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Non-autonomous System

The system of n first-order differential equations can be written as:
ẋ1 = f1(t, x1(t), x2(t), . . . , xn(t))
ẋ2 = f2(t, x1(t), x2(t), . . . , xn(t))

...
ẋn = fn(t, x1(t), x2(t), . . . , xn(t))


where ẋ(t) = dx

dt . In vector notation:

ẋ(t) = f (x(t), t)

Qualitative analysis analyzes differential equations without solving
them analytically or numerically. Therefore, we can obtain the
behavior of the solution without having them explicitly.



Autonomous System

When f does not explicitly depend on time the system is called
autonomous

ẋ(t) = f (x(t))

The n = 1 case
ẋ1 = f (x1(t))

The n = 2 case {
ẋ1 = f1(x1(t), x2(t))
ẋ2 = f2(x1(t), x2(t))

}
An equilibrium point, or fixed point, or critical point, or rest
point, or steady state of the system is a point x∗ such that
f (x∗) = 0, or equivalently a point x∗: ẋ(t) = 0



The n=1 case
Consider the autonomous ODE ẋ = x(1− x).
The differential equation gives a formula for the slope. In this
example, the slope just depends on the independent variable.
The slope field gives us a rough idea about solutions to the
differential equation, since solutions to the differential equation are
tangent to the small slope lines.
Find equilibrium points: ẋ = 0⇒ x(1− x) = 0
Equilibrium points: x = 0, x = 1

Figure: The slope field, solution graphs and phase line for ẋ = x(1− x)

x = 1: Stable equilibrium point (often called attractor or sink)
x = 0: Unstable equilibrium point (also known as repeller or
source)



The n=1 case

Consider the autonomous ODE ẋ = x − x3.
Find equilibrium points: ẋ = 0⇒ x(1− x2) = 0
Equilibrium points: x = 0, x = 1, x = −1

Figure: The slope field, solution graphs and phase line for ẋ = x − x3

x = 1 and x = −1: Stable equilibrium points
x = 0: Unstable equilibrium point



The n=2 case

Consider the linear system with constant coefficients:

ẋ = Ax + b

The equilibrium point is defined as:

x∗ : ẋ = 0 or x∗ = −A−1b

The equilibrium point is globally asymptotically stable if and only if
the real parts of the eigenvalues (characteristic roots) of A are
negative. Matrix A is then called a stable matrix.

λ1, λ2 =
1
2 [trA±

√
∆], ∆ = (trA)2 − 4|A|



Classification of Equilibrium Points (n=2)



Phase Diagram

Figure: Stable focus

{x ′ = −x − y , y ′ = x − y , x(0) = 1, y(0) = 0}

λ1, λ2 = −1± i ∆ = −4 < 0, tr(A) < 0



Phase Diagram

Figure: Unstable focus

{x ′ = x − y , y ′ = x + y , x(0) = 0, y(0) = 0}

λ1, λ2 = 1± i ∆ = −4 < 0, tr(A) > 0



Stable Improper Node

Consider [
ẋ1(t)
ẋ2(t)

]
=

[
−2 0
0 −3

] [
x1(t)
x2(t)

]
+

[
2
6

]
Matrix A is diagonal and the system is uncoupled (since the
off-diagonal elements of A are zero). Hence

λ1 = −2 < 0, λ2 = −3 < 0

implying
λ1, λ2 < 0 and λ1 6= λ2

So, the system is stable and the steady state is a stable node i.e.
orbits flow non-cyclically towards it. That is,

∆ > 0, det(A) > 0, tr(A) < 0



Draw the phase diagram
ẋ1(t) = 0 : ẋ1(t) = −2x1(t) + 2 = 0⇔ x1(t) = 1

ẋ2(t) = 0 : ẋ2(t) = −3x2(t) + 6 = 0⇔ x2(t) = 2

Therefore (x1, x2) = (1, 2) is the steady state. Moreover:

∂ẋ1(t)
∂x1(t)

= −2 < 0

i.e. ẋ1(t) decreases as x1(t) increases (convergence). Thus, the
directional arrows point

[
+, 0, −

]
as we move W → E along

the x1 axis . Furthermore

∂ẋ2(t)
∂x2(t)

= −3 < 0

i.e. ẋ2(t) decreases as x2(t) increases (convergence). Thus, the

directional arrows point

 −0
+

 as we move S → N along the x2

axis.



Stable Improper Node

Figure: Stable Improper Node - Phase Diagram



Unstable Improper Node

Consider [
ẋ1(t)
ẋ2(t)

]
=

[
2 0
0 3

] [
x1(t)
x2(t)

]
+

[
−2
−6

]
This example is the opposite of the “stable improper node”
example. The eigenvalues are:

λ1 = 2 > 0, λ2 = 3 > 0

Implying
λ1, λ2 > 0 and λ1 6= λ2

So, the system is unstable and the steady state is an unstable
improper node i.e. orbits flow non-cyclically away from it. That is,

∆ > 0, det(A) > 0, tr(A) > 0



Draw the phase diagram
ẋ1(t) = 0 : ẋ1(t) = 2x1(t)− 2 = 0⇔ x1(t) = 1
ẋ2(t) = 0 : ẋ2(t) = 3x2(t)− 6 = 0⇔ x2(t) = 2

Therefore (x1, x2) = (1, 2) is the steady state (as in the stable
node example). Moreover:

∂ẋ1(t)
∂x1(t)

= 2 > 0

i.e. ẋ1(t) increases as x1(t) increases (divergence). Thus the
directional arrows point

[
−, 0, +

]
as we move W → E along

the x1 axis . Furthermore,

∂ẋ2(t)
∂x2(t)

= 3 > 0

i.e. ẋ2(t) increases as x2(t) increases (divergence). Thus the

directional arrows point

 +
0
−

 as we move S → N along the x2

axis.



Unstable Improper Node

Figure: Unstable Improper Node - Phase Diagram



Saddle Point Equilibrium
Of special interest in economics is the saddle point equilibrium
occurring when one of the characteristic roots is positive while the
other is negative. In this case the general solution of the
homogeneous system is:{

x1(t) = v11c1eλ1t + v21c2eλ2t

x2(t) = v12c1eλ1t + v22c2eλ2t

}
λ1 →

(
v11
v12

)
λ2 →

(
v21
v22

) (
c1
c2

)
: constants

In a saddle point equilibrium the system converges towards
equilibrium only along the trajectory MM, which is called the
stable arm of the equilibrium. The other arm is the unstable arm.



Saddle Point

Consider [
ẋ1(t)
ẋ2(t)

]
=

[
0 1
1
4 0

] [
x1(t)
x2(t)

]
+

[
−2
−1

2

]
Find the characteristic polynomial:

|A− λI| = 0⇔ λ2 − 1
4 = 0⇔ (λ− 1

2)(λ+
1
2) = 0

where
λu = 0.5 > 0 and λs = −0.5 < 0

So, the steady state is a saddle point, hence unstable. That is,

det(A) = −1
4 < 0



Saddle Point
Find the eigenvectors[

0− 1
2 1

1
4 0− 1

2

] [
vu1
vu2

]
=

[
0
0

]
⇒ −1

2vu1 + vu2 = 0
1
4vu1 − 1

2vu1 = 0

So, we have that vu1 = 2vu2.Therefore

vu =

[
vu1
vu2

]
=

[
2vu2
vu2

]
= vu2

[
2
1

]
So, the eigenvector corresponding to the unstable root λ1 = 1

2 is

vu =

[
2
1

]
and the second eigenvector:[ 1

2 1
1
4

1
2

] [
vs1
vs2

]
=

[
0
0

]
⇒

1
2vs1 + vs2 = 0

1
4vs1 +

1
2vs2 = 0



Saddle Point
So, we have that vs1 = −2vs2.Therefore

vs =

[
vs1
vs2

]
=

[
−2vs2

vs2

]
= vs2

[
−2
1

]
So, the eigenvector corresponding to the stable root λs = −1

2 is

vs =

[
−2
1

]
Next, find the steady state (i.e. ẋ1(t) = 0 and ẋ2(t) = 0)

x̄1 = 2, x̄2 = 2

Write the general solution in deviation from the steady state

x(t)− x = cuvueλut + csvseλs t

The general solution is:
{

x1(t) = cu2e0.5t − cs2e−0.5t + 2
x2(t) = cue0.5t + cse−0.5t + 2

}
⇔{

x1(t)− 2 = cu2e0.5t − cs2e−0.5t

x2(t)− 2 = cue0.5t + cse−0.5t

}



Saddle Point
Saddle path (asymptotic) stability requires:

cu = 0

so that
lim

t→+∞
(x(t)− x) = cuvueλut = 0

Next draw the phase diagram
Demarcation lines:

ẋ1(t) = 0 : ẋ1(t) = x2(t)− 2 = 0⇔ x2(t) = 2

ẋ2(t) = 0 : ẋ2(t) = 0.25x1(t)− 0.5 = 0⇔ x1(t) = 2
Draw directional arrows using the vector field:

(x1(t), x2(t)) = (3, 1)⇒ (ẋ1(t), ẋ2(t)) = (−1, 0.25) implying movement(←, ↑)
(x1(t), x2(t)) = (1, 1)⇒ (ẋ1(t), ẋ2(t)) = (−1,−0.25) implying movement(←, ↓)
(x1(t), x2(t)) = (3, 3)⇒ (ẋ1(t), ẋ2(t)) = (1, 0.25) implying movement(→, ↑)
(x1(t), x2(t)) = (1, 3)⇒ (ẋ1(t), ẋ2(t)) = (1,−0.25) implying movement(→, ↓)





Saddle Point

Streamlines/Orbits: As far as ẋ1(t) = 0 is concerned, (asymptotic)
movement is indicated by the vertical arrows. As far as ẋ2(t) = 0
is concerned, (asymptotic) movement is indicated by the horizontal
arrows.
Finally, draw the manifolds:

x2(t)− x2
x1(t)− x1

=
vs2
vs1

=
1
−2 ⇔ x2(t) = 3− 0.5x1(t) (Stable manifold)

and

x2(t)− x2
x1(t)− x1

=
vu2
vu1

=
1
2 ⇔ x2(t) = 1+0.5x1(t) (Unstable manifold)



Saddle Point - Phase Diagram

Figure: Saddle Point - Phase Diagram



Saddle Point

Consider [
ẋ1(t)
ẋ2(t)

]
=

[
1 3
1 −1

] [
x1(t)
x2(t)

]
the eigenvalues are

λu = 2 > 0 and λs = −2 < 0

So, the steady state is a saddle point, hence unstable. The
eigenvectors are:

λu →
(

3
1

)
λs →

(
1
−1

)
the general solution:

X = cu

[
3
1

]
e2t + cs

[
1
−1

]
e−2t



Saddle Point - Phase Diagram

Figure: Saddle Point - Phase Diagram



Stability of nonlinear systems: Qualitative analysis
(Linearization)

Consider the system of nonlinear differential equations
ẋ(t) = f (x(t)), f : Rn → Rn. Assume that x∗ is an isolated
equilibrium point f (x∗) = 0. Take the first-order Taylor expansion
around the equilibrium point. The linearized system can be
obtained as

ẋ(t) = f (x∗) + A(x(t)− x∗)

ẋ(t) = A(x − x∗), A =

[
∂f (x∗

i )

∂xj

]
ij
= Df (x∗), i , j = 1, . . . , n

Where A is the Jacobian matrix of the system evaluated at the
equilibrium point. An equilibrium point x∗ is called hyperbolic if
A = Df (x∗) has no eigenvalues with zero real parts. An
equilibrium point x∗ is called non-hyperbolic if at least one
eigenvalue of A = Df (x∗) has zero real part. If a hyperbolic
equilibrium point is globally stable in the liner approximation, then
it is locally stable at the original nonlinear system. The converse
however is not necessarily true.



Stability of nonlinear systems: Qualitative analysis
(Linearization)



The Ramsey optimal growth model
Solve the following optimal growth problem. All quantities are in
per capita terms. Utility is concave and the production function is
classical CRS.

max
{ct}

∫ ∞

0
e−θtu(c(t))dt (1)

s.t. k̇(t) = f (k(t))− c(t)− nk(t) (2)
k(0) = k0

Use the current-value formulation:

Hcv (t, c(t), k(t)) = u(c(t)) + µ(t)(f (k(t))− c(t)− nk(t)) (3)

According to Maximum Principle:
∂Hcv

∂c(t) = 0⇒ u′(c(t)) = µ(t)⇒ (4)

µ̇(t) = u′′(c(t))ċ(t) (5)



The Ramsey optimal growth model

From the Maximum Principle Condition:

µ̇(t) = − ∂Hcv

∂k(t)+θµ(t)⇒ µ̇(t) = −µ(t)(f ′(k(t))−n)+θµ(t) (6)

Plugging (5) into (6) yields the Euler equation:

u′′(c(t))ċ(t) = −µ(t)(f ′(k(t))− n) + θµ(t) (4)
=⇒ (7)

u′′(c(t))ċ(t) = −u′(c(t))(f ′(k(t))− n − θ)⇔ (8)
ċ(t)
c(t) = − u′(c(t))

u′′(c(t))
1

c(t)(f
′(k(t))− n − θ) (9)

where
σ := σ(c(t)) = − u′(c(t)) > 0

u′′(c(t)) < 0
1

c(t) > 0 > 0 (10)



The Ramsey optimal growth model
Hence

ċ(t)
c(t) = σ(f ′(k(t))− n − θ) (11)

the Euler Equation. Moreover,

k̇(t) = f (k(t))− c(t)− nk(t) (12)

the state motion, and

lim
t→∞

µ(t)e−θtk∗(t) = 0 (13)

or using (4)
lim

t→∞
u′(c(t))e−θtk∗(t) = 0 (14)

which implies that it would not be optimal to end up with positive
capital because it could be consumed instead, since marginal utility
of consumption, u′(c(t)), and its present value u′(c(t))e−θt , is
positive by assumption (concave utility function). Hence, we
forced, terminal per capita capital to be zero.



The Ramsey optimal growth model

In steady state, we obtain a non-linear canonical system:{
ċ(t) = σ(c(t)) · c(t) · (f ′(k(t))− n − θ) = 0

k̇(t) = f (k(t))− c(t)− nk(t) = 0

}
⇔{

f ′(k∗) = n + θ
c∗ = f (k∗)− nk∗

}
where

f (k∗) = n + θ (15)

is called the Modified Golden Rule.



The Ramsey optimal growth model
The phase-space, k(t)− c(t), is divided in 4 regions. The stability
conditions imply the following movement (directional arrows/
flow):

∂k̇(t)
∂c(t) = −1 < 0, convergence Horizontal flow (16)

i.e. as c(t) increases, k̇(t) implies movement in the opposite
direction

[
+, 0 ,−

]
. Thus the horizontal directional arrows

point → below k̇(t) = 0 and ← above it.

∂ċ(t)
∂k(t) = σ

>0
· c(t)

>0
· f ′′(t)

<0
< 0, convergence Verical flow

(17)
i.e. as k(t) increases, ċ(t) implies movement in the opposite
direction

[
+, 0, −

]
. Thus the vertical directional arrows point

↑ to the left and ↓ to the right of ċ(t) = 0.
␣



Local stability
Linearise system (15) using first order Taylor’s expansion around
the steady state

ċ(t) ' ∂ċ(t)
∂k(t) |k

∗,c∗ [k(t)− k∗] +
∂ċ(t)
∂c(t) |k

∗,c∗ [c(t)− c∗]

ċ(t) ' σ(c∗) · c∗ · f ′′(k∗)[k(t)− k∗] + 0[c(t)− c∗]

ċ(t) ' −β · (k(t)− k∗)

define σ(c∗) · c∗ · f ′′(k∗) := −β < 0, since σ > 0 and

k̇(t) ' ∂k̇(t)
∂k(t) |k

∗,c∗ [k(t)− k∗] +
∂k̇(t)
∂c(t) |k

∗,c∗ [c(t)− c∗]

k̇(t) ' [f ′(k∗)− n][k(t)− k∗]− [c(t)− c∗]

k̇(t) ' θ(k(t)− k∗)− (c(t)− c∗)



Local stability
Hence the linearized system

[
ċ(t)
k̇(t)

]
=

[
0 −β < 0
−1 0 < θ < 1

] [
c(t)
k(t)

]
+

[
βk∗

c∗ − θκ∗

]
whose characteristic polynomial

λ2 − tr(J |∗)λ+ det(J |∗) = 0

with
∆ = [−tr(J |∗)]2 − 4det(J |∗) = θ2 + 4β > 0

and
det(J |∗) = −β < 0

the steady state will be a saddle point.
There are two ways to find the general solution:
a) Either solve the linearized first order 2× 2 system
b) Or, proceed as follows:



Local stability
Differentiate linearized k̇(t) once with respect to time and solve a
second order linear differential equation:

k̈(t) = d
dt k̇(t) = θk̇(t)− ċ(t) = θk̇(t)− (−β)(k(t)− k∗)

k̈(t)− θk̇(t)− βk(t) = −βk∗

The characteristic polynomial of the homogeneous equation is:

ρ2 − θρ− β = 0

with
∆ = θ2 + 4β > 0

and

ρ1,2 =
θ ±

√
θ2 + 4β
2

with two opposite-signed roots

ρ2 < 0 < ρ1



Local stability
The solution of the homogeneous equation is:

k(t) = A1eρ1t + A2eρ2t

which ρ1 > 0 is the unstable root and ρ2 < 0 is the stable root.
The non-homogeneous equation has solution

−βk̄ = −βk∗ ⇔ k̄ = k∗

Thus, the general solution (stated in deviation from the steady
state values) equals:

k(t)− k∗ = A1eρ1t + A2eρ2t

Saddle-path stability requires

A1 := 0

Finally, use the initial condition to determine arbitrary constant A2:

k(0) = k0 ⇔ A2 = k0 − k∗

Hence, the stable solution path:

k(t)− k∗ = (k0 − k∗)eρ2t



Phase Diagram


