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First Order Linear Differential Equations

Differential equation is an equation that relates one or more
functions of time and their derivatives.
Solve y ′(t) + by(t) = 0

y ′ + by = 0 ⇒ y ′

y = −b

observe that y ′

y = dlny
dt . So, integrating both sides we have:

lny = −bt + C

y(t) = e−bt+C = e−bteC

where C is an arbitrary constant and putting eC = c we obtain

y = ce−bt



First Order Linear Differential Equations

Consider the following FODE:

a0y ′(t) + a1y(t) = g(t)

There are many ways to solve this non-homogeneous equation. We
will first find the characteristic polynomial to determine the roots
of the equation and then, will use the Lagrange’s method of
variation of parameters to determine the general solution including
the particular integral.
Firstly, bring the original equations in normal form:

y ′(t) + a1
a0

y(t) = a−1
0 g(t)

y ′(t) + by(t) = a−1
0 g(t)

where b = a1
a0

.



First Order Linear Differential Equations
Next, find the characteristic root of the homogeneous equation.
Letting:

y(t) = eλt y ′(t) = λeλt

the homogeneous equation becomes:

λeλt + beλt = 0

eλt(λ+ b) = 0
Since eλt 6= 0

λ = −b

Thus the solution of the homogeneous equation is:

yh(t) = ceλt = ce−bt

where c is an arbitrary constant. The solution will be stable
(damped movement) as long as:

−b < 0



First Order Linear Differential Equations
Apply Lagrange’s method of variation of parameters. Let the
following function, with time-varying coefficient c(t) be a solution
to the original non-homogeneous equation:

y(t) = c(t)e−bt

Taking the time derivative of this expressions:

y ′(t) = c ′(t)e−bt − bc(t)e−bt

and substituting into the original y ′(t) + by(t) = a−1
0 g(t) yields:

c ′(t)e−bt − bc(t)e−bt + bc(t)e−bt = a−1
0 g(t)

c ′(t)e−bt = a−1
0 g(t)

c ′(t) = ebta−1
0 g(t)



First Order Linear Differential Equations

Integrate w.r.t. time yields (without the constant of integration) a
solution for c(t):

c(t) =
ˆ

ebta−1
0 g(t)dt =

1
a0

ˆ
ebtg(t)dt

Hence, the particular solution is:

y(t) = 1
a0

e−bt
ˆ

ebtg(t)dt

We can write the general solution as:

y(t) = yh(t) + y(t) = ce−bt +
1
a0

e−bt
ˆ

ebtg(t)dt

Finally, an initial condition is required to determine arbitrary
constant c.



Example

Solve the following non-homogeneous equation:

3y ′(t) + 6y(t) = e−2t

subject to: y(0) = 1.
In normal form:

y ′(t) + 2y(t) = 1
3e−2t

Find the characteristic root of the homogeneous equation:

λ+ 2 = 0 ⇔ λ = −2

Thus the solution of the homogeneous equations is:

yh(t) = ce−2t



Variation of Parameters
Next, apply the method of variation of parameters:

y(t) = c(t)e−2t

Taking the time derivative of this expressions:

y ′(t) = c ′(t)e−2t − 2c(t)e−2t

and substituting into the original y ′(t) + 2y(t) = 1
3e−2t yields:

(c ′(t)e−2t − 2c(t)e−2t) + 2c(t)e−2t =
1
3e−2t

c ′(t)e−2t =
1
3e−2t

c ′(t) = 1
3

c(t) = 1
3 t

Hence, the particular solution is:

y(t) = 1
3 te−2t



Method of undetermined coefficients
We will solve the non-homogeneous equation
y ′(t) + 2y(t) = 1

3e−2t by trying a solution in the form of a first
order exponential guess function in t.

yt = ae−2t , y ′
t = −2ae−2t

Substitution into the the non-homogeneous equation yields:

−2ae−2t + 2ae−2t =
1
3e−2t

but a remains undetermined. Try out an alternative guess function
yt (multiplying the guess function by t):

yt = ate−2t , y ′
t = ae−2t − 2ate−2t

Substitution into the the non-homogeneous equation yields:

ae−2t − 2ate−2t + 2ate−2t =
1
3e−2t ⇒ ae−2t =

1
3e−2t ⇒ a =

1
3

So, the particular solution is:

y(t) = 1
3 te−2t



General Solution

Hence, the general solution is:

y(t) = yh(t) + y(t) = ce−2t +
1
3 te−2t

Use the initial condition y(0) = 1 to determine c:

c = 1

Therefore:
y(t) = e−2t +

1
3 te−2t



Second Order Linear Differential Equations
Consider the following linear second order linear differential
equation:

a0y ′′(t) + a1y ′(t) + a2y(t) = g(t)

Firstly, bring the original equation in normal form:

y ′′(t) + a1
a0

y ′(t) + a2
a0

y(t) = 1
a0

g(t)

y ′′(t) + b1y ′(t) + b2y(t) = 1
a0

g(t)

where b1 = a1
a0

and b2 = a2
a0

. Next, find the characteristic root of
the homogeneous equation. Letting:

y(t) = eλt y ′(t) = λeλt y ′′(t) = λ2eλt

the homogeneous equation becomes:

λ2eλt + b1λeλt + b2eλt = 0

eλt(λ2 + b1λ+ b2) = 0



Second Order Linear Differential Equations
Since eλt 6= 0 we have that:

λ2 + b1λ+ b2 = 0

The quality of the roots depends on whether:

∆ Q 0

The solution will be stable (monotonic convergent movement as
t → ∞) as long as:

λi < 0, ∀i = 1, 2
In general, whatever ∆, the NASC for stability i.e. for the real part
of the roots be < 0 requires (Gandolfo p.198):

b1 > 0 and b2 > 0

The solution of the homogeneous equation becomes:

yh(t) = A1eλ1t + A2eλ2t , ∆ > 0

yh(t) = A1eλt + A2teλt , ∆ = 0
yh(t) = eat(A1cosbt + A2sinbt), ∆ < 0 λ1,2 = α± ib



Variation of Parameters
Next, apply the Lagrange’s method of variation of parameters. Let
the following function with time varying coefficients A1(t) and
A2(t) be a solution of the non-homogeneous equation (assuming
the case ∆ > 0):

y(t) = A1(t)eλ1t + A2(t)eλ2t

The above function will be a solution to the non-homogeneous
equation if A1(t) and A2(t) satisfy the two equations (Gandolfo
p.201):

Condition 1 : A′
1(t)eλ1t + A′

2(t)eλ2t = 0

Condition 2 : A′
1(t)(eλ1t)′ + A′

2(t)(eλ2t)′ =
1
a0

g(t)

Solve the linear system for A′
1(t) and A′

2(t).
Integrating the solutions w.r.t. time yields a solution for A1(t)
and A2(t). Hence you find the particular solution y t .
We can write the general solution as y(t) = yh(t) + y(t)



Discriminant Δ>0
Solve:

y ′′(t)− 5y ′(t) + 6y(t) = t

The equation is already in normal form:

y ′′(t) + b1y ′(t) + b2y(t) = 1
a0

g(t)

with:
a0 = 1, b1 = −5, b2 = 6, g(t) = t

The characteristic polynomial:

λ2 − 5λ+ 6 = 0

∆ = 1 > 0, λ1 = 2 λ2 = 3

Thus the solution of the homogeneous equations is:

yh(t) = A1e2t + A2e3t



Discriminant Δ>0

Next, we will solve the non-homogeneous equation

y ′′(t)− 5y ′(t) + 6y(t) = t

by trying a solution in the form of a first order polynomial guess
function in t:

yt = at + β, y ′
t = a y ′′

t = 0

and will substitute for yt and y ′
t into the original equation leaving

the RHS unchanged:

−5a + 6(at + β) = t

6at + (6β − 5a) = t



Discriminant Δ>0

Equating coefficients on both sides yields a linear system in two
unknown parameters (the undetermined coefficients):{

6a = 1
6β − 5a = 0

}
⇔

{
a = 1

6
β = 5

36

}
Therefore, the solution of the non-homogeneous equation is:

ȳt =
1
6 t + 5

36
The general solution equals the sum of the solution of the
homogeneous and the non-homogeneous equation.

yt = A1e2t + A2e3t +
1
6 t + 5

36



Discriminant Δ=0
Solve:

y ′′(t)− 6y ′(t) + 9y(t) = e3t

t2

subject to y(1) = 0, y ′(1) = 1.5e3. The equation is already in
normal form:

y ′′(t) + b1y ′(t) + b2y(t) = 1
a0

g(t)

with:
a0 = 1, b1 = −6, b2 = 9, g(t) = e3t

t2

The characteristic polynomial:
λ2 − 6λ+ 9 = 0 ⇔ (λ− 3)2 = 0

Implies an unstable solution since λ = λ1 = λ2 = 3 ≮ 0. Moreover
the NASC for stability are not satisfied:

b1 = −6 ≯ 0, b2 = 9 > 0
Thus the solution of the homogeneous equations is:

yh(t) = A1e3t + A2te3t



Discriminant Δ=0

Next, apply the Lagrange’s method of variation of parameters. Let
the following function with time varying coefficients A1(t) and
A2(t) be a solution of the non-homogeneous equation

y(t) = A1(t)e3t + A2(t)te3t

Condition 1 : A′
1(t)e3t + A′

2(t)te3t = 0

Condition 2 : A′
1(t)(e3t)′ + A′

2(t)(te3t)′ =
e3t

t2 ⇒

A′
1(t)(3e3t) + A′

2(t)(e3t + 3te3t) =
e3t

t2 ⇒

A′
1(t)(3e3t) + A′

2(t)e3t(1 + 3t) = e3t

t2



Discriminant Δ=0
Solve the linear system for A′

1(t) and A′
2(t):

A′
1(t)e3t + A′

2(t)te3t = 0

A′
1(t)(3e3t) + A′

2(t)e3t(1 + 3t) = e3t

t2

Use Cramer’s Rule to solve the 2 × 2 system of equations:

A′
1(t) =

∣∣∣∣ 0 te3t

e3t

t2 e3t(1 + 3t)

∣∣∣∣∣∣∣∣ e3t te3t

3e3t e3t(1 + 3t)

∣∣∣∣ =
− e3t

t2 te3t

e3te3t(1 + 3t)− 3e3tte3t =
−1
t

A′
2(t) =

∣∣∣∣ e3t 0
3e3t e3t

t2

∣∣∣∣∣∣∣∣ e3t te3t

3e3t e3t(1 + 3t)

∣∣∣∣ =
e3t e3t

t2

e3te3t(1 + 3t)− 3e3tte3t =
1
t2



Discriminant Δ=0
Integrating w.r.t time yields a solution for A1(t) and A2(t):

A1(t) =
ˆ

−1
t dt = −lnt

A2(t) =
ˆ 1

t2 dt = −1
t

Hence the particular solution is:

y(t) = −lnte3t − 1
t te3t = −(e3t lnt + e3t)

The general solution is y(t) = yh(t) + y(t), so

y(t) = A1e3t + A2te3t − (e3t lnt + e3t)

The initial conditions y(1) = 0, y ′(1) = 1.5e3 serve to determine
arbitrary constants A1 and A2. Hence the general solution is

y(t) = −e3t(lnt + 1)− 1.5e3t + 2.5te3t



Discriminant Δ<0

Let us solve the following second-order differential equation:

y ′′(t)− 2y ′(t) + 5y(t) = sin(t)

The characteristic polynomial:

λ2 − 2λ+ 5 = 0

Since ∆ = 4 − 4· 5 = −16 < 0, the roots of the characteristic
equation are a complex conjugates:

λ1,2 =
2 ±

√
−16

2 = 1 ± 2i

Cartesian coordinates
(a, b) = (1, 2)



Discriminant Δ<0
So, the solution of the homogeneous equations is:

yh(t) = eat(A1cosbt + A2sinbt) = et(A1cos2t + A2sin2t)

Next we will solve the non-homogeneous equation
y ′′(t)− 2y ′(t) + 5y(t) = sin(t) by trying a solution in the form of
a first order sinusoidal guess function in t:

yt = a cos(ωt) + β sin(ωt)

y ′
t = −aω sin(ωt) + βω cos(ωt)

y ′′
t = −aω2 cos(ωt)− βω2 sin(ωt)

Therefore
−aω2 cos(ωt)− βω2 sin(ωt)− 2(−aω sin(ωt) + βω cos(ωt)) +
5(a cos(ωt) + β sin(ωt)) = sin(t)

(−aω2 − 2βω + 5a)cos(ωt) + (−βω2 + 2aω + 5β)sin(ωt) = sin(t)



Discriminant Δ<0
Equating coefficients and angles on both sides yields:

ω = 1
−aω2 − 2βω + 5a = 0
−βω2 + 2aω + 5β = 1

 ⇔


ω = 1

−2β + 4a = 0
2a + 4β = 1

 ⇔
ω = 1
a = 1

10
β = 1

5


Therefore, the solution of the non-homogeneous equation is:

ȳt =
1
10 cos(t) + 1

5 sin(t)

So, the general solution equals:

yt = yh
t + ȳt ⇒

yt = et(A1cos2t + A2sin2t) + 1
10 cos(t) + 1

5 sin(t)



Systems of Differential Equations
Write the following 2nd order differential equation as a system of
first order, linear differential equations.

y ′′ + ay ′ + by = g(t)
Since the order of the differential equation is p = 2, define
p − 1 = 1 new variables, say x :

x ≡ y ′

x ′ ≡ y ′′

Substituting in the original and solving for x ′ yields:

x ′ + ax + by = g(t) ⇒

x ′ = −by − ax + g(t)[
y ′

x ′

]
=

[
0 1
−b −a

] [
y
x

]
+

[
0

g(t)

]



Systems of Differential Equations
Write the following third order differential equation as a system of
first order, linear differential equations.

y ′′′ + ay ′′ + by ′ + cy = g(t)

Since the order of the differential equation is p = 3, define
p − 1 = 2 new variables, say z and x :

z ≡ y ′

x ≡ y ′′ ⇒ x = z ′

x ′ = y ′′′

Substituting in the original and solving for x ′ yields:

x ′ + ax + bz + cy = g(t) ⇒

x ′ = −cy − bz − ax + g(t)



Systems of Differential Equations

 y ′

z ′
x ′

 =

 0 1 0
0 0 1
−c −b −a

 y
z
x

+

 0
0

g(t)


Stacking yields a linear first-order p × p difference system:

X ′
p×1

= A
p×p

X
p×1

+ G
p×1

General case: First order n × n systems (Gandolfo p.245)



Systems of Differential Equations

Solve the following non-homogeneous system of differential
equations: {

x ′ = x + 2y + 3t
y ′ = 2x + y + 2

}
This is a linear 2 × 2 system in x and y , already in normal. In
matrix form:

X ′ = AX + g

where

A :=

[
1 2
2 1

]
, X ′ :=

[
x ′

y ′

]
, X :=

[
x
y

]

g(t) =
[

3
0

]
t +

[
0
2

]



Real distinct roots (Δ>0)
Apply the direct method and find the characteristic polynomial of
square matrix A:[

1 − λ 2
2 1 − λ

]
= 0 ⇒ (1−λ)(1−λ)−4 = 0 ⇒ λ2−2λ−3 = 0

Since ∆ = 16 > 0 the polynomial has a pair of real distinct roots
(eigenvalues), λ1 = 3, λ2 = −1. Since the eigenvalues are distinct,
the eigenvector v1 = (v11, v12), v2 = (v21, v22) will be linear
independent:[

1 − 3 2
2 1 − 3

] [
v11
v12

]
=

[
0
0

]
⇒ −2v11 + 2v12 = 0

2v11 − 2v12 = 0
So, we have that v11 = v12.Therefore

v1 =

[
v11
v12

]
=

[
v12
v12

]
= v12

[
1
1

]
So, an eigenvector corresponding to λ1 = 3 is

v1 =

[
1
1

]



Real distinct roots (Δ>0)
while the eigenvector corresponding to λ2 = −1 is

[
1 − (−1) 2

2 1 − (−1)

] [
v21
v22

]
=

[
0
0

]
⇒ 2v21 + 2v22 = 0

2v21 + 2v22 = 0

So, we have that v21 = −v22.Therefore

v2 =

[
v21
v22

]
=

[
−v22
v22

]
= v22

[
−1
1

]
So, an eigenvector corresponding to λ2 = −1 is

v2 =

[
−1
1

]
The solution of the homogeneous system is:

X = c1v1eλ1t + c2v2eλ2t



Real distinct roots (Δ>0)

X = c1

[
1
1

]
e3t + c2

[
−1
1

]
e−t

{
xt = c1e3t − c2e−t

yt = c1e3t + c2e−t

}
where c1 and c2 are arbitrary constants.
We can now turn to the problem of finding a particular solution of
the non-homogeneous system. The method of undetermined
coefficients can be applied here too. Since

g(t) =
[

3
0

]
t +

[
0
2

]
let us try

X (t) =
[
α1
α2

]
t +

[
β1
β2

]
where α1, α2, β1, β2 are undetermined constants.



Real distinct roots (Δ>0)

X ′
= AX + g

g = X ′ − AX[
3
0

]
t +

[
0
2

]
=

[
α1
α2

]
−
[

1 2
2 1

]
(

[
α1
α2

]
t +

[
β1
β2

]
)

[
3
0

]
t +

[
0
2

]
=

[
α1
α2

]
−
[
α1 + 2a2
2a1 + a2

]
t −

[
β1 + 2β2
2β1 + β2

]

[
3
0

]
t +

[
0
2

]
= −

[
α1 + 2a2
2a1 + a2

]
t +

[
α1 − β1 − 2β2
α2 − 2β1 − β2

]



Real distinct roots (Δ>0)
Clearly requiring that a1 , a2 , b1 and b2 satisfy the two linear
algebraic systems[

3
0

]
= −

[
α1 + 2a2
2a1 + a2

]
and

[
0
2

]
=

[
α1 − β1 − 2β2
α2 − 2β1 − β2

]
whose solution is easily found to be

a1 = 1, a2 = −2, b1 = −3, b2 = 2

So, the particular solution is:

X (t) =
[

1
−2

]
t +

[
−3
2

]
Therefore, GS = CF + PS

X = c1

[
1
1

]
e3t + c2

[
−1
1

]
e−t +

[
1
−2

]
t +

[
−3
2

]
{

xt = c1e3t − c2e−t + t − 3
yt = c1e3t + c2e−t − 2t + 2

}



Real repeated roots (Δ=0)
Solve the following differential system:{

x ′ = −4x + y
y ′ = −1x − 2y

}
This is a linear 2 × 2 system in x and y , already in normal. In
matrix form:

X ′ = AX + g

where

A :=

[
−4 1
−1 −2

]
, X ′ :=

[
x ′

y ′

]
, X :=

[
x
y

]
, g(t) =

[
0
0

]
Apply the direct method and find the characteristic polynomial of
square matrix A:[
−4 − λ 1
−1 −2 − λ

]
= 0 ⇒ (−4−λ)(−2−λ)+1 = 0 ⇒ λ2+6λ+9 = 0

Since ∆ = 0 the polynomial has a real repeated root (eigenvalue),
λ = λ1 = λ2 = −3.



Real repeated roots (Δ=0)

The independent eigenvector v1 is:[
−4 − (−3) 1

−1 −2 − (−3)

] [
v11
v12

]
=

[
0
0

]
⇒ −v11 + v12 = 0

−v11 + v12 = 0

So, we have that v11 = v12.Therefore

v1 =

[
v11
v12

]
=

[
v12
v12

]
= v12

[
1
1

]
So, the independent eigenvector corresponding to λ1 = −3 is

v1 =

[
1
1

]



Real repeated roots (Δ=0)

The generalized eigenvector v2 is

(A − λΙ)v2 = v1[
−4 − (−3) 1

−1 −2 − (−3)

] [
v21
v22

]
=

[
1
1

]
−v21 + v22 = 1
−v21 + v22 = 1 → v21 = v22 − 1

Therefore, the generalized eigenvector is:

v2 =

[
v21
v22

]
=

[
v22 − 1

v22

]
v22=1
=

[
0
1

]



Real repeated roots (Δ=0)

The solution of the homogeneous system when ∆ = 0 is:

X = c1v1eλt + c2(tv1 + v2)eλt

The solution of the system is:

X = c1

[
1
1

]
e−3t + c2(t

[
1
1

]
+

[
0
1

]
)e−3t

{
xt = c1e−3t + c2te−3t

yt = c1e−3t + c2(t + 1)e−3t

}



Complex eigenvalues (Δ<0) (for those interested!)

Complex eigenvalues: λ1, λ2 = u + vi

{
x1(t) = eut [c1(γ1cos(vt)− γ2sin(vt)) + c2(γ1sin(vt) + γ2cos(vt))]
x2(t) = eut [c1(δ1cos(vt)− δ2sin(vt)) + c2(δ1sin(vt) + δ2cos(vt))]

}
(

v1
v2

)
=

(
γ1 + iγ2
δ1 + iδ2

)
For more details for the case of complex eigenvalues for matrix A
see any good book in differential equations e.g. M. Hirsch ans S.
Smale, Differential Equations, Dynamical Systems, and Linear
Algebra, Academic Press, 1974, or Morris W. Hirsch Stephen
Smale and Robert L. Devaney, Differential Equations, Dynamical
Systems, and an Introduction to Chaos, Elsevier, 2004


