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Panel data models  
Introduction and motivation 

Advantages:  

 Larger number of data points (more degrees of freedom) 

 Combine cross section and time series data 

 Limitation of the omitted variable problem 

 Takes into account common and cross sectional explanatory variables 

 May account for cross sectional dependence  
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Panel data   
GDP series for the G7 countries 
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Panel data  
Dependent variables and Specific cross sectional explanatory variables 

 Panel data:    

      Dependent variable:         Y𝑖𝑡,  𝑖 = 1,… ,𝑁 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑡  
   𝑡 = 1,… , 𝑇 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  

      Explanatory variables (specific cross sectional unit variables, i.e. different for each unit) 
X𝑖𝑗𝑡, 𝑖 = 1,… ,𝑁 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑡  

                          𝑗 = 1,… , 𝑘 (𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 
             𝑡 = 1,… , 𝑇 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  

E.g.: Y𝑖𝑡: GDP for different countries across time, X𝑖𝑗𝑡: investments, industrial production, 

unemployment for different countries across time 
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Y1 Y2 … YN 

Y11 Y21 … Y𝑁1 

Y12 Y22 … Y𝑁2 

⋮ ⋮ ⋱ ⋮ 

Y1𝑇 Y2𝑇 … Y𝑁𝑇 

X11 X12 … X1k 

X111 𝑋121 … X1𝑘1 

X112 X122 … X1𝑘2 

⋮ ⋮ ⋱ ⋮ 

X11𝑇 X12𝑇 … X1𝑘𝑇 

… 

… 

… 

… 

… 

XN1 XN2 … XNk 

X𝑁11 𝑋𝑁21 … X𝑁𝑘1 

X𝑁12 X𝑁22 … X𝑁𝑘2 

⋮ ⋮ ⋱ ⋮ 

X𝑁1𝑇 X𝑁2𝑇 … X𝑁𝑘𝑇 



Panel data  
Dependent variables and Common explanatory variables 

 Panel data:    

      Dependent variable:         Y𝑖𝑡,  𝑖 = 1,… ,𝑁 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑡  
   𝑡 = 1,… , 𝑇 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  

      Explanatory variables (common variables, i.e. common for each unit) 

                                                  X𝑗𝑡,       𝑗 = 1,… , 𝑘 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
𝑡 = 1,… , 𝑇 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  

      E.g.: Y𝑖𝑡: GDP for different countries across time, X𝑗𝑡: global volatility index, global panic index  

      across time (common explanatory variables for all units) 
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Y1 Y2 … YN 

Y11 Y21 … Y𝑁1 

Y12 Y22 … Y𝑁2 

⋮ ⋮ ⋱ ⋮ 

Y1𝑇 Y2𝑇 … Y𝑁𝑇 

X1 X2 … Xk 

X11 𝑋21 … X𝑘1 

X12 X22 … X𝑘2 

⋮ ⋮ ⋱ ⋮ 

X1𝑇 X2𝑇 … X𝑘𝑇 



Panel data models 
A general dynamic panel data model 

 Consider the following dynamic panel data model: 

Y𝑖𝑡 = δ𝑖 + β𝑖𝑡 +  α𝑖𝑘X𝑘𝑡

𝐾

𝑘=1
+  𝛾𝑖𝑞X𝑖𝑞𝑡

𝑄

𝑞=1
+ 𝜀𝑖𝑡,  

𝜀𝑖𝑡 = 𝜑𝑖𝜀𝑖,𝑡−1 + 𝑢𝑖𝑡, 

where 

 𝑖 = 1,… ,𝑁 denotes the cross-sectional units of the panel (e.g. countries) 

 𝑡 = 1,… , 𝑇 denotes the time period 

 Y𝑖𝑡 denotes the economic or financial dependent variable (e.g. gross domestic product) 

 X𝑘𝑡 is a set of K exogenous explanatory factors or covariates (e.g. a global volatility index, a 
market or a commodity index) which are common for all cross-sectional units of the panel, and 
affect the dependent variables of the panel through separate/different coefficients α𝑖𝑘 

 X𝑖𝑞𝑡 is a set of Q of cross-sectional specific factors (explanatory variables) which are different for 
each cross-sectional unit with separate coefficients 𝛾𝑖𝑞 

 δ𝑖 are the intercept coefficients of the model, which are different for each cross sectional unit 

 β𝑖 are the trend coefficients, which are different for each cross sectional unit 

 𝜀𝑖𝑡  is a zero-mean autoregressive one, AR(1), process which captures the dynamics of the panel 
data model. The error term 𝑢𝑖𝑡 is assumed not to be serially correlated, i.e. 𝐸(𝑢𝑖𝑠𝑢𝑖𝑡) = 0, for all 
𝑡 ≠ 𝑠 and for all 𝑖, but it is heterogeneous and correlated across 𝑖, i.e. 𝐸(𝑢𝑖𝑡𝑢𝑗𝑡) ≠ 0 for all 𝑖 and 
𝑗, and therefore, allows for cross sectional dependence across units 
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Panel data models 
Basic linear panel data model 

 The basic linear panel data model used in econometric literature can be described through 
suitable restrictions of the following general model: 

 
Y𝑖𝑡 = α𝑖𝑡 + 𝛽𝑖𝑡X𝑖𝑡 + 𝑢𝑖𝑡,  

where 

 𝑖 = 1,… ,𝑁 denotes the cross-sectional units of the panel 

 𝑡 = 1,… , 𝑇 denotes the time period 

 Y𝑖𝑡 denotes the economic or financial dependent variable  

 X𝑖𝑡 is the explanatory factors or covariates 

 α𝑖𝑡 is the intercept, which is different for each cross sectional unit, and across time 

 𝛽𝑖𝑡 are the explanatory variables coefficients, which are different for each cross sectional unit, 
and across time 

 𝑢𝑖𝑡 is the error term 

 

 Number of observations: 𝑁𝑇 

 Number of parameters to be estimated: 2NT 

 Can not be estimated !! Thus, suitable restrictions are imposed on α𝑖𝑡 and 𝛽𝑖𝑡 
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Panel data models 
A simple panel data model (model I) 

 The simplest panel data model assumes parameter homogeneity. In the general linear panel 
model Y𝑖𝑡 = α𝑖𝑡 + 𝛽𝑖𝑡X𝑖𝑡 + 𝑢𝑖𝑡 impose the following restrictions: α𝑖𝑡 = 𝛼 and 𝛽𝑖𝑡 = 𝛽 for all 𝑖, 𝑡. 
The resulting model can be written in the form: 

 
Y𝑖𝑡 = 𝑎 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡,  

where 

 𝑖 = 1,… ,𝑁 denotes the cross-sectional units of the panel 

 𝑡 = 1,… , 𝑇 denotes the time period 

 Y𝑖𝑡 denotes the economic or financial dependent variable  

 X𝑖𝑡 is the explanatory factors or covariate 

 𝑎 is the intercept of the model, which is common for all cross sectional units and across time 

 β is the explanatory variable coefficient, which is common for all cross sectional units across time 

 𝑢𝑖𝑡 is the error term 

 

 This simple panel model does not account for the heterogeneity of the cross sectional units 
(common 𝑎 and 𝛽 parameter) 

 Number of observations: 𝑁𝑇 

 Number of parameters to be estimated: 2 
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Panel data models 
Fixed effects panel data model (model II) 

 In the general linear panel data model Y𝑖𝑡 = α𝑖𝑡 + 𝛽𝑖𝑡X𝑖𝑡 + 𝑢𝑖𝑡 impose the following restrictions: 
α𝑖𝑡 = α𝑖  for all 𝑡, and 𝛽𝑖𝑡 = 𝛽 for all 𝑖 and 𝑡. The resulting model is called the fixed effects 
model: 

 
Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡,  

where 

 𝑖 = 1,… ,𝑁 denotes the cross-sectional units of the panel 

 𝑡 = 1,… , 𝑇 denotes the time period 

 Y𝑖𝑡 denotes the economic or financial dependent variable  

 X𝑖𝑡 is the explanatory factors or covariate 

 α𝑖  is the intercept of the model, which is different for each cross sectional unit 

 β is the slope, which is common for all cross sectional units 

 𝑢𝑖𝑡 is the error term 

 

 This panel model accounts for the heterogeneity of the cross sectional units (different intercept 
coefficients α𝑖, common  𝛽 parameter) 

 Number of observations: 𝑁𝑇 

 Number of parameters to be estimated: N+1 
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Panel data models 
Fixed effects panel data model (model III) 

 In the general linear panel data model Y𝑖𝑡 = α𝑖𝑡 + 𝛽𝑖𝑡X𝑖𝑡 + 𝑢𝑖𝑡 impose the following restrictions: 
α𝑖𝑡 = α𝑖, and 𝛽𝑖𝑡 = 𝛽𝑖 for all 𝑡. The resulting model is: 

 
Y𝑖𝑡 = α𝑖 + 𝛽𝑖X𝑖𝑡 + 𝑢𝑖𝑡,  

 𝑖 = 1,… ,𝑁 denotes the cross-sectional units of the panel 

 𝑡 = 1,… , 𝑇 denotes the time period 

 Y𝑖𝑡 denotes the economic or financial dependent variable  

 X𝑖𝑡 is the explanatory factors or covariate 

 α𝑖  is the intercept of the model, which is different for each cross sectional unit 

 𝛽𝑖  is the slope, which is different for each cross sectional unit 

 𝑢𝑖𝑡 is the error term 

 

 This panel model accounts for the heterogeneity of the cross sectional units (different intercept 
coefficients α𝑖, and different 𝛽𝑖  coefficients) 

 Different parameters across units, but constant across time 

 Number of observations: 𝑁𝑇 

 Number of parameters to be estimated: 2N 

 To be able to estimate this model: T>2 
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Panel data models: Fixed Effects 
Least Squares Dummy variables (LSDV) 

 Consider the following  fixed effects panel data model: 

 
Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡 

 Fixed parameters α𝑖  (non stochastic), different for each sectional unit, common 𝛽  

 We are interested in: 

 Estimate the model parameters 

 Perform hypothesis testing (for the heterogeneity of intercept parameters) 

 Re-write the model by using/constructing appropriate dummy variables 

 
Y𝑖𝑡 = 𝛼 + 𝛽X𝑖𝑡 + 𝛾2𝑑2𝑡 + 𝛾3𝑑3𝑡 + ⋯+ 𝛾𝑁𝑑𝑁𝑡 + 𝑢𝑖𝑡 

 Number of observations: 𝑁𝑇, number of parameters: 2 + 𝑁 − 1 = 𝑁 + 1 

 

 The model implies that:  
𝑖 = 1: Y1𝑡 = 𝛼 + 𝛽X1𝑡 + 𝑢1𝑡 
𝑖 = 2: 𝑌2𝑡 = 𝛼 + 𝛽X2𝑡 + 𝛾2𝑑2𝑡 + 𝑢2𝑡 ⇒ Y2𝑡 = (𝛼 + 𝛾2) + 𝛽X2𝑡 + 𝑢2𝑡 
𝑖 = 3: 𝑌3𝑡 = 𝛼 + 𝛽X3𝑡 + 𝛾3𝑑3𝑡 + 𝑢3𝑡 ⇒ Y3𝑡 = (𝛼 + 𝛾3) + 𝛽X3𝑡 + 𝑢3𝑡 
⋮ 
𝑖 = 𝑁: 𝑌𝑁𝑡 = 𝛼 + 𝛽X𝑁𝑡 + 𝛾𝑁𝑑𝑁𝑡 + 𝑢𝑁𝑡 ⇒ Y𝑁𝑡 = (𝛼 + 𝛾𝑁) + 𝛽X𝑁𝑡 + 𝑢𝑁𝑡 
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Panel data models: Fixed Effects 
Construct the dummy variables  
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i t Y X D2 D3 

1 1 Y11 X11 0 0 

2 Y12 X12 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ 

T Y1𝑇 X1𝑇 0 0 

2 1 Y21 X21 1 0 

2 Y22 X22 1 0 

⋮ ⋮ ⋮ ⋮ ⋮ 

T Y2𝑇 X2𝑇 1 0 

3 1 Y31 X31 0 1 

2 Y32 X32 0 1 

⋮ ⋮ ⋮ ⋮ ⋮ 

T Y2𝑇 X3𝑇 0 1 

Example: number of units N = 3  (i.e. construct 
𝑁 − 1 = 2  dummy variables), time period 𝑇 , 
dependent variable Y𝑖𝑡, explanatory variable X𝑖𝑡  
 
 
 
 
 
 
 
 
 



Panel data models: Fixed Effects 
Hypothesis testing (t-test) 

 For the fixed effects panel data model of the form:  

 
Y𝑖𝑡 = 𝛼 + 𝛽X𝑖𝑡 + 𝛾2𝑑2𝑡 + 𝛾3𝑑3𝑡 + ⋯+ 𝛾𝑁𝑑𝑁𝑡 + 𝑢𝑖𝑡  

       

      we can perform two types of hypothesis tests: 

 (i) t-test: 

       H0:  𝛾𝑖 = 0 

       H1:  𝛾𝑖 ≠ 0 

       by using the following test statistic: 

𝑇 =
𝛾 𝑖

𝑠𝑒(𝛾 𝑖)
 

       The hypothesis testing about parameters 𝛾𝑖 is very important, since if we reject the null  

       hypothesis (H0:  𝛾𝑖 = 0), this implies that parameter 𝛾𝑖 is statistically significant at level α,  

       and the corresponding intercept parameter for unit 𝑖, is α + 𝛾𝑖, and is statistically different than  

       the intercept (𝛼) of the baseline cross sectional unit 1. 
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Panel data models: Fixed Effects 
Hypothesis testing (F-test) 

 (ii) F-test: 

      H0:  𝛾2 = 𝛾3 = ⋯ = 𝛾𝑁 = 0 

      H1: 𝑛𝑜𝑡 H0 

      The null hypothesis implies the following restricted model: 
H0:  Y𝑖𝑡 = 𝛼 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡 

 

       while the alternative hypothesis implies the unrestricted model: 
H1:  Y𝑖𝑡 = 𝛼 + 𝛽X𝑖𝑡 + 𝛾2𝑑2𝑡 + 𝛾3𝑑3𝑡 + ⋯+ 𝛾𝑁𝑑𝑁𝑡 + 𝑢𝑖𝑡 

 

 The F-test statistic can be used: 

𝐹 =
𝑅𝑆𝑆𝑅 − 𝑅𝑆𝑆𝑈𝑛𝑟 / 𝑑𝑓𝑅 − 𝑑𝑓𝑈𝑛𝑟

𝑅𝑆𝑆𝑈𝑛𝑟/𝑑𝑓𝑈𝑛𝑟
~𝐹Ν−1,NT−Ν−1 

 𝑅𝑆𝑆𝑅 and 𝑅𝑆𝑆𝑈𝑛𝑟  are the residual sum of squares of the restricted and the unrestricted model, 

respectively 

 𝑑𝑓𝑅 = 𝑁𝑇 − 2 and 𝑑𝑓𝑈𝑛𝑟 = 𝑁𝑇 − 2 − 𝑁 − 1 = 𝑁𝑇 − 𝑁 − 1 are the degrees of freedom of 

the restricted and the unrestricted model, respectively, and 𝑑𝑓𝑅 − 𝑑𝑓𝑈𝑛𝑟 = 𝑁𝑇 − 2 −

𝑁𝑇 − 𝑁 − 1 = 𝑁 − 1 
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Panel data models: Fixed Effects 
Within Estimator 

 Consider the following  fixed effects panel data model: 

 
Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡  (1)  

 Define   

𝑌 𝑖 =
1

𝑇
 Y𝑖𝑡

𝑇

𝑡=1
, 𝑋 𝑖 =

1

𝑇
 𝑋𝑖𝑡

𝑇

𝑡=1
, 𝑢 𝑖 =

1

𝑇
 𝑢𝑖𝑡

𝑇

𝑡=1
 

 

 Then  
Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡 ⇒ 

 

⇒
1

𝑇
 Y𝑖𝑡

𝑇

𝑡=1
=

1

𝑇
 α𝑖

𝑇

𝑡=1
+

1

𝑇
𝛽 Χ𝑖𝑡

𝑇

𝑡=1
+

1

𝑇
 𝑢𝑖𝑡

𝑇

𝑡=1
⇒ 

 

⇒ 𝑌 𝑖 =
1

𝑇
Τα𝑖 + 𝛽Χ 𝑖 + 𝑢 𝑖 ⇒ 

 
⇒ 𝑌 𝑖 = α𝑖 + 𝛽Χ 𝑖 + 𝑢 𝑖  (2) 
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Panel data models: Fixed Effects 
Within Estimator 

 By taking the difference (1)-(2) in equations (1) and (2) 

                                                Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡  (1)  

       and 

                                                         𝑌 𝑖 = α𝑖 + 𝛽Χ 𝑖 + 𝑢 𝑖  (2) 

      we obtain: 

                                                Y𝑖𝑡 − 𝑌 𝑖 = 𝛽(X𝑖𝑡 − Χ 𝑖) + (𝑢𝑖𝑡 − 𝑢 𝑖) 

 

                                                          𝑌𝑖𝑡
∗ = 𝛽𝑋𝑖𝑡

∗ + 𝑢𝑖𝑡
∗    (3) 

 

 Within Estimator steps: 

 Apply OLS in equation (3) and estimate 𝛽, i.e. obtain 𝛽  

 Using equation (2), estimate α𝑖, i.e. α𝑖 = 𝑌 𝑖 − 𝛽 Χ 𝑖 

 Computationally easy 

 Can not conduct hypothesis testing 
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Panel data models: Fixed Effects 
First-difference Estimator 

 

 Another way of estimating panel data models is by first-differencing the data: lagging the model 
and subtracting, the time-invariant components are eliminated, and the model 

 
ΔY𝑖,𝑡 = 𝛽ΔX𝑖,𝑡 + Δ𝑢𝑖,𝑡 

 

       can be consistently estimated by pooled OLS. This is called the first-difference estimator  

 

 The differences are defined as follows ΔY𝑖,𝑡 = Y𝑖,𝑡 − Y𝑖,𝑡−1, ΔΧ𝑖,𝑡 = Χ𝑖,𝑡 − Χ𝑖,𝑡−1, Δ𝑢𝑖,𝑡 = 𝑢𝑖,𝑡 −
𝑢𝑖,𝑡−1, for 𝑡 = 2,… , 𝑇 

 

 Its relative efficiency, and so reasons for choosing it against other consistent alternatives, 
depends on the properties of the error term. The first-difference estimator is usually preferred if 
the errors 𝑢𝑖𝑡 are strongly persistent in time, because then the Δ𝑢𝑖,𝑡 will tend to be serially 
uncorrelated. 
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Panel data models: Random Effects 
The Random effects model 

 Consider the following panel data model: 

                                                       Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡  1 , 

 
𝑢𝑖𝑡~𝑖𝑖𝑑(0, 𝜎2) 

 Suppose that 𝑎𝑖~𝐷(𝑎,𝜔2), that is: 𝐸(𝑎𝑖) = 𝑎 and 𝑉(𝑎𝑖) = 𝜔2  

 Then, that 𝑎𝑖 = 𝑎 + 𝜇𝑖   (2), 𝜇𝑖~𝑖𝑖𝑑 𝐷 0,𝜔2 , and E 𝜇𝑖 = 0, and V 𝜇𝑖 = 𝜔2 

 In this model, we have two parameters (𝑎, 𝜔2)  instead of N parameters (𝑎, N − 1 dummy 
variables) with respect to the intercept 

 The model can be written:  

                                                              Y𝑖𝑡 = α𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡 ⇒ 

                                                         ⇒ Y𝑖𝑡 = 𝑎 + 𝜇𝑖 + 𝛽X𝑖𝑡 + 𝑢𝑖𝑡 ⇒ 

                                                         ⇒ Y𝑖𝑡 = 𝑎 + 𝛽X𝑖𝑡 + (𝜇𝑖 + 𝑢𝑖𝑡) ⇒ 

                                                         ⇒ Y𝑖𝑡 = 𝑎 + 𝛽X𝑖𝑡 + 𝑣𝑖𝑡,         where      𝑣𝑖𝑡 = 𝜇𝑖 + 𝑢𝑖𝑡 
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Panel data models: Random Effects 
The Random effects model 

 For the process  
𝑣𝑖𝑡 = 𝜇𝑖 + 𝑢𝑖𝑡 

      we observe that: 𝑣𝑖1 = 𝜇𝑖 + 𝑢𝑖1, 𝑣𝑖2 = 𝜇𝑖 + 𝑢𝑖2,  …,  𝑣𝑖𝑇 = 𝜇𝑖 + 𝑢𝑖𝑇. Therefore, 𝑣𝑖𝑡 contains a  

      common component, 𝜇𝑖, across time, and thus 𝑣𝑖𝑡 is auto-correlated. 

 

 Its mean is:                         𝐸 𝑣𝑖𝑡 = 𝐸 𝜇𝑖 + 𝑢𝑖𝑡 = 𝐸 𝜇𝑖) + 𝐸(𝑢𝑖𝑡 = 0 

 

 The variance is: 
𝑉 𝑣𝑖𝑡 = 𝑉 𝜇𝑖 + 𝑢𝑖𝑡 = 𝑉 𝜇𝑖) + 𝑉(𝑢𝑖𝑡 = 𝜔2 + 𝜎2 

 

 The covariance of 𝑣𝑖𝑡 with 𝑣𝑖𝑠, 𝑡 ≠ 𝑠, is: 

 
𝐶𝑜𝑣 𝑣𝑖𝑡, 𝑣𝑖𝑠 = 𝐸 𝑣𝑖𝑡𝑣𝑖𝑠 = 𝐸 𝜇𝑖 + 𝑢𝑖𝑡 𝜇𝑖 + 𝑢𝑖𝑠 = 

                                                      

                                                           = 𝐸[𝜇𝑖
2 + 𝜇𝑖𝑢𝑖𝑠 + 𝑢𝑖𝑡𝜇𝑖+𝑢𝑖𝑡𝑢𝑖𝑠] = 

 

                                                           = 𝐸 𝜇𝑖
2 = 𝑉 𝜇𝑖 = 𝜔2 ≠ 0,  there is auto-correlation at  𝑣𝑖𝑡 
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Panel data models: Random Effects 
The Random effects model 

 Therefore, the covariance matrix of  𝒗𝒊 = 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑇
′ is 

 

𝛀 =

𝜔2 + 𝜎2

𝜔2

𝜔2

𝜔2 + 𝜎2

⋮ ⋮
𝜔2 𝜔2

   ⋯
   ⋯

𝜔2

𝜔2

   ⋱ ⋮
   ⋯ 𝜔2 + 𝜎2

 

 

 However, there is not heteroskedasticity. The covariances between the elements of  

      𝒗𝒊 = 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑇
′ and 𝒗𝒋 = 𝑣𝑗1, 𝑣𝑗2, … , 𝑣𝑗𝑇

′
 are given by: 

 
𝐶𝑜𝑣 𝑣𝑖𝑡 , 𝑣𝑗𝑡 = 𝐸 𝑣𝑖𝑡𝑣𝑗𝑡 = 𝐸 𝜇𝑖 + 𝑢𝑖𝑡 𝜇𝑗 + 𝑢𝑗𝑡 = 

                                                      

                                                           = 𝐸[𝜇𝑖𝜇𝑗 + 𝜇𝑖𝑢𝑗𝑡 + 𝑢𝑖𝑡𝜇𝑗+𝑢𝑖𝑡𝑢𝑗𝑡] = 0 

 Thus,  

Cov

𝒗𝟏

𝒗𝟐

⋮
𝒗𝑵

=

𝛀
𝟎

𝟎
𝛀

⋮ ⋮
𝟎 𝟎

   ⋯
   ⋯

𝟎
𝟎

   ⋱ ⋮
   ⋯ 𝛀
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Panel data models:  
Fixed or Random Effects Model (Hausman test) 

 Decide between fixed or random effects model: we can run the Hausman test 

 Null hypothesis: the preferred model is random effects  

      vs. the alternative the fixed effects (see Green, 2008, chapter 9).  

 Steps: 

 Run a fixed effects model and save the estimates 

 Run a random model and save the estimates 

 Perform Hausman test. If the p-value is significant (for example a=0.05 > p-value) then use 
fixed effects, if not use random effects  

 

 R command:  

 fixed <- plm(y ~ sf1, data=data, index=c("country"), model="within") 

 random <- plm(y ~ sf1, data=data, index=c("country"), model="random") 

 phtest(fixed, random) 
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Panel data models:  
Tests - Diagnostics 

 Breusch-Pagan Lagrange Multiplier for random effects 

 The LM test helps you decide between a random effects regression and a simple OLS regression 

 The null hypothesis in the LM test:  no panel effect (i.e. OLS better). That is, no significant 
difference across units (i.e. no panel effect) 

 

 R command:  

 pool <- plm(y ~ sf1, data = data, model="pooling") 

 plmtest(pool, type=c("bp")) 
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Panel data models:  
Tests - Diagnostics 

 Breusch-Pagan Lagrange Multiplier test for cross-sectional dependence in panels  

 Cross-sectional dependence is a problem in panel data (especially with long time series)  

 The null hypothesis in the Breusch-Pagan/LM Cross-sectional dependence tests is that residuals 
across units are not correlated 

 Breusch-Pagan/LM (cross-sectional dependence) tests are used to test whether the residuals are 
correlated across units 

 

 R commands: 

 Breusch-Pagan Lagrange Multiplier test for cross-sectional dependence in panels  

 fixed <-plm(y ~ sf1, data=data, index=c("country"), model="within") 

 pcdtest(fixed, test = c("lm")) 

 

 Pesaran test for cross-sectional dependence in panels 

 pcdtest(fixed, test = c("cd")) 
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Panel data models:  
Testing for serial correlation 

 Breusch-Godfrey/Wooldridge test for serial correlation in panel models 

 Serial correlation tests apply to panel data. The null is that there is not serial correlation  

 

 R commands: (required package: lmtest) 

 fixed <-plm(y ~ sf1, data=data, index=c("country"), model="within") 

 pbgtest(fixed) 
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Panel data models:  
Testing for heteroskedasticity 

 Breusch-Pagan test for heteroskedasticity 

 The null hypothesis for the Breusch-Pagan test is homoskedasticity  

 If hetersokedaticity is detected we can use robust covariance matrix to account for it, or model 
the conditional variances (using, for example, ARCH/GARCH type models) 

 

 R commands: (required package: lmtest) 

 bptest(y ~ sf1 + factor(country), data = data, studentize=F) 
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Panel data models:  
Controlling for heteroskedasticity 

 Robust covariance matrix estimation (Sandwich estimator)  

 The ‘vcovHC’ function estimates three heteroskedasticity-consistent covariance estimators: 

 "white1": for general heteroskedasticity but no serial correlation (recommended for random effects) 

 "white2“: is "white1" restricted to a common variance within groups (recommended for random effects) 

 "arellano“:  both heteroskedasticity and serial correlation (recommended for fixed effects) 

 The following options can be applied: 

 HC0 : heteroskedasticity consistent (default) 

 HC1,HC2, HC3 : Recommended for small samples. HC3 gives less weight to influential observations 

 HC4 : small samples with influential observations 

 HAC : heteroskedasticity and autocorrelation consistent (type ?vcovHAC for more details) 

 R commands: (required package: lmtest) 

 fixed <-plm(y ~ sf1, data=data, index=c("country"), model="within") 

 coeftest(fixed)                        # Original coefficients 

 coeftest(fixed, vcovHC)        # Heteroskedasticityconsistent coefficients 

 coeftest(fixed, vcovHC(fixed, method = "arellano")) # Heteroskedasticity consistent coefficients (Arellano) 

 random <-plm(y ~ sf1, data=data, index=c("country"), model="random") 

 coeftest(random)                  # Original coefficients 

 coeftest(random, vcovHC)  # Heteroskedasticity consistent coefficients 
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Panel data models: Application to R 
 

 Several panel data models will be implemented in R 

 See corresponding R-file 
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Thank you  
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