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Chapter 1

Discrete Distributions

1.1 Sums of discrete independent random variables

Let X, Y , be independent random variables with values in Z. Suppose that an =
P (X = n), bn = P (Y = n) denotes the distributions of X and Y respectively. The
distribution of Z := X + Y is then given by

P (Z = n) =
∞�

k=−∞
P (X + Y = n, Y = k) =

∞�

k=−∞
P (X = n− k, Y = k)

=
∞�

k=−∞
P (X = n− k)P (Y = k) =

∞�

k=−∞
an−kbk.

For the most part we will restrict ourselves to distributions on the non-negative
integers. In this case, if X, Y , take values on N, then

P (Z = n) =
n�

k=0

an−kbk for n ∈ N.

If {an}, {bn}, n ∈ N are real sequences then the sequence {cn}where cn =
�n
k=0 an−kbk

is called the convolution of the two sequences. We write cn = (a ⋆ b)n.

1.2 The Probability Generating Function

The probability generating function (p.g.f.) of a discrete random variable X (with
values in N) is defined as

φ(z) := EzX =
∞�

n=0

P (X = n)zn. (1.1)
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The series above converges at least for all z ∈ [−1, 1]. We note that if pk = P (X = k),
φ(z) =

�∞
k=0 pkz

k, and by φ(k)(z) we denote the derivative of order k at z, then

pk =
1

k!
φ(k)(0), k = 0, 1, 2, . . . , (1.2)

and
E[X(X − 1) · · · (X − k + 1)] = φ(k)(1). (1.3)

The latter is called the descending factorial moment or order k. Ordinary moments
can be easily obtained from these. Finally we note that the probability distribution
{pn} obviously determines uniquely the p.g.f. φ(z) and, reversely, the p.g.f. uniquely
determines the probability distribution via (1.2).

In particular we point out that, if X, Y , are independent random variables with
p.g.f.’s φX(z), φY (z) respectively, then the p.g.f. of their sum Z = X + Y is given
by φZ(z) = φX(z)φY (z). To see this it suffices to note that φZ(z) = E[zX+Y ] =
E[zXzY ] = EzXEzY , the last equality holding because of the independence of X, Y .
The above relation extends readily to the case of any finite number of independent
random variables. In particular if Xi, i = 1, 2, . . . , n are i.i.d. (independent, iden-
tically distributed) random variables with (common) probability generating function
φX(z) then their sum Sn := X1 + · · ·+Xn has p.g.f. given by φSn(z) = (φX(z))

n.

While the p.g.f. of the sum Sn is readily obtained in terms of the p.g.f. of each
of the terms Xi, the corresponding probability distributions are in general hard to
compute. Based on the above discussion it should be clear that

P (Sn = k) =
1

k!

dk

dzk
(φX(z))

n

����
z=0

,

a quantity that, in the general case, is not easy to evaluate. Alternatively, if pk =
P (X = k) then P (Sn = k) = p⋆nk := (p ⋆ · · · ⋆ p)k, the n—fold convolution of the
sequence {pn} with itself.

We give some examples of discrete probability distributions.

1.3 Discrete distributions

1.3.1 The Bernoulli and the Binomial distribution

The random variable

ξ =

�
0 w.p. q := 1− p,
1 w.p.p

where p ∈ [0, 1] is called a Bernoulli random variable. It is the most elementary
random variable imaginable and a useful building block for more complicated r.v.’s.
Its p.g.f. is given by φ(z) = 1− p+ zp, its mean is p and its variance is pq.
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If ξi, i = 1, 2, . . . , n are independent Bernoulli random variables with the same
parameter p then their sum X := ξ1 + ξ2 + · · · + ξn is Binomial with parameters n
and p. Its distribution is given by

P (X = k) =

�
n

k

�
pk(1− p)n−k, k = 0, 1, 2, . . . , n,

and its p.g.f. by

φ(z) =
n�

k=0

�
n

k

�
pk(1− p)n−kzk = (1− p+ pz)n.

The mean and variance of the binomial can be readily obtained from its representation
as a sum of independent Bernoulli random variables. Indeed, EX = E[ξ1+ · · ·+ξn] =
np and Var(X) = Var(ξ1 + · · ·+ ξn) = Var(ξ1) + · · ·+ Var(ξn) = nqp.

Note that, if X ∼ Binom(p, n), Y ∼ Binom(p,m), and X, Y , are independent,
then X + Y ∼ Binom(p, n+m).

1.3.2 The Poisson distribution

X is Poisson with parameter α > 0 if its distribution is given by

P (X = k) =
1

k!
αke−α, k = 0, 1, 2, . . . .

Its p.g.f. is given by

φ(z) =
∞�

k=0

zk
1

k!
αke−α = e−α

∞�

k=0

1

k!
(αz)k = e−αezα = e−α(1−z).

The mean and variance of the Poisson can be easily computed and are given by
EX = Var(X) = α.

One of the most important properties of the Poisson distribution is that it arises
as the limit of the binomial distribution Binom(n, α/n) when n→∞ (i.e. in the case
of a large number of independent trials, say n, each with a very small probability of
success, α/n). This is easy to see by examining the probability generating function
of the binomial (n, α/n) and letting n→∞. Indeed,

lim
n→∞

�
1− α
n
+ z
α

n

�n
= lim
n→∞

�
1− α(1− z)

n

�n
= e−α(1−z)

which establishes that Binom(α/n, n)→ Poi(α) as n→∞.

We also point out that, if X1, X2 are independent Poisson random variables with
parameters α1, α2 respectively, then X1 + X2 ∼ Poi(α1 + α2). The easiest way
to see this is to consider the p.g.f. EzX1+X2 = EzX1EzX2 = e−α1(1−z)e−α2(1−z) =
e−(α1+α2)(1−z).
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1.3.3 The geometric distribution

If X is geometric with parameter p its distribution function is given by

P (X = k) = qk−1p, k = 1, 2, 3, . . . , (1.4)

where p ∈ (0, 1) and q = 1− p, and its p.g.f. by

φ(z) =
∞�

k=1

qk−1pzk =
(1− q)z
1− qz . (1.5)

The parameter p is usually referred to as the “probability of success” and X is then
the number of independent trials necessary until we obtain the first success. An
alternative definition counts not the trials but the failures Y until the first success.
Clearly Y = X − 1 and

P (Y = k) = qkp, k = 0, 1, 2, . . . , (1.6)

with corresponding p.g.f.

EzY =
1− q
1− qz . (1.7)

It is easy to check that EY = q/p and Var(Y ) = q/p2. Also, EX = 1 + EY = 1/p
and Var(X) = Var(Y ) = q/p2.

1.3.4 The negative binomial distribution

The last example we will mention here is the negative binomial (or Pascal) distribu-
tion. Recall that the binomial coefficient is defined for all a ∈ R and n ∈ N as

�
a

n

�
=
a(a− 1) . . . (a− n+ 1)

n!
.

If a is a positive integer then
	
a
n



= 0 for all n > a. If however a is a negative integer

or a (non-integer) real then
	
a
n



	= 0 for all n ∈ N. Also recall the binomial theorem,

valid for |x| < 1 and all α ∈ R:

(1 + x)α =
∞�

k=0

�
α

k

�
xk. (1.8)

(If α is a positive integer then
	
α
k



= 0 for all k = α+1, α+2, · · · and thus the infinite

series (1.8) turns into a finite sum: (1 + x)α =
�α
k=0

	
α
k



xk.)

Note in particular that binomial coefficient
	−α
n



can be written as

�−α
n

�
=

(−α)(−α− 1) · · · (−α− n+ 2)(−α− n+ 1)

n!

= (−1)n (α+ n− 1)(α+ n− 2) · · · (α+ 1)α

n!
= (−1)n

�
α+ n− 1

n

�
.
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Thus we have the identity

(1− x)−α =
∞�

k=0

�−α
k

�
(−x)k =

∞�

k=0

�
α+ k − 1

k

�
xk. (1.9)

If p ∈ (0, 1) and q = 1−p then the negative binomial distribution with parameters
p and α > 0 is defined as

P (X = k) =

�
α+ k − 1

k

�
pαqk, k = 0, 1, 2, . . . . (1.10)

In order to check that the above is indeed a probability distribution it suffices to
note that

	
α+k−1
k



> 0 when α > 0 for all k ∈ N and that

�∞
k=0

	
α+k−1
k



pαqk =

pα(1− q)−α = 1, on account of (1.9).

The probability generating function of the negative binomial distribution is given
by

φ(z) =
∞�

k=0

�
α+ k − 1

k

�
pαqkzk =

�
p

1− qz

�α
.

If X is a random variable with this distribution then EX = φ′(1) = αq pα

(1−q)α+1 or

EX = α
q

p
.

Similarly, EX(X − 1) = φ′′2 pα

(1−q)α+2 = α(α + 1)
�
q
p

�2
. Thus we have EX2 = α(α +

1)
�
q
p

�2
+ α q

p
and thus Var(X) = α(α+ 1)

�
q
p

�2
+ α q

p
−
�
α q
p

�2
= α q

p

�
1 + q

p

�
or

Var(X) = α
q

p2
.

When α = m ∈ N then the negative binomial random variable can be thought of
as a sum of m independent geometric random variables with distribution (1.6). This
follows readily by comparing the corresponding generating functions.

5



Chapter 2

Distributions on R

The statistics of a real random variable X are determined by its distribution func-
tion F (x) := P (X ≤ x), x ∈ R. It is clear that F is nondecreasing and that
limx→−∞ F (x) = 0, limx→∞ F (x) = 1. F is defined to be right-continuous. Note that
P (a < X ≤ b) = F (b)−F (a). If x is a point of discontinuity of F then x is called an
atom of the distribution and P (X = x) = F (x) − F (x−) > 0. If on the other hand
x is a point of continuity of F then P (X = x) = 0. F can have at most countably
many discontinuity points. If there exists a nonnegative f such that

F (x) =

� x

−∞
f(y)dy, x ∈ R

then F is called an absolutely continuous distribution and f is (a version of) the
density of F . Most of the distributions we will consider here will have densities
though occasionally we will find it useful to think in terms of more general distribution
functions. Most of the time we will also be thinking in terms of distributions on R+,
i.e. distributions for which F (0−) = 0. The function F (x) := 1− F (x) is called the
tail of the distribution function. The moment of order k of a distribution is defined
as

mk :=

� ∞

−∞
xkdF (x),

provided that the integral exists.

The moment generating function that corresponds to a distribution F is defined
as

M(θ) := EeθX =

� ∞

−∞
eθxdF (x)

for all values of θ for which the integral converges. If there exists ǫ > 0 such thatM(θ)
is defined in (−ǫ,+ǫ) then the corresponding distribution is called light—tailed. In that
case one can show that repeated differentiation inside the integral is permitted and
thus M (k)(θ) =

�∞
−∞ x

keθxdF (x) for θ ∈ (−ǫ,+ǫ). Thus we see that F has moments
of all orders and

M (k)(0) = mk,
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M(θ) =
∞�

k=0

θk

k!
mk.

This justifies the name “moment generating function”. There exist however many
distributions for which the moment generating function does not exist for all values
of θ ∈ R. We shall see such examples in the sequel. In fact it is possible that the
integral defining the moment generating function exists only for θ = 0. This is the
case for instance in the "double-sided Pareto" distribution with density f(x) = α

2|x|α+1 ,

|x| ≥ 1, α > 0.

Convergence problems, such as the ones just mentioned, are usually sidestepped
by examining the characteristic function

�
R
eitxdF (x). In this case the defining inte-

gral converges for all t ∈ R. Also, particularly when dealing with nonnegative random
variables, it is often customary to examine the so-called Laplace transform which is
defined as

�
e−sxdF (x). For nonnegative random variables the Laplace transform al-

ways exists for s ≥ 0. The only difference between Laplace transforms and moment
generating functions is of course the sign in the exponent and thus all statements
regarding moment generating functions carry over to Laplace transforms mutatis mu-
tandis.

Scale and location parameters. Let X a random variable with distribution F
(and density f). If Y = aX + b where (a > 0 and b ∈ R) then the distribution
G(x) := P (Y ≤ x) of Y is given by

G(x) = P (X ≤ (x− b)/a) = F
�
x− b
a

�
.

a is called a scale parameter while b a location parameter. The density of G, g, is
given by

g(x) =
1

a
f

�
x− b
a

�
.

Note in particular that EY = aEX + b and Var(Y ) = a2Var(X). Thus if X is “stan-
dardized” with mean 0 and standard deviation 1, then Y has mean b and standard
deviation a. Also, if MX(θ) = Ee

θX is the moment generating function of X, then
the moment generating function of Y is

MY (θ) = Ee
θ(aX+b) = eθbMX(aθ). (2.1)

2.1 Some distributions and their moment generat-

ing functions

In this section we give the definition of several continuous distributions that will play
an important role in the sequel. Many of their properties will be explored in later
sections.
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2.1.1 The normal distribution

This is the most important distribution in probability theory. The standard normal
distribution has density given by

ϕ(x) =
1√
2π
e−

1
2
x2, x ∈ R. (2.2)

The distribution function of the standard normal, denoted by

Φ(x) :=

� x

−∞
ϕ(y)dy, x ∈ R (2.3)

cannot be expressed in terms of elementary functions. Its values are available in tables.
If X has the standard normal density then one can readily check (by a symmetry
argument) that EX = 0. Also, an integration by parts shows that Var(X) = 1.
We denote the standard normal distribution as N (0, 1). The general normal random
variable can be obtained via a location-scale transformation: If X is N (0, 1) then
Y = σX + µ (with σ > 0) has mean µ and variance σ2. Its density is given by

f(x) =
1

σ
ϕ

�
x− µ
σ

�
=

1

σ
√
2π
e−

(x−µ)2

2σ2 (2.4)

and of course its distribution function by F (x) = Φ(x−µ
σ
). It is denoted by N (µ, σ2).

The moment generating function of the standard normal distribution is given by

M(θ) =

� ∞

−∞
eθx

1√
2π
e−

1
2
x2dx =

� ∞

−∞
e
1
2
θ2 1√

2π
e−

1
2(x2−2θx+θ

2)dx

= e
1
2
θ2
� ∞

−∞

1√
2π
e−

1
2
(x−θ)2dx

= e
1
2
θ2 , (2.5)

where in the last equality we have used the fact that 1√
2π
e−

1
2
(x−θ)2 is a probability den-

sity function. Thus, using (2.1), for a N (µ, σ2) normal distribution the corresponding
moment generating function is given by

M(θ) = eµθ+
1
2
θ2σ2 , θ ∈ R. (2.6)

Note that the moment generating function is defined for all θ ∈ R.
While Φ(x) cannot be expressed in closed form in terms of elementary functions,

some particularly useful bounds for the tail of the distribution, Φ(x) := 1−Φ(x) are
easy to derive. We mention them here for future reference.

Proposition 1. For all x > 0 we have

�
1

x
− 1

x3

�
e−

1
2
x2

√
2π

≤ 1− Φ(x) ≤ 1

x

e−
1
2
x2

√
2π

(2.7)

8



Proof: The tail is given by Φ(x) =
�∞
x

1√
2π
e−

1
2
u2du. The upper bound for the tail

follows immediately from the inequality

� ∞

x

e−
1
2
u2du ≤

� ∞

x

u

x
e−

1
2
u2du =

1

x

� ∞

x

e−
1
2
u2d(

1

2
u2) =

1

x
e−

1
2
x2

(remember that x > 0).

The lower bound can be obtained by the following integration by parts formula

0 ≤
� ∞

x

3

u4
e−

1
2
u2du = − 1

u3
e−

1
2
u2
����
∞

x

−
� ∞

x

1

u2
e−

1
2
u2du

=
1

x3
e−

1
2
x2 −

� ∞

x

1

u2
e−

1
2
u2du

=
1

x3
e−

1
2
x2 − 1

x
e−

1
2
x2 +

� ∞

x

e−
1
2
u2du. (2.8)

2.1.2 The exponential distribution

The distribution function is

F (x) =

�
0 if x < 0
1− e−λx if x ≥ 0

,

(where λ > 0 is called the rate) with corresponding density

f(x) =

�
0 if x < 0
λe−λx if x ≥ 0

.

The mean of the exponential distribution is 1
λ
and the variance 1

λ2
. Its moment

generating function is given by

� ∞

0

eθxλe−λxdx =
λ

λ− θ , for θ < λ.

2.1.3 The Gamma distribution

The density function is given by

f(x) =





0 if x ≤ 0

β
(βx)α−1

Γ(α)
e−βx if x > 0

.
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β is often called the scale parameter, while α the shape parameter. The Gamma
function, which appears in the above expressions is defined via the integral

Γ(x) =

� ∞

0

tx−1e−tdt x > 0, (2.9)

and satisfies the functional equation

Γ(x+ 1) = xΓ(x).

In particular, when x is an integer, say n,

Γ(n) = (n− 1)! .

(This can be verified by evaluating the integral in (2.9).) We also mention that
Γ
	
1
2



=
√
π.

The corresponding distribution function is

F (x) =





0 if x ≤ 0

� x

0

β
(βu)α−1

Γ(α)
e−βudu if x > 0

α > 0,

which can be expressed in terms of the incomplete gamma function defied as Γ(z, α) :=� z
0
tα−1e−tdt.

The moment generating function of the Gamma distribution is

M(θ) =

� ∞

0

exθβ
(βx)α−1

Γ(α)
e−βxdx =

�
β

β − θ

�α
.

Note that M(θ) above is defined only in the interval −∞ < θ < β because when
θ ≥ β the defining interval does not converge. It is easy to see that, for α = 1 the
Gamma distribution reduces to the exponential.

A special case of the Gamma distribution is the so-called Erlang distribution
obtained for integer α = k − 1 (We have also renamed β into λ). Its density is given
by

f(x) =





0 if x < 0

λ
(λx)k

k!
e−λx if x ≥ 0

with corresponding distribution function

F (x) =





0 if x < 0

1−
k−1�

i=0

λ
(λx)i

i!
e−λx if x ≥ 0

Its moment generating function is of course
	
λ
λ−θ


k
. One of the reasons for the im-

portance of the Erlang distribution stems from the fact that it describes the sum of
k independent exponential random variables with rate λ.
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2.1.4 The Pareto distribution

The Pareto density has the form

f(x) =





0 if x ≤ c

αcα

xα+1
if x > c

with corresponding distribution function

F (x) =





0 if x ≤ c

1−
� c
x

�α
if x > c

where α > 0. The Pareto distribution is a typical example of a subexponential
distribution. The nth moment of the Pareto distribution is given by the integral�∞
c
xnαcαx−α−1dx provided that it is finite. Hence the nth moment exists if α > n

and in that case it is equal to αcn

α−n . In particular the mean exists only if α > 1 and in
that case it is equal to cα

α−1

An alternative form of the Pareto which is non-zero for all x ≥ 0 is given by

f(x) =





0 if x < 0

α

c(1 + x/c)α+1
if x ≥ 0

F (x) =





0 if x < 0

1− 1

(1 + x/c)α
if x ≥ 0

where α > 0.

2.1.5 The Cauchy distribution

The standardized Cauchy density is given by

f(x) =
1

π

1

1 + x2
, x ∈ R,

with distribution function

F (x) =
1

2
+

1

π
arctan(x), x ∈ R.

It has “fat” polynomial tails: In fact using de l’Hôpital’s rule we see that

lim
x→∞

xF (x) = lim
x→∞

F (x)

x−1
= lim
x→∞

f(x)

x−2
= lim
x→∞

x2

π(1 + x2)
=

1

π
.

This it does not have a mean or a variance because the integrals that define them do
not converge. It is useful in modelling phenomena that can produce large claims.

11



2.1.6 The Weibull distribution

The distribution function is given by

F (x) =

�
0 if x ≤ 0

1− e−xβ if x > 0

with corresponding density

f(x) =

�
0 if x ≤ 0

βxβ−1e−x
β

if x > 0

The nth moment of this distribution is given by
� ∞

0

βxn+β−1e−x
β

dx =

� ∞

0

yn/βe−ydy = Γ

�
n

β
+ 1

�
.

2.2 Sums of independent random variables in R+

Suppose that F , G, are two distributions on R+. Their convolution is defined as the
function

F ⋆ G(x) =

� x

0

F (x− y)dG(y), x ≥ 0. (2.10)

If X, Y , are independent random variables with distributions F and G respectively,
then F ⋆ G is the distribution of their sum X + Y . Indeed,

P (X + Y ≤ x) =

� ∞

0

P (X + Y ≤ x|Y = y)dG(y) =

� ∞

0

P (X ≤ x− y|Y = y)dG(y)

=

� ∞

0

F (x− y)dG(y) =
� x

0

F (x− y)dG(y).

In the above string of equalities we have used the independence of X and Y to write
P (X ≤ x− y|Y = y) = F (x− y) and the fact that F (x− y) = 0 for y > x to restrict
the range of integration. In view of this last remark it is clear that F ⋆G = G⋆F . We
will also write F ⋆n to denote the n—fold convolution F ⋆ F ⋆ · · · ⋆ F (with n factors)
with the understanding that F ⋆1 = and F ⋆0 = I where I(x) = 1 if x ≥ 0 and I(x) = 0
when x < 0. When both F and G are absolutely continuous with densities f and g
respectively then H = F ⋆ G is again absolutely continuous with density

h(x) =

� x

0

f(x− y)g(y)dy.

We will denote the convolution of the two densities by h = f ∗ g. For instance, if
f(x) = λe−λx, g(x) = µe−µx, then

f ∗ g(x) =
� x

0

λµe−λ(x−y)e−µydy = λµe−λx
	
1− e−(µ−λ)x




µ− λ =
λµ

µ− λ
	
e−λx − e−µx



.
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Note that, if X, Y , are independent then the moment generating function of the
sum X + Y is given by

MX+Y (θ) = Ee
θ(X+Y ) = EeθXeθY =MX(θ)MY (θ).

If Xi, i = 1, 2, . . . , n are independent, identically distributed random variables
with distribution F and moment generating function MX(θ) then S := X1+ · · ·+Xn
has distribution function F ⋆n and moment generating function MS(θ) = (MX(θ))

n.

Convolutions are in general hard to evaluate explicitly. As an exception to this
statement we mention the exponential distribution, F (x) = 1− e−λx, x ≥ 0. In that
case we have

F ∗n(x) = 1−
n−1�

k=0

(λx)k

k!
e−λx.

(This is the well known Erlang distribution). More generally, if F (x) = 1−�m−1
k=0

(λx)k

k!
e−λx

then F ∗n(x) = 1 −�nm−1
k=0

(λx)k

k!
e−λx and, more generally yet, if F is Gamma(α, λ)

then F ∗ is Gamma(nα, λ).

2.3 Random Sums

Suppose that Xi, i = 1, 2, . . . is a sequence of non-negative random variables with
distribution function F and moment generating function MX(θ) :=

�∞
0
eθxdF (x).

Suppose also that N is a discrete random variable, independent of the Xi’s, i =
1, 2, . . .. Let SN =

�N
i=1Xi. The distribution and the moments of SN can be obtained

by conditioning on N . For instance

P (SN ≤ x) =
∞�

n=0

P (N = n)P (X1 + · · ·+Xn ≤ x) =
∞�

n=0

P (N = n)F ⋆n(x). (2.11)

The mean and the variance of SN can be computed in the same fashion.

ESN =
∞�

n=0

P (N = n)E[X1 + · · ·+Xn] =
∞�

n=1

P (N = n)nEX1 = ENEX1. (2.12)

Also

E

�
n�

i=1

Xi

�2
= E

�
n�

n=1

X2
i +

�

i�=j
XiXj

�
= nEX2

1 + n(n− 1)(EX1)
2

13



and thus

ES2N =
∞�

n=0

P (N = n)E[(X1 + · · ·+Xn)2] =
∞�

n=1

P (N = n)
	
nEX2

1 + n(n− 1)(EX1)
2



= E(X2
1 )EN + (EX1)

2
∞�

n=1

n(n− 1)P (N = n)

= E(X2
1 )EN + (EX1)

2EN2 − (EX1)
2EN

= Var(X1)EN + (EX1)
2EN2. (2.13)

From (2.12) and (2.13) we obtain

Var(SN) = Var(X1)EN + Var(N)(EX1)
2. (2.14)

Finally we can also compute the moment generating function of SN by condition-
ing:

MSN (θ) = EeθSN =
∞�

n=0

P (N = n)Eeθ
�n
i=1Xi =

∞�

n=0

P (N = n)
	
EeθX1


n

=
∞�

n=0

P (N = n) (MX(θ))
n .

If we denote by φN (z) =
�∞
n=0 P (N = n)zn the p.g.f. of N we see from the above

that
MSN (θ) = φN(MX(θ)). (2.15)
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Chapter 3

Stochastic Processes

3.1 Brownian Motion and the Poisson Process

A stochastic process {Xt; t ∈ T} is a collection of random variables (assumed real
here) indexed by a set T which, in our case is either the natural numbers N or the
real numbers R. In this section we will focus on processes defined in continuous time
so T = R.

To define a stochastic process it suffices to define a system of probability dis-
tributions, µn(x1, x2, . . . , xn; t1, t2, . . . , tn) which satisfy the Kolmogorov consistency
conditions namely that

lim
xn→∞

µn(x1, x2, . . . , xn−1, xn; t1, t2, . . . , tn−1, tn) = µn−1(x1, x2, . . . , xn−1; t1, t2, . . . , tn−1).

If these conditions are satisfied then Kolmogorov’s theorem states that there exists a
stochastic process {Xt; t ∈ R} such that

P(Xt1 ≤ x1, . . . ,Xtn ≤ xn) = µn(x1, . . . , xn; t1, t2, . . . , tn), for all xi, ti ∈ R, n ∈ N.

3.2 Brownian Motion

This is the most important continuous time stochastic process. It can be thought of
as a building block for a variety of other, more complicated stochastic processes. One
way of defining it is the following.

Definition 1. A stochastic process {Wt, t ≥ 0} is called Standard Brownian Motion
if it satisfies the following three postulates

i) P (W0 = 0) = 1, i.e. the process starts with probability 1 from 0 at time 0.

15



ii) The increments are independent i.e. if 0 ≤ ti < t2 < · · · < tk then P (Wti −
Wti−1 ∈ Hi; i = 1, 2, . . . , k) =

�k
i=1 P (Wti −Wti−1 ∈ Hi) for any (Borel) subsets

Hi of R.

iii) For 0 ≤ s < t, Wt−Ws is normally distributed with mean 0 and variance t− s:

P (Wt −Ws ∈ H) =
1�

2π(t− s)

�

H

e−x
2/2(t−s)dx

From the above postulates it follows that the finite dimensional distributions of
the process Wt are given by

P (Wt1 ∈ (x1, x1 + dx1), . . . ,Wtn ∈ (xn, xn + dxn)) = f(x1, x2, . . . , xn; t1, t2, . . . , tn)dx1 · · · dxn

with

f(x1, . . . , xn; t1, t2, . . . , tn)

=
1

(2π)n/2
1�

t1(t2 − t1) · · · (tn − tn−1)
e
− 1
2

�
x21
t1
+
(x2−x1)

2

t2−t1
+···+ (xn−xn−1)

2

tn−tn−1

�

=
1

(2π)n/2
1�
|Σ|
e−

1
2
xTQ−1x

where xT denotes the transpose of x = (x1, . . . , xn) and

Q = E



Wt1
...
Wtn


 (Wt1 , . . . ,Wtn) =



EWt1Wt1 · · · EWt1Wtn

... EWtiWtj
...

EWtnWt1 · · · EWtnWtn




= [ti ∧ tj] i=1,...,n
j=1,...,n

is the corresponding covariance matrix, i.e. the finite dimensional distributions of
brownian motion are normal. This means that brownian motion is a Gaussian process.

3.2.1 Properties of Standard Brownian Motion

1. Markov Property. Brownian motion is a Markov process with stationary tran-
sition probabilities

Pt(x,A) = P (Wt+s ∈ A|Ws = x) = P (Wt+s −Ws ∈ A− x|Ws = x)

= P (Wt ∈ A− x) =
�

A−x
φ(u)du

where A− x is the set {y − x : y ∈ A} and φ(u) = 1√
2π
e−u

2/2.
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2. Scaling Property. ∀c > 0 {√cWt/c; t ≥ 0} d
= {Wt; t ≥ 0}.

Indeed,
√
cWt/c has continuous paths, stationary and independent increments,

and the correct distribution.

3. Symmetry. {−Wt; t ≥ 0} d
= {Wt; t ≥ 0}.

4. Time reversal. {tW1/t; t ≥ 0} d
= {Wt; t ≥ 0}.

3.3 Maximum of the Standard Brownian Motion

LetMt = max{Wu; 0 ≤ u ≤ t}, where as usual {Wt; t ≥ 0} is SBM (Standard Brown-
ian Motion). For fixed t this is a nonnegative random variable, while, if we consider
the process {Mt; t ≥ 0} then we have a process with M0 = 0 and nondecreasing
sample paths. Here we will compute the distribution of the random variableMt using
the reflection principle. Define τ := inf{u ≥ 0 : Wu = a} the first time when the
brownian motion reaches the level a (note that τ is a stopping time). Now define new

process, #Wu, via the relationship

#Wu =
�
Wu u < τ
a− (Wu − a) u ≥ τ .

In the figure below, #W is the process that is identical with W up to time τ , and after
that time results from the reflection of W around the level a (the grey path in the
figure). Note also that {Mt ≥ a} = {τ ≤ t} (i.e. the two events are the same). Now

P (Mt ≥ a) = P (Mt ≥ a,Wt ≥ a) + P (Mt ≥ a,Wt < a)

and {Mt ≥ a} ⊂ {Wt ≥ a}, so that P (Mt ≥ a,Wt ≥ a) = P (Wt ≥ a). Also,

P (Mt ≥ a,Wt < a) = P (τ ≤ t,Wt < a) = P (τ ≤ t)P (Wt < a | τ ≤ t)
= P (Mt ≥ a)P (#Wt < a | τ ≤ t) =

1

2
P (Mt ≥ a)

From the above it follows that

P (Mt ≥ a) = 2P (Wt ≥ a) =
� ∞

a

$
2

πt
e−x

2/2tdx, a ≥ 0. (3.1)

Equivalently, we can say that Mt
d
= |Wt|. This same formula gives the distribution of

the time required for SBM to reach a given level x > 0: If we denote by τx := inf{t ≥
0 : Wt = x} we have

P (τx ≤ t) = P (Mt ≥ x) =
� ∞

x

$
2

πt
e−y

2/2tdy
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Figure 3.1: The reflection principle

The change of variables y = z
√
t transforms the above equation into

P (τx ≤ t) =
� ∞

x/
√
t

$
2

π
e−z

2/2dz

and differentiating with respect to t we obtain the density function of τx:

fτx(t) =
1√
2πt3

xe−x
2/2t, t ≥ 0.

(This is the inverse Gaussian distribution.)

3.4 Martingales associated with Brownian Motion

It is easy to see that standard brownian motion is a martingale. If we denote by
Fs := σ{Wu; 0 ≤ u ≤ s} the history of the process up to time s then

E[Wt|Fs] = Ws + E[Wt −Ws|Fs] = Ws
the second term in the above equation vanishing as a result of the independent incre-
ments property.

This property, together with the optional stopping theorem allows us to compute
probabilities of reaching boundaries. Suppose that W0 = x and let a < x < b. Set
τ = inf{t ≥ 0 : Wt = a or b}. Then, by the optional stopping theorem we have

EWτ = EW0 = x.

18



However Wτ = a1(Wτ = a) + b1(Wτ = b, and if we denote by pa = P (Wτ = a) (and
similarly for pb) we have apa + bpb = x which gives (since pa + pb = 1)

pa =
b− x
b− a .

Similarly, one can easily show that the process St = W
2
t − t is also a martingale.

Indeed,

E[W 2
t − t|Fs] = E[(Wt −Ws)2 + 2Ws(Wt −Ws) +W 2

s − t|Fs]
= E[(Wt −Ws)2|Fs] + 2WsE[Wt −Ws|Fs] +W 2

s − t
= (t− s) + 0 +W 2

s − t = W 2
s − s

With τ defined as before let us use the optional sampling theorem again. This time
we obtain

EW 2
τ − Eτ = x2

which gives
paa

2 + pbb
2 − Eτ = x2

or
(b− x)a2 + (x− a)b2

b− a − x2 = Eτ

from which we obtain
Eτ = ab.

An important martingale associated with brownian motion is the exponential mar-
tingale. Suppose here that Wt is BM(µ, σ2). Then, if θ is any real number

Mt := e
θWt−q(θ)t, with q(θ) = µθ +

1

2
θ2σ2

is a martingale. Indeed,

E[Mt|Fs] = E[eθ(Wt−Ws)−q(θ)(t−s)|Fs]Ms =Ms

the last equality following from the fact that Eeθ(Wt−Ws) = eµθ(t−s)+
1
2
θ2σ2(t−s).

We have thus seen that Mt is a martingale for any choice of θ. If we set θ = θ0 =
−2µ
σ2

we see that q(θ0) = 0 and thus the exponential martingale becomes eθ0Wt. We
can use this to compute pa and pb (defined as before) when µ 	= 0. Indeed, in this
case, from the optional sampling theorem we have

E[eθ0Wτ ] = eθ0x

or
pae

θ0a + pbe
θ0b = eθ0x
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which gives

pa =
e
2µ

σ2
(b−x) − 1

e
2µ

σ2
(b−a) − 1

.

The optional sampling theorem can also be used to obtain the Laplace transform
of the time until we hit the boundary. Here we will assume that µ = 0, σ = 1 which
corresponds to q(θ) = 1

2
θ2, in order to simplify the algebra. We start with

E[eθWτ−τq(θ)] = eθx.

or

eθx = paE[e
θWτ−τq(θ)|Wτ = a] + pbE[eθWτ−τq(θ)|Wτ = b]

= pae
θaE[e−q(θ)τ |Wτ = a] + pbeθbE[e−q(θ)τ |Wτ = b].

We seem to have the problem that this is one equation and we have two unknowns,
E[e−q(θ)τ |Wτ = a] and E[e−q(θ)τ |Wτ = b] but in fact we can get around this problem
by setting

s = q(θ) =
1

2
θ2.

There are two solutions to this equation,

θ1 =
√
2s, and θ2 = −

√
2s.

Thus, if we set fa(s) = E[e
−sτ ;Wτ = a] and fb(s) = E[e

−sτ ;Wτ = b], we have

ex
√
2s = ea

√
2sfa(s) + e

b
√
2sfb(s)

e−x
√
2s = e−a

√
2sfa(s) + e

−b
√
2sfb(s).

From this system we can compute fa(s), fb(s) separately, and hence also Ee−sτ =
fa(s) + fb(s). In fact, adding and subtracting the above equations we get

cosh(x
√
2s) = cosh(a

√
2s)fa(s) + cosh(b

√
2s)

sinh(x
√
2s) = sinh(a

√
2s)fa(s) + sinh(b

√
2s)

or, using the fact that sinh(α− β) = sinhα coshβ − coshα sinh β, we obtain

fa(s) sinh(b− a)
√
2s = sinh(b− x)

√
2s

fb(s) sinh(b− a)
√
2s = sinh(x− a)

√
2s

We thus have

f(s) = fa(s) + bb(s) =
sinh

	
(x− a)

√
2s


+ sinh

	
(b− x)

√
2s



sinh
	
(b− a)

√
2s
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and using the formulas sinh 2α = 2 sinhα coshα, sinhα+sinh β = 2 cosh
	
β−α
2



sinh

	
α+β
2




we obtain

f(s) =
cosh

		
b+a
2
− x


√
2s



cosh
	
b−a
2

√
2s



Since we can take x = 0 without loss of generality, this formula simplifies as follows

f(s) =
cosh

	
b+a
2

√
2s



cosh
	
b−a
2

√
2s

 .

In particular, when b = ℓ > 0, a = −ℓ, then

f(s) =
1

cosh
	
ℓ
√
2s



3.5 The Poisson Process

Intuitively speaking the Poisson process on the real line describes the occurrence of
random events in time. Let {Tn} n = 1, 2, . . ., denote the positions of the random
points in the half line [0,∞). We number them consecutively so that 0 ≤ T1 ≤ T2 <
· · · . Denote by Nt the number of points in the interval (0, t]. We can then write
Nt =

�∞
n=1 1(Tn ≤ t). Note that, even though this sum has an infinite number of

terms, only a finite number of them is non-zero. The collection of random variables
{Nt; t ≥ 0} is called a counting process.

Definition 2. Given any positive number λ a process {Nt; t ≥ 0} is a Poisson process
with rate λ if

• 1. N0 = 1 a.s.

• 2. For any n and 0 < t1 < t2 < · · · < tn the increments Nt1 ,Nt2−Nt1 , . . . ,Ntn−
Ntn−1 are independent.

• 3. For any s, t > 0, P(Nt+s −Ns = k) = (λt)k

k!
e−λt, for k = 0, 1, 2, . . ..

Let τ1 = T1 and τn = Tn − Tn−1, n = 2, 3, . . ., denote the interevent times, i.e.
the distances that separate the consecutive points. We can prove using the definition
that these are independent exponentially distributed random variables with rate λ.
For instance P(τ 1 > t) = P(Nt = 0) = e−λt. Similarly,

P(Tn > τ ) = P(Nt < 0) =
n−1�

k=0

P(Nt = k) =
n−1�

k=0

(λt)k

k!
e−λt.

Differentiating the above expression we obtain the density of Tn as fTn(t) = λ
(λt)n−1

(n−1)! e
−λt,

t ≥ 0. This is in accordance with the fact that Tn = τ1+ τ 2+ · · ·+ τn where the τ i’s
are independent, exponential with rate λ.
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The Poisson process can be used as a building block for more general processes.
We will discuss in particular the compound Poisson process, obtained as follows. Let
{σn} be a sequence of independent, identically distributed real random variables,
independent of the Poisson process {Nt; t ≥ 0}. Define a new process {Xt; t ≥ 0} via
Xt =

�Nt
k=1 σk with the understanding that an empty sum is 0 i.e. if Nt = 0 then

Xt = 0.

The process {Xt; t ≥ 0} inherits the independent increments property from the
Poisson process so that, for any n ∈ N and 0 < t1 < t2 < · · · < tn the random
variables Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent. In order to obtain the
distribution of Xt is is best to use the characteristic function or (provided it exists)
the moment generating function defined as E[eθXt ] where θ ∈ R and such that the
expectation exists. Thus

E[eθXt ] = E[eθ
�Nt
k=1 σk ] = E

%
E

%
eθ
�Nt

k=1 σk |Nt
&&

= E

�
E

�
Nt'

k=1

eθσk |Nt
��
.

Since the σk’s are independent from each other and from Nt we have

E

%
eθ
�Nt

k=1 σk |Nt
&
=
	
E[eθσ1 ]


Nt
.

Hence if the denote the moment generating function of σ1 by Mσ(θ) := E[eθσ1 ] and
the moment generating function of Xt by MXt(θ) we have

MXt(θ) = E[Mσ(θ)
Nt ] =

∞�

k=0

Mσ(θ)
k (λt)

k

k!
e−λt = e−λt(1−Mσ(θ)).

From the above expression we can obtain the moments of Xt by differentiation. For
instance, E[Xt] = λtE[σ1] and V ar(Xt) = λtE[σ

2
1].
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Chapter 4

Martingales in Discrete Time

4.1 Adapted and Predictable processes

Let {Yn}n≥0 be an sequence of random variables which we will regard as an informa-
tion sequence. We will often write Fn := {Y0, Y1, . . . , Yn}.

• The process {Xn}n≥0 is adapted to {Yn}n≥0 if there exists a sequence of func-
tions fn : R

n+1 → R such that

Xn = fn(Y0, Y1, . . . , Yn), n ≥ 0.

We will write
Xn ∈ Fn .

• The process {Xn}n≥0 is predictable with respect to {Yn}n≥0 if there exists a
sequence of functions fn : R

n+1 → R such that

Xn = fn−1(Y0, Y1, . . . , Yn−1), n ≥ 1, X0 = constant.

We will write
Xn ∈ Fn−1 .

4.2 Stopping Times

Let T be a nonnegative, integer valued, random variable. T is a stopping time w.r.t.
the information pattern {Fn} iff the sequence of random variables 1(T = n), n =
0, 1, 2, . . ., is adapted to {Fn}. In particular, note that if T is a stopping time then
{1(T ≤ n)} is also an adapted sequence, while {1(T > n)} is a predictable sequence.
To see this, write 1(T ≤ n) =�k=n

k=0 1(T = k) and observe that 1(T = k) ∈ Fk ⊂ Fn
for k ≤ n. This establishes that 1(T ≤ n) ∈ Fn. On the other hand 1(T > n) =
1− 1(T ≤ n− 1) which, in view of the above is a predictable sequence.
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Proposition 2. If S, T , are Fn—stopping times then S + T , S ∨ T , S ∧ T are also
Fn—stopping times.

Proof: To prove the first statement, note that 1(S + T = n) =
�n
k=0 1(S =

k)1(T = n− k) ∈ Fn. The second follows from 1(S ∨ T ≤ n) = 1(S ≤ n)1(T ≤ n),
and the fact that both 1(S ≤ n) and 1(S ≤ n) are in Fn since T and S are stopping
times. Finally 1(S ∧ T > n) = 1(S > n)1(T > n).

♠

4.3 Martingales in Discrete Time

Definition 3. A process {Xn} is a martingale w.r.t. {Fn} if
Theorem 1. • Xn is an adapted process, i.e. Xn ∈ Fn,
• E|Xn| <∞ ∀n,
• E[Xn+1|Fn] = Xn ∀n.

Example 1: Let {Yi} be independent random variables with E|Yi| <∞ for all i and
denote by Fn = {Y0, Y1, . . . , Yn}. Let EXi = µi. The process Xn =

�n
i=0 Yi − µi is

an Fn—martingale.
Example 2: Using the setup of the previous example suppose that, for all i, σ2i =
Var(Yi) <∞. The process Xn = (

�n
i=0 Yi − µi)

2 −�n
i=0 σ

2
i is an Fn—martingale.

Example 3: Using again the same setup we assume that Yi has distribution Fi and
F̃i(s) :=

�∞
−∞ e

−sxdFi(x) is finite for s in a neighborhood of 0. Then

Xn :=
e−s

�n
i=0 Yi

�n
i=0 F̃i(s)

,

is an Fn—martingale.
Example 4: Let {Yn} be a Discrete Time Markov Chain with state space S and
transition probability matrix P (i, j). Also suppose that f : S → R be a real function.
Then

Xn :=
n�

k=1

�
f(Yk)−

�

j∈S
P (Yk−1, j)f(j)

�

is an Fn—martingale.
Example 5: [Right Regular Sequences and InducedMartingales for Markov
Chains] Let {Yn} be a Discrete Time Markov Chain with state space S and transition
probability matrix P (i, j). Let f : S → R be bounded and satisfy

f(i) =
�

j∈S
P (i, j)f(j) , ∀i ∈ S .
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Such sequences (right eigenvectors corresponding to eigenvalue 1) are called right
regular sequences. Then

Xn = f(Yn)

is a martingale.

Example 6: The above example is a special case of the following more general class
of martingales. Let f be a right eigenvector corresponding to an eigenvalue λ of P ,
i.e.

λf(i)
�

j∈S
P (i, j)f(j) , ∀i ∈ S .

Assuming that E|f(Yn)| <∞,

Xn = λ
−nf(Yn)

is a martingale.

Example 7: [Likelihood Ratios] Let {Yn} be an i.i.d. sequence with density g.
Let f be another density function. Then the process

Xn =
f(Y0)f(Y1) · · · f(Yn)
g(Y0)g(Y1) · · · g(Yn)

is a martingale.

4.4 The Optional Sampling Theorem

4.4.1 The Optional Sampling Theorem for Martingales

Let {Xn} be a martingale w.r.t. {Fn}. We know that EXn = EX0. If T is a stopping
time, under what conditions is EXT = EX0? We start with

Lemma 1. Let {Xn} be a martingale and T a stopping time w.r.t. {Fn}. Then, for
all n ≥ k,

E[Xn1(T = k)] = E[Xk1(T = k)] .

Proof: Indeed

E[Xn1(T = k)] = E[E[Xn1(T = k)|Fn] = E[1(T = k)E[Xk|Fn]]
= E[1(T = k)Xn]

♠

Lemma 2. With the assumptions of the previous lemma

E[XT∧n] = EX0 .
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Proof: We can write XT∧n =
�n−1
k=0 Xk1(T = k) + Xn1(T ≥ n) and taking

expectations,

E[XT∧n] =
n−1�

k=0

E[Xk1(T = k)] + E[Xn1(T ≥ n)]

=
n−1�

k=0

E[Xn1(T = k)] + E[Xn1(T ≥ n)]

= E

�
Xn

�
n−1�

k=0

1(T = k) + 1(T ≥ n)
��

= EXn = EX0 .

Theorem 2. Let {Xn} be a martingale and T a stopping time w.r.t. {Fn}. Suppose
that P (T <∞) = 1 and E[supk |XT∧k|] <∞. Then EXT = EX0.

Proof: From the previous lemma we have EXT∧n = EX0 ∀n. Since P (T <
∞) = 1, limn→∞XT∧n = XT . Finally, XT∧n ≥ supk |XT∧k|. Use the Dominated
Convergence Theorem to conclude that

lim
n→∞

E[XT∧n] = E[ lim
n→∞

XT∧n] = EXT .

♠
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Chapter 5

Laws of Large Numbers and
Central Limit Theorem

Suppose that {Xi}, i = 1, 2, . . . , are independent, identically distributed random
variables with finite mean, i.e. E|X| <∞.

Theorem 3. Weak Law of Large Numbers If µ := EX1 then

lim
n→∞

P

�����
X1 +X2 + · · ·+Xn

n
− µ

���� > ǫ
�
= 0 for all ǫ > 0.

A stronger version also holds under the same assumptions

Theorem 4. Strong Law of Large Numbers:

lim
n→∞

P

� ∞(

m=n

�����
X1 +X2 + · · ·+Xm

m
− µ

���� > ǫ
)�

= 0 for all ǫ > 0.

If, in addition to the above assumptions we also assume that the variance V arX1 =
σ2 is finite then

Theorem 5. Central Limit Theorem If Φ(x) := 1√
2π

� x
−∞ e

− 1
2
y2dy is the cumulative

distribution function of the standard normal then

lim
n→∞

P

�
X1 + · · ·+Xn − nµ

σ
√
n

≤ x
�
= Φ(x).
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Chapter 6

Logarithmic Asymptotics

Suppose that Xi, i = 1, 2, 3, . . . , are i.i.d. with distribution function F , correspond-
ing mean m =

�
R
xF (dx), variance σ2, and moment generating function M(θ) :=�

R
eθxF (dx). The weak law of large numbers guarantees that

lim
n→∞

P (Sn ≥ nx) = 0 for x > m (6.1)

and similarly that
lim
n→∞

P (Sn ≤ nx) = 0 for x < m (6.2)

Correspondingly, if the premium charged per policy, x, is higher than the expected
claim size, m, then the probability or ruin goes to zero, whereas if the it is less than
m then ruin is certain.

One important question however not answered by the weak law of large numbers
is how fast do the above probabilities go to zero. We will see that they go to zero
exponentially fast, i.e. that

P (Sn ≥ nx) ≍ e−nI(x) for x > m (6.3)

In the above formula note that the exponential rate of decay I(x) is a function of x.
The meaning of (6.3) is made precise if we state it as

lim
n→∞

1

n
logP (Sn ≥ nx) = −I(x) for x > m. (6.4)

Where does the exponential behavior come from? Write P (Sn ≥ nx) as

P (Sn − nm ≥ n(x−m)) = P
�
Sn − nm
σ
√
n

≥ √n
�
x−m
σ

��
(6.5)

and appeal to the central limit theorem: For n large Sn−nm
σ
√
n

is approximately normally
distributed with mean 0 and standard deviation 1 and hence

P (Sn ≥ nx) = P

�
Sn − nm
σ
√
n

≥ √n
�
x−m
σ

��
≈ 1√

2π

� ∞

√
n(x−m

σ
)

e−
1
2
u2du

≈ σ

(x−m)
√
2πn
e−n

(x−m)2

2σ2 .
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Are the above asymptotics justified? In one case at least yes. Suppose that the
r.v.’s Xi, are i.i.d. are normal with mean m and variance σ2 (N(m, σ2)). Then Sn/n

has distribution N
�
m, σ

2

n

�
. Hence in this case (6.5) becomes an exact relationship

and we have

P (Sn ≥ nx) =
� ∞

√
n(x−m

σ
)

1√
2π
e−

1
2
u2du. (6.6)

Taking into account the bounds in proposition 1 we have

log
��

1
n1/2

σ
x−m − 1

n3/2
σ3

(x−m)3

�
1√
2π
e−

1
2
n(x−mσ )

2�
≤ logP (Sn ≥ nx)

≤ log

�
1

n1/2
σ

x−m
1√
2π
e−

1
2
n(x−mσ )

2
�

or

−1

2
logn+ log

�
σ

x−m − 1
n

σ3

(x−m)3

�
− 1

2
log 2π − 1

2
n

�
x−m
σ

�2
≤ logP (Sn ≥ nx)

≤ −1

2
log n+ log σ

x−m − 1
2
log 2π − 1

2
n
	
x−m
σ


2
.

Dividing the above inequality with n and letting n → ∞ (taking into account that
1
n
log n→ 0) we obtain

lim
n→∞

1

n
logP (Sn ≥ nx) = −

1

2

�
x−m
σ

�2
. (6.7)

Hence, setting I(x) = 1
2

	
x−m
σ


2
we obtain (6.1) for normal random variables. Can we

generalize this to non—normal random variables? Can we generalize it for sequences
that are not independent and identically distributed?

As we will see the answer is in the affirmative on both counts. We start with a
relatively simple bound known as the Chernoff bound.

6.1 Chernoff bounds

In the same framework as before Xi, i = 1, 2, . . . are assumed to be i.i.d. r.v.’s with
moment generating function M(θ). We start with the obvious inequality

1(Sn ≥ nx)enxθ ≤ eθSn

which holds for all θ ≥ 0 since the exponential is non—negative. Taking expectations
in the above inequality we obtain

P (Sn ≥ nx) ≤ e−nxθE[eθX1+X2+···+Xn] = e−nxθM(θ)n, θ ≥ 0.
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The above inequality provides an upper bound for P (Sn ≥ nx) for each θ ∈ R+.
Since the left hand side in the above inequality does not depend on θ we can obtain
the best possible bound by setting

P (Sn ≥ nx) ≤ inf
θ≥0
e−n{xθ−logM(θ)} = e−n supθ≥0{xθ−logM(θ)}.

Define now the rate function

I(x) := sup
θ∈R

{xθ − logM(θ)} . (6.8)

With this definition the Chernoff bound becomes

P (Sn ≥ nx) ≤ e−nI(x). (6.9)

As we will see in many cases this upper bound can be turned into an asymptotic
inequality. This is the content of Cramér’s theorem.

Theorem 6. The cumulant logM(θ) is a convex function of θ.

Proof: To establish this we will show that the second derivative d2

dθ2
logM(θ) is

non—negative. Indeed

d2

dθ2
logM(θ) =

M ′′(θ)

M(θ)
−
�
M ′(θ)

M(θ)

�2

However note that

M ′′(θ) =
d2

dθ2
E[eθX ] = E[X2eθX ]

and hence
M ′′(θ)

M(θ)
= E[X2 e

θX

M(θ)
] = E �P [X

2].

Similarly
M ′(θ)

M(θ)
= E[X

eθX

M(θ)
] = E �P [X]

and thus

d2

dθ2
logM(θ) = E �P [X

2]−
	
E �P [X]


2
= E �P

	
X −E �P [X]


2 ≥ 0.
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6.2 Examples of rate functions

Bernoulli Random Variables Suppose that P (Xi = 1) = 1 − P (Xi = 0) = p (i.e.
the random variables take only the values 0 and 1 with probabilities 1 − p and p
respectively). In this case logM(θ) = log

	
peθ + 1− p



. To maximize xθ − logM(θ)

we set its derivative equal to zero: x = peθ

1−p+peθ or e
θ = x

1−x
1−p
p

and, taking logarithms,

θ = log
x

1− x + log
1− p
p
.

Therefore

I(x) =





x log
x

p
+ (1− x) log 1− x

1− p , 0 < x < 1

∞, otherwise

Normal N(µ, σ2) Here M(θ) = eθµ+
1
2
θ2σ2 . The rate function is given by

I(x) = sup
θ

*
θx− θµ− 1

2
θ2σ2

+
.

Differentiating we obtain (x− µ)− θσ2 = 0 or θ = x−µ
σ2

. Substituting back we get

I(x) =
1

2

�
x− µ
σ

�2
.

Exponential (rate λ) In this case M(θ) = λ
λ−θ and thus the rate function is obtained

by maximizing the expression θx− log λ
λ−θ . The optimal value of θ is obtained by the

solution of the equation x− 1
λ−θ = 0 or θ = λ− 1/x which gives

I(x) =

�
λx− logλx− 1, x > 0
+∞, x ≤ 0

Binomial (number of trials n, probability of success p) Here M(θ) = (1 − p + peθ)n
(note the close connection with the Bernoulli distribution) and logM(θ) = n log(1−
p+peθ). Thus, arguing as in the Bernoulli case, we see that xθ−logM(θ) is maximized

for θ∗ = log
�
x(1−p)
(k−x)p

�
and hence

I(x) =





x log
x

p
+ (n− x) log n− x

1− p − n log n, 0 < x < n

∞, otherwise

Geometric (probability of success p) Here

M(θ) =
1− p
1− peθ .
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Figure 6.1:

Following the same procedure as before we obtain

I(x) =





x log x− (x+ 1) log(x+ 1) + x log
1

p
− log(1− p), x > 0

+∞, x ≤ 0

In the following graph the rate function of the geometric distribution (with p = 1/2)
is shown.

6.3 Properties of the rate function

Let D = {x : I(x) < ∞} be the domain of definition of I. It is easy to see that D
is either the whole of R or an interval that may extend infinitely to the right or the
left. If the upper or lower end of the interval is finite it may or may not belong to D
depending on the case. Thus in any case D is a convex set in R.

1. I(x) is a convex function (on its domain of definition). It suffices to show that,
for each λ ∈ [0, 1], x, y ∈ D, I(xλ+ y(1− λ)) ≤ λI(x) + (1− λ)I(y). Indeed,

I(xλ+ y(1− λ)) = sup
θ
{θ(xλ+ y(1− λ))− logM(θ)}

= sup
θ
{λ(θx− logM(θ)) + (1− λ)(θx− logM(θ))}

≤ λ sup
θ
{θx− logM(θ)}+ (1− λ) sup

θ
{θy − logM(θ)}

= λI(x) + (1− λ)I(y)

2. I(x) ≥ 0 for all x ∈ D and I(m) = 0. (In particular this implies that I is
minimized at x = m.) We begin with the remark that for θ = 0, θx− logM(θ) = 0.
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Thus I(x) ≥ 0. Next, use Jensen’s inequality: M(θ) = EeθX ≥ eθEX for all θ for
which M(θ) < ∞. Thus logM(θ) ≥ θm or θm − logM(θ) ≤ 0. Since I(x) ≥ 0, we
conclude that I(m) = 0.

3. For each x ∈ D there exists θ∗ such that

M ′∗)

M(θ∗)
= x (6.10)

We will not present a complete proof of this. A justification might be given along the
following lines: since for fixed x the function f(θ) = θx− logM(θ) is convex in θ and
smooth (M(θ) has derivatives of all orders) it suffices to find θ∗ so that f(θ∗) = 0 or
equivalently x−M ′∗)/M(θ∗) = 0.

6.4 The twisted distribution

Let F (y) be a distribution function on R with moment generating function M(θ).

The distribution function ,F (y) defined via

d ,F (dy) = eθy

M(θ)
F (dy)

is called the twisted distribution that corresponds to F . It is easy to see that

,F (y) =
� y

−∞

eθu

M(θ)
F (du)

is a non—decreasing function of y and as y →∞, ,F (y)→ 1.

The mean of the twisted distribution is given by

� ∞

−∞
y ,F (dy) = 1

M(θ)

� ∞

−∞
yeθyF (dy) =

1

M(θ)

d

dθ

� ∞

−∞
eθyF (dy) =

M ′(θ)

M(θ)
.

In particular when θ = θ∗, the solution of (6.10),

1

M(θ∗)

� ∞

−∞
yeθ

∗yF (dy) =
M ′∗)

M(θ∗)
= x. (6.11)

Regarding our notation, it will be convenient to think of two different probability
measures, the probability measure P , under which the random variables Xi, i =
1, 2, . . . , have distribution F , and the twisted measure ,P , under which the r.v.’s Xi
have distribution ,F . Expectations with respect to the probability measure ,P will be
denoted by ,E.
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6.5 Cramér’s Theorem

Theorem 7. Suppose that {Xn} is an i.i.d. sequence of real random variables with
moment generating functionM(θ) which exists in an open neighborhood of zero. Then,
if m = EX1 and Sn := X1 + · · ·+Xn,

lim
n→∞

1

n
logP (Sn ≥ nx) = −I(x), x ≥ m,

lim
n→∞

1

n
logP (Sn ≤ nx) = −I(x), x ≤ m.
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