3 e� 12u2du:
and

From (8.5) and (8.6) we have that � 1x � 1x3� � 1��(x)1p2� e� 12x2 � 1x . ThusZpn(x�m� ) 1p2�e� 12u2du � 1pn(x�m)�
p2�

Are the above asymptotics justi�ed? In one case at least yes. Suppose that the r.v.'s Xi,are i.i.d. are normal with mean m and variance �2 (N(m;�2)). Then Sn=n has distributionN �m; �2n �. Hence in this case (8.4) becomes an exact relationship
P (Sn � nx) = Z 1pn(x�m� ) e� 12u2du (8.7)

Taking into account the bounds (8.5), (8.6) we have
log�� 1n1=2 �x�m � 1n3=2 �3(x�m)3� 1p2�e� 12n(x�m� )2� � logP (Sn � nx)

� log� 1n1=2
� �x�m� 1p2�e� 12n(x�m� )2�

or
�12 logn+ log � �x�m � 1n �3(x�m)3�� 12 log 2� � 12n

�x�m�
�2 � logP (Sn � nx)

� �12 logn+ log � �x�m��� 12 log 2� � 12n
�x�m�

�2
Dividing the above inequality with n and letting n!1 (taking into account that 1n logn! 0)we obtain limn!1 1n logP (Sn � nx) = ��x�m�

�2 (8.8)
Hence, setting I(x) = �x�m� �2 we obtain (8.1) for normal random variables. Can we gener-alize this to non�normal random variables? Can we generalize it for sequences that are notindependent and identically distributed?

As we will see the answer is in the a�rmative on both counts. We start with a relativelysimple bound known as the Cherno� bound.
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8.0.1 Cherno� bounds
In the same framework as before Xi, i = 1; 2; : : : are assumed to be i.i.d. r.v.'s with momentgenerating function M(�). We start with the obvious inequality

1(Sn � nx)enx� � e�Sn
which holds for all real � since the exponential is non�negative. Taking expectations in theabove inequality we obtain

P (Sn � nx) � e�nx�E[e�X1+X2+���+Xn ] = e�nx�M(�)n
The above inequality provides an upper bound for P (Sn � nx) for each � 2 R+. Since the lefthand side in the above inequality does not depend on � we can obtain the best possible boundby setting P (Sn � nx) � inf��0 e�nfx��logM(�)g = e�n sup��0fx��logM(�)g
De�ne now the rate function

I(x) := sup�2R fx� � logM(�)g : (8.9)
With this de�nition the Cherno� bound becomes

P (Sn � nx) � e�nI(x) (8.10)
As we will see in many cases this upper bound can be turned into an asymptotic inequality.This is the content of Cramér's theorem.
Lemma 29. The cumulant logM(�) is a convex function of �.

Proof: To establish this we will show that the second derivative d2d�2 logM(�) is non�negative. Indeed d2d�2 logM(�) = M 00(�)M(�) �
�M 0(�)M(�)

�2
However note that M 00(�) = d2d�2E[e�X ] = E[X2e�X ] and hence M 00(�)M(�) = E[X2 e�XM(�) ] = EeP [X2].Similarly M 0(�)M(�) = E[X e�XM(�) ] = EeP [X] and thus

d2d�2 logM(�) = EeP [X2]� �EeP [X]�2 = EeP �X � EeP [X]�2 � 0:
Let �� be the solution of x� M 0(��)M(��) = 0: (8.11)
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8.1 Examples of rate functions
Bernoulli Random Variables (1) Suppose that P (Xi = 1) = 1�P (Xi = 0) = p (i.e. the randomvariables take only the values 0 and 1 with probabilities 1� p and p respectively). In this caselogM(�) = log �pe� + 1� p�. To maximize x� � logM(�) we set its derivative equal to zero:
x = pe�1�p+pe� or e� = x1�x 1�pp and taking logarigthms � = log x1�x + log 1�pp . Therefore

I(x) =
8><>: x log xp + (1� x) log 1�x1�p 0 < x < 1
1 otherwise

Normal N(�; �2) HereM(�) = e��+ 12 �2�2 . The rate function is given by I(x) = sup� h�x� ��� 12�2�2i.Di�erentiating we obtain (x� �)� ��2 = 0 or � = x���2 . Substituting back we get
I(x) = 12

�x� ��
�2

Exponential (rate �) M(�) = ���� and thus the rate function is obtained by maximizing theexpression �x � log ���� . The optimal value of � is obtained by the solution of the equationx� 1��� = 0 or � = �� 1=x which gives
I(x) =

8><>: �x� log �x� 1 x > 0
+1 x � 0

Binomial (number of trials k, probability of success p) M(�) = (1� p+ pe�)k
Geometric (probability of success p) Here M(�) = 1�p1�pe� . Following the same procedure asbefore we obtain

I(x) =
8><>: x log x� (x+ 1) log(x+ 1) + x log 1p � log(1� p) x > 0

+1 x � 0
In the following graph the rate function of the geometric distribution (with p = 1=2) is shown.

We will next establish Cramér's theorem by showing that
lim infn!1 P (Sn � nx) � �I(x) for x > m: (8.12)
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8.1.1 The twisted distribution
Let F (x) be a distribution function on R with moment generating function M(�). The distri-bution function eF (x) de�ned via

d eF (dx) = e�xM(�)F (dx)
is called the twisted distribution that corresponds to F . (It is easy to see that eF (x) =R x�1 e�uM(�)F (du) is a non�decreasing function of x and as x!1, eF (x)! 1.

The mean of the twisted distribution is given by R1�1 x eF (dx) = 1M(�) R1�1 xe�xF (dx) =1M(�) dd� R1�1 e�xF (dx) = M 0(�)M(�) .
In particular when � = ��, the solution of (8.11),

1M(��)
Z 1
�1 xe��xF (dx) = M 0(��)M(��) = x (8.13)

Regarding our notation, it will be convenient to think of two di�erent probability measures,the probability measure P , under which the random variables Xi, i = 1; 2; : : : ; have distributionF , and the twisted measure eP , under which the r.v.'s Xi have distribution eF . Expectationswith respect to the probability measure eP will be denoted by eE.
Start with the inequality

P (Sn � nx) � P (n(x+ �) � Sn � nx) = E [1(n(x+ �) � Sn � nx)] (8.14)
P (Sn � nx) � e�n(x+�)M(��)nE " e��SnM(��)n1(n(x+ �) � Sn � nx)# (8.15)

= e�n(x+�)M(��)n eP �pn� � Sn � nxpn � 0� (8.16)
The twisted distribution can be used to establish (8.12) as follows: Set � = �� so that,under eP , the mean of Xi is x.

eP (n(x+ �) � Sn � nx) = eP �pn� � Sn � nxpn � 0� (8.17)
Since eEX = x, we can appeal to the Central Limit Theorem to conclude that

limn!1 eP �pn� � Sn � nxpn � 0� = 12 : (8.18)
Hence, lim infn eP (Sn � nx) � lim infn eP (n(x+ �) � Sn � nx) � 12 (8.19)
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Write eP (n(x+ �) � Sn � nx) = eE[1(n(x+�) � Sn � nx)] = E h e��SnM(��)n1(n(x+ �) � Sn � nx)i
We thus have

logP (Sn � nx) � �n(x+ �)�� + n logM(��) + log eP (n(x+ �) � Sn � nx)
from which we obtain

lim infn 1n logP (Sn � nx) � (8.20)
�(x+ �)�� + logM(��) + lim infn 1n log eP (n(x+ �) � Sn � nx)

In view of (8.18) and the fact that � was arbitrary we obtain
lim infn 1n logP (Sn � nx) � �(x�� � logM(��)) = �I(x);

the last equality following from the fact that �� is the value that maximizes the quantity x� �logM(�).

8.1.2 The principle of the largest term
Suppose that �i, i = 1; 2; : : : ; n are nonnegative real numbers. Then

e��1x + e��2x + � � �+ e��nx � e�xmini �i

8.1.3 Legendre Transforms
The rate function has been de�ned as

I(x) = sup�2R [�x� logM(�)] :
De�ne now �(�) = supx2R [�x� I(x)] :We will show that �(�) = logM(�). Indeed, we have

�(�) = supx2R
"�x� sup�2R [�x� logM(�)]#

= supx2R inf�2R [x(� � �) + logM(�)]
= inf�2R supx2R [x(� � �) + logM(�)] = logM(�)

The last equality is due to the fact that if � 6= � then supx2R[x(�� �) + logM(�)] = +1, whileon the other hand, if � = � supx2R[x(� � �) + logM(�)] = logM(�).
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8.2 Large Deviation Heuristics for the Analysis of Risk Processes
As we have seen, the in�nite horizon ruin probability for a risk process is de�ned as

	(u) = P supt�0
 �ct+ NtX

k=1Zk
! > u! :

Consider a discretization ftig; i = 0; 1; 2; : : : ; of [0;1); t0 = 0; ti = i�; where � > 0 and set�i := PNtik=Nti�1+1 Zk � c�. Note that �i is the sum of all the claims that occur in the interval(ti�1; ti] from which we subtract c�, the premium income during this period. (If Nti�1 = Ntithen the sum in the de�nition of �i is empty and its value is zero. Note that
�(�) := Ee��i = e�c��+��(M(�)�1)

where M(�) = Ee�Z1 , the moment generating function of the claim distribution. In particularE�i = �(�c + ��) where � = EZ1, the mean claim size. We assume that c > �� and henceE�i < 0. Then, the ruin probability is approximately (and exactly in the limit, as � ! 0,)
	(u; t) = P

0@ supj=1;2;:::
jX
i=1 �i > u

1A = P
0@ 1[
j=1f

jX
i=1 �i > ug

1A
� 1X

j=1P
0@ jX
i=1 �i > u

1A : (8.21)
From Cramér's theorem we have the asymptotic relationship (for large j)

P
0@ jX
i=1 �i > u

1A � e�jI(u=j)
where I(x) := sup�2R f�x� log �(�)g = sup�2R f�x+ ��c� ��(M(�)� 1)g :
It can be shown that 	(u) � 1X

j=1 e�jI(u=j) � max1�j�n e�u I(u=j)u=j :
From the principle of the largest term it seems plausible that

	(u) � e�x infy>0 I(y)y = e�xr (8.22)
where r := infy>0 I(y)y (8.23)
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We can easily express r in terms of M(�) as follows:
r = sup�� : � � I(x)x 8x�

() r = sup f� : �x� I(x) � 0 8xg
() r = sup�� : supx [�x� I(x)] � 0�
() r = sup f� : log �(�) � 0g

Therefore r is the largest root of the equation log �(�) = 0 or equivalently
�c�� + ��(M(�)� 1) = 0:

or M(�)� 1 = c��It can be seen that the above equation has precisely two roots: � = 0 and � = r > 0 providedthat � =M 0(0) < c��1.
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