MSc MATHS ECON - TUTORIAL 2

Difference Equations and Lag Operators

Spyros Tsangaris, Maria Gioka

Athens University of Economics and Business

25/11/2024

Spyros Tsangaris, Maria Gioka MSc MATHS ECON - TUTORIAL 2

First-order Difference Equations

The general form is:

$$b_1y_t+b_0y_{t-1}=g(t)$$

where g(t) is a known function. The solution of the homogeneous equations $b_1y_t + b_0y_{t-1} = 0$ is:

$$y_t^h = c(-\lambda)^t$$

where c is an arbitrary constant and $\lambda = \frac{b_0}{b_1}$. Use the method of undetermined coefficients to find a particular solution \bar{y}_t . The general solution equals the sum of the solutions of the homogeneous and the non-homogeneous equation (the particular solution):

$$y_t = y_t^h + \bar{y}_t = c(-\lambda)^t + \bar{y}_t$$

In order to determine the arbitrary constant we need one additional condition:

$$y_t = y^*$$
 for $t = t^*$

where y^* and t^* are known values.

Polynomial guess

Solve $y_{t+1} - 5y_t = 3t + 2$ subject to $y_0 = 0$ We will start by solving the homogeneous equation $y_{t+1} - 5y_t = 0$ Let non-trivial solution $y_t = \lambda^t \neq 0$ and substitute into the homogeneous equation:

$$y_{t+1} - 5y_t = 0 \Rightarrow \lambda^{t+1} - 5\lambda^t = 0 \Leftrightarrow$$

$$\lambda^t(\lambda-5)=0\Leftrightarrow\lambda=5$$

Therefore, the solution of the homogeneous equation is:

$$y_t^h = c\lambda^t = c5^t$$

Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order polynomial guess function in t:

$$y_t = at + \beta$$
, $y_{t+1} = a(t+1) + \beta$

and will substitute for y_t and y_{t+1} into the original equation leaving the RHS unchanged:

$$y_{t+1} - 5y_t = 3t + 2 \Rightarrow a(t+1) + \beta - 5(at+\beta) = 3t + 2 \Leftrightarrow$$
$$at + a + \beta - 5at - 5\beta = 3t + 2 \Leftrightarrow$$

$$-4at - 4\beta + \alpha = 3t + 2$$

Equating coefficients on both sides yields a linear system in two unknown parameters (the undetermined coefficients):

$$\left\{\begin{array}{c} -4a = 3\\ -4\beta + a = 2\end{array}\right\} \Leftrightarrow \left\{\begin{array}{c} a = -\frac{3}{4}\\ \beta = -\frac{11}{16}\end{array}\right\}$$

Therefore, the solution of the non-homogeneous equation is:

$$\bar{y}_t = -\frac{3}{4}t - \frac{11}{16}$$

The general solution equals the sum of the solution of the homogeneous and the non-homogeneous equation.

Polynomial guess

$$y_t = y_t^h + \bar{y}_t \Rightarrow$$

 $y_t = c5^t - \frac{3}{4}t - \frac{11}{16} \quad \forall t$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$0 = y_0 = c5^0 - \frac{3}{4}0 - \frac{11}{16} \Leftrightarrow$$
$$c = \frac{11}{16}$$

Therefore, the general solution equals:

$$y_t = \frac{11}{16}5^t - \frac{3}{4}t - \frac{11}{16} \quad \forall t$$

Since the characteristic root is $\lambda = 5 > 0$ and $|\lambda| > 1$; the movement will be monotonically divergent (from the long run equilibrium) as $t \to \infty$.

Exponential guess

Solve $y_t - 3y_{t-1} = 4^t$ subject to $y_0 = 0$.

We will start by solving the homogeneous equation $y_t - 3y_{t-1} = 0$. Let non-trivial solution $y_t = \lambda^t \neq 0$ and substitute into the homogeneous equation:

$$y_t - 3y_{t-1} = 0 \Rightarrow \lambda^t - 3\lambda^{t-1} = 0 \Leftrightarrow$$

$$\lambda^{t-1}(\lambda-3) = 0 \Leftrightarrow \lambda = 3$$

Therefore, the solution of the homogeneous equation is:

$$y_t^h = c\lambda^t = c3^t$$

Since the characteristic root is $\lambda = 3 > 0$ and $|\lambda| > 1$; the movement will be monotonically divergent as $t \to \infty$. Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order exponential guess function in t:

$$y_t = a4^t$$
, $y_{t-1} = a4^{t-1}$

Exponential guess

Substitute for y_t and y_{t-1} into the original equation leaving the RHS unchanged:

$$y_t - 3y_{t-1} = 4^t \Rightarrow a4^t - 3a4^{t-1} = 4^t \Leftrightarrow$$
$$(a - 3a4^{-1})4^t = 4^t \Leftrightarrow a(1 - \frac{3}{4})4^t = 4^t \Leftrightarrow$$
$$a\frac{1}{4}4^t = 4^t$$

Equating coefficients on both sides allows as to determine a:

$$\frac{a}{4} = 1 \Leftrightarrow a = 4$$

Therefore, the solution of the non-homogeneous equation is:

$$\bar{y}_t = 44^t = 4^{t+1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exponential guess

The general solution equals the sum of the solution of the homogeneous and the non-homogeneous equation.

$$y_t = y_t^h + \bar{y}_t \Rightarrow$$

 $y_t = c3^t + 4^{t+1} \quad \forall t$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$0 = y_0 = c3^0 + 4 \Leftrightarrow$$
$$c = -4$$

Therefore, the general solution equals:

$$y_t = -43^t + 4^{t+1} \Leftrightarrow$$

$$y_t = 4(4^t - 3^t) \quad \forall t$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● のへの

 $cos(\omega t \pm \omega) = cos\omega t cos\omega \mp sin\omega t sin\omega$ $sin(\omega t \pm \omega) = sin\omega t cos\omega \pm sin\omega cos\omega t$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Trigonometric guess

Solve $y_{t+1} + \frac{\sqrt{2}}{2}y_t = cos(\frac{\pi t}{4})$ subject to $y_0 = 0$. We will start by solving the homogeneous equation $y_{t+1} + \frac{\sqrt{2}}{2}y_t = 0$. Let non-trivial solution $y_t = \lambda^t \neq 0$ and substitute into the homogeneous equation:

$$y_{t+1} + \frac{\sqrt{2}}{2}y_t = 0 \Rightarrow \lambda^{t+1} + \frac{\sqrt{2}}{2}\lambda^t = 0 \Leftrightarrow \lambda^t(\lambda + \frac{\sqrt{2}}{2}) = 0 \Leftrightarrow \lambda = -\frac{\sqrt{2}}{2}$$

Therefore, the solution of the homogeneous equation is:

$$y_t^h = c\lambda^t = c(-rac{\sqrt{2}}{2})^t$$

Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order sinusoidal guess function in t:

$$y_t = a \cos(\omega t) + \beta \sin(\omega t)$$

$$y_{t+1} = a\cos(\omega(t+1)) + \beta \sin(\omega(t+1))$$

$$y_{t+1} = a(\cos(\omega t)\cos\omega - \sin(\omega t)\sin\omega) + \beta(\sin(\omega t)\cos\omega + \sin\omega\cos(\omega t))$$

= $a\cos(\omega t)\cos\omega - a\sin(\omega t)\sin\omega + \beta\sin(\omega t)\cos\omega + \beta\sin\omega\cos(\omega t)$
and will substitute for y_t and y_{t+1} into the original equation
leaving the RHS unchanged:

$$y_{t+1} + \frac{\sqrt{2}}{2}y_t = \cos(\frac{\pi t}{4})$$

 $\begin{array}{l} \operatorname{a}\cos(\omega t)\cos\omega - \operatorname{a}\sin(\omega t)\sin\omega + \beta\sin(\omega t)\cos\omega + \beta\sin\omega\cos(\omega t) + \\ \frac{\sqrt{2}}{2}[\operatorname{a}\cos(\omega t) + \beta\sin(\omega t)] = \cos(\frac{\pi t}{4}) \Leftrightarrow \end{array}$

$$(a\cos\omega+\beta\sin\omega+a\frac{\sqrt{2}}{2})\cos(\omega t)+(-a\sin\omega+\beta\cos\omega+\beta\frac{\sqrt{2}}{2})\sin(\omega t)=\cos(\frac{\pi t}{4})$$

<ロト <四ト <注入 <注下 <注下 <

Equating coefficients and angles on both sides yields:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{cases} \omega = \frac{\pi}{4} \\ a\cos\omega + \beta\sin\omega + a\frac{\sqrt{2}}{2} = 1 \\ \beta\cos\omega - a\sin\omega + \beta\frac{\sqrt{2}}{2} = 0 \\ & \omega = \frac{\pi}{4} \\ a\cos\frac{\pi}{4} + \beta\sin\frac{\pi}{4} + a\frac{\sqrt{2}}{2} = 1 \\ \beta\cos\frac{\pi}{4} - a\sin\frac{\pi}{4} + \beta\frac{\sqrt{2}}{2} = 0 \\ & \begin{pmatrix} \omega = \frac{\pi}{4} \\ \frac{a}{\sqrt{2}} + \frac{\beta}{\sqrt{2}} + a\frac{\sqrt{2}}{2} = 1 \\ \frac{\beta}{\sqrt{2}} - \frac{\alpha}{\sqrt{2}} + \beta\frac{\sqrt{2}}{2} = 0 \end{pmatrix} \Leftrightarrow \begin{cases} \omega = \frac{\pi}{4} \\ a = \frac{2\sqrt{2}}{5} \\ \beta = \frac{\sqrt{2}}{5} \end{cases}$$

Trigonometric guess

Therefore, the solution of the non-homogeneous equation is:

$$\bar{y}_t = \frac{\sqrt{2}}{5}(2\cos(\frac{\pi}{4}t) + \sin(\frac{\pi}{4}t))$$

So, the general solution equals:

$$y_t = y_t^h + \bar{y}_t \Rightarrow$$

$$y_t = c(-rac{\sqrt{2}}{2})^t + rac{\sqrt{2}}{5}(2\cos(rac{\pi}{4}t) + \sin(rac{\pi}{4}t)) \quad orall t$$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$0 = y_0 = c\left(-\frac{\sqrt{2}}{2}\right)^0 + \frac{\sqrt{2}}{5}\left(2\cos\left(\frac{\pi}{4}0\right) + \sin\left(\frac{\pi}{4}0\right)\right) \Leftrightarrow$$
$$0 = c + \frac{2\sqrt{2}}{5} \Leftrightarrow c = -\frac{2\sqrt{2}}{5}$$

(日) (四) (문) (문) (문)

Therefore, the general solution equal:

$$y_t = -\frac{2\sqrt{2}}{5}(-\frac{\sqrt{2}}{2})^t + \frac{\sqrt{2}}{5}(2\cos(\frac{\pi}{4}t) + \sin(\frac{\pi}{4}t)) \quad \forall t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Second Order Difference Equations

Solve $y_{t+2} - 4y_{t+1} + 3y_t = 5^t$ subject to $y_0 = 1$ and $y_1 = 2$. Firstly consider the homogeneous equation: $y_{t+2} - 4y_{t+1} + 3y_t = 0$.

Its characteristic equation is:

$$\lambda^{2} - 4\lambda + 3 = 0$$
$$\lambda^{2} + \alpha_{1}\lambda + \alpha_{2} = 0$$
$$\alpha_{1} = -4 \qquad \alpha_{2} = 3$$

The necessary and sufficient conditions for stability, namely:

$$1 + a_1 + a_2 > 0$$

 $1 - a_2 > 0$
 $1 - a_1 + a_2 > 0$

are not simultaneously satisfied.

Moreover, since $\Delta = 4 > 0$ and the coefficient of the characteristic polynomial alternate in sign, the roots will be positive by Descartes' Theorem. Indeed:

$$\lambda_{1,2} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$\lambda_1 = 3, \ \lambda_2 = 1$$
 $\lambda_1 \neq \lambda_2$ $\lambda_1, \lambda_2 \epsilon Re$

Therefore, the solution of the homogeneous equation is:

$$y_t^h = A_1 \lambda_1^t + A_2 \lambda_2^t = A_1 3^t + A_2$$

Next, consider the non-homogeneous equation $y_{t+2} - 4y_{t+1} + 3y_t = 5^t$. Try an exponential guess function.

$$y_t = a5^t, y_{t+1} = a5^{t+1}, y_{t+2} = a5^{t+2}$$

Substituting in the non-homogeneous equation yields:

$$a5^{t+2} - 4a5^{t+1} + 3a5^t = 5^t \Leftrightarrow 25a - 20a + 3a = 1 \Leftrightarrow a = \frac{1}{8}$$

Therefore:

$$PS: \ \bar{y}_t = \frac{1}{8}5^t$$
$$GS: \ y_t = A_13^t + A_2 + \frac{1}{8}5^t$$

1

Moreover:

*IC*1:
$$y_0 = 1 \Leftrightarrow A_1 3^0 + A_2 + \frac{1}{8} 5^0 = 1 \Leftrightarrow A_1 + A_2 = \frac{7}{8}$$

*IC*2:
$$y_1 = 2 \Leftrightarrow A_1 3^1 + A_2 + \frac{1}{8} 5^1 = 2 \Leftrightarrow 3A_1 + A_2 = \frac{11}{8}$$

Solving this linear system for A_1 and A_2 yields: $A_1 = \frac{1}{4}$, $A_2 = \frac{5}{8}$ Therefore:

$$GS: y_t = \frac{1}{4}3^t + \frac{5}{8} + \frac{1}{8}5^t$$

and $\lim_{t \to +\infty} y_t = +\infty$

Solve $y_{t+2} - 2y_{t+1} + y_t = -6^t + t$ assuming arbitrary initial conditions.

Firstly consider the HE: $y_{t+2} - 2y_{t+1} + y_t = 0$. Its characteristic equation is:

$$\lambda^2 - 2\lambda + 1 = 0 \Leftrightarrow (\lambda - 1)^2 = 0$$

Moreover $\Delta=0$,and

$$\lambda_1=\lambda_2=1\epsilon \textit{Re}$$
 with $m=2$

where m indicates the multiplicity of the real repeated root. Hence, the solution of the homogeneous equation equals:

$$y_t^h = A_1 \lambda_1^t + A_2 t \lambda_2^t = A_1 + A_2 t$$

while the necessary and sufficient conditions for stability, namely:

$$1 + a_1 + a_2 > 0$$

 $1 - a_2 > 0$
 $1 - a_1 + a_2 > 0$

are not simultaneously satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Next consider the non-homogeneous equation:

$$y_{t+2} - 2y_{t+1} + y_t = -6^t + t$$

Let us try a mixed guess function for the non-homogeneous part:

$$y_t^g = (a6^t) + (\beta t + \gamma)$$
$$y_{t+1}^g = (a6^{t+1}) + (\beta(t+1) + \gamma)$$
$$y_{t+2}^g = (a6^{t+2}) + (\beta(t+2) + \gamma)$$

Substituting in the non-homogeneous equation yields:

$$a6^{t+2} + (\beta(t+2) + \gamma - 2[a6^{t+1} + \beta(t+1) + \gamma] + (a6^{t}) + (\beta t + \gamma) = -6^{t} + t$$

$$\mathsf{a6}^{t+2} + \beta t + 2\beta + \gamma - 2\mathsf{a6}^{t+1} - 2\beta t - 2\beta - 2\gamma + \mathsf{a6}^t + \beta t + \gamma = -6^t + t$$

$$25a6^t = -6^t + t$$

Equating coefficients implies that $25a = -1 \Leftrightarrow a = -\frac{1}{25}$, but β and γ remain undetermined.

Try out an alternative guess function $y_t^{g^2}$ (multiplying the undetermined part of of y_t^g by t):

$$y_t^{g2} = (a6^t) + (\beta t^2 + \gamma t)$$

$$y_{t+1}^{g_2} = (a6^{t+1}) + (\beta(t+1)^2 + \gamma(t+1))$$

$$y_{t+2}^{g2} = (a6^{t+2}) + (\beta(t+2)^2 + \gamma(t+2))$$

Substituting in the non-homogeneous equation yields: $a6^{t+2} + \beta(t+2)^2 + \gamma(t+2) - 2[a6^{t+1} + \beta(t+1)^2 + \gamma(t+1)] + a6^t + \beta t^2 + \gamma t = -6^t + t$

$$25a6^t + 2\beta = -6^t + t$$

Again, β and γ remain undetermined.

Try out an alternative guess function $y_t^{g^3}$ (multiplying the undetermined part of $y_t^{g^2}$ by t):

$$y_t^{g3} = (a6^t) + (\beta t^3 + \gamma t^2)$$

$$y_{t+1}^{g3} = (a6^{t+1}) + (\beta(t+1)^3 + \gamma(t+1)^2)$$

$$y_{t+2}^{g_3} = (a6^{t+2}) + (\beta(t+2)^3 + \gamma(t+2)^2)$$

Substituting in the non-homogeneous equation yields: $(a6^{t+2}) + (\beta(t+2)^3 + \gamma(t+2)^2) - 2[(a6^{t+1}) + (\beta(t+1)^3 + \gamma(t+1)^2)] + (a6^t) + (\beta t^3 + \gamma t^2) = -6^t + t \Leftrightarrow$

$$25a6^{t} + 6\beta t + (6\beta + 2\gamma) = -6^{t} + t$$

Equating coefficient yields a unique solution for β and γ as well:

$$6\beta = 1 \wedge 6\beta + 2\gamma = 0$$

$$\beta = \frac{1}{6} \wedge \gamma = -\frac{1}{2}$$

Therefore:

$$PS: \ \bar{y}_t = -\frac{1}{25}6^t + \frac{1}{6}t^3 - \frac{1}{2}t^2$$

$$GS: y_t = A_1 + A_2t - \frac{1}{25}6^t + \frac{1}{6}t^3 - \frac{1}{2}t^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Complex numbers

The imaginary number i is defined solely by the property that its square is -1.

$$i^2 = -1$$

A complex number z is a number that can be expressed in the form:

where *a* and *b* are real numbers, and *i* represents the imaginary unit, satisfying the equation $i^2 = -1$. Real part:

$$Re(a + bi) := a$$

Imaginary part:

$$Im(a+bi) := b$$

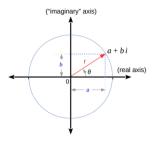
Complex conjugate:

$$\overline{a+bi}:=a-bi$$

That is, negate the imaginary component.

Complex numbers

The complex plane is a geometric representation of the complex numbers established by the real axis and the perpendicular imaginary axis.



Here r is the absolute value (or modulus or magnitude) of the complex number z

$$r = \sqrt{a^2 + b^2}$$

and θ the argument of z

$$a = rcos \theta$$
 $\beta = rsin \theta$

Solve $y_{t+2} + 2y_{t+1} + 2y_t = 2^t$ assuming arbitrary initial conditions. Firstly consider the HE:

$$y_{t+2} + 2y_{t+1} + 2y_t = 0$$
$$y_{t+2} + a_1y_{t+1} + a_2y_t = 0$$
$$a_1 = 2, \ a_2 = 2$$

while the necessary and sufficient conditions for stability, namely:

$$1 + a_1 + a_2 > 0$$

 $1 - a_2 > 0$
 $1 - a_1 + a_2 > 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

are not simultaneously satisfied.

Moreover:

$$\lambda^2 + 2\lambda + 2y_t = 0$$

$$\Delta = (2)^2 - 4 \cdot 2 = -4 < 0$$

Since $\Delta <$ 0, the roots of the characteristic equation are a complex conjugates:

$$\lambda_{1,2} = \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

Cartesian coordinates:

$$(a,b)=(-1,1)$$

The absolute value (or modulus or magnitude) of the complex number z = -1 + i is:

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

The argument of the complex number, denoted arg(z) and labeled θ :

$$egin{aligned} &= rcos heta \Rightarrow -1 = \sqrt{2}cos heta \Rightarrow cos heta = rac{-1}{\sqrt{2}} \ &b = rsin heta \Rightarrow 1 = \sqrt{2}sin heta \Rightarrow sin heta = rac{1}{\sqrt{2}} \end{aligned}$$

From the trigonometric tables we find that the angle whose sine is $\frac{1}{\sqrt{2}}$ and whose cosine is $\frac{-1}{\sqrt{2}}$, is $\frac{3\pi}{4}$. Therefore, the solution of the homogeneous equation is:

$$y_t = r^t (A_1 \cos\theta t + A_2 \sin\theta t) \Rightarrow y_t = \sqrt{2}^t (A_1 \cos(\frac{3\pi}{4}t) + A_2 \sin(\frac{3\pi}{4}t))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Next consider the non-homogeneous equation:

$$y_{t+2} + 2y_{t+1} + 2y_t = 2^t$$

Try out an exponential guess function:

$$y_t = a2^t, y_{t+1} = a2^{t+1}, y_{t+2} = a2^{t+2}$$

Substituting in the non-homogeneous equation:

$$a2^{t+2}+2a2^{t+1}+2a2^{t} = 2^{t} \Leftrightarrow (a2^{2}+2a2+2a)2^{t} = 2^{t} \Leftrightarrow 10a2^{t} = 2^{t}$$
$$10a = 1 \Leftrightarrow a = \frac{1}{10}$$

Therefore:

$$PS: \quad \bar{y}_t = \frac{1}{10}2^t$$

$$GS: y_t = A_1 \sqrt{2}^t \cos(\frac{3\pi}{4}t) + A_2 \sqrt{2}^t \sin(\frac{3\pi}{4}t) + \frac{1}{10} 2^t$$

Operators

 \checkmark Operator: A mapping of one set into another, each of which has a certain structure.

 \checkmark For most practical purposes, operators can be treated just as algebraic quantities.

We introduce the lag operator L such that:

$$Ly_t = y_{t-1}$$

So,

$$L^2 y_t = y_{t-2}, \ L^n y_t = y_{t-n}, \ L^{-1} y_t = y_{t+1}$$

Formally, the operator L^n maps one sequence into another sequence.

Lag operator applied to a constant c

$$Lc = c$$

Distributive

$$(L^j + L^i)y_t = y_{t-j} + y_{t-i}$$

Associative

$$L^{j}L^{i}y_{t} = L^{i}L^{j}y_{t} = L^{i+j}y_{t} = y_{t-i-j}$$

Infinite-series expansions

Using a well-known infinite-series expansion , for |c| < 1, we have

$$\frac{1}{1-c} = 1 + c + c^2 + \dots = \sum_{i=0}^{\infty} c^i$$

Treating aL exactly like c we have that,

$$\frac{1}{(1-aL)} = (1-aL)^{-1} = 1 + aL + a^2L^2 + \dots = \sum_{i=0}^{\infty} a^iL^i$$

Notice that the above sequence is a bounded sequence if |a| < 1, but will divergent if |a| > 1. In this latter case, consider an alternative expansion:

$$(1 - aL)^{-1} = -\sum_{i=1}^{\infty} \left(\frac{1}{a}\right)^{i} L^{-i}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

The general form is:

$$b_1y_t+b_0y_{t-1}=g(t)$$

 \checkmark It may happen that we do not know the functional form of g(t). \checkmark We know the actual succession of values g(0), g(1), ..., g(t). In other words, g(t) is a sequence of known real values \checkmark In such case the method of undetermined coefficients cannot be applied.

 $\checkmark \mbox{It}$ is possible to find a particular solution by applying operational methods.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Backward and forward solutions

Solve:

$$b_1 y_t + b_0 y_{t-1} = x(t)$$

where x(t) is a sequence of known real values.

$$y_t + \frac{b_0}{b_1}y_{t-1} = \frac{x(t)}{b_1}$$

Setting
$$b = rac{b_0}{b_1}$$
 and $X_t = rac{x(t)}{b_1}$ we have:
 $y_t + by_{t-1} = X_t$

The solution of the homogeneous equation is:

$$y_t^h = c(-b)^t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where c is an arbitrary constant.

Backward and forward solutions

Next, find a particular solution:

$$y_t + by_{t-1} = X_t$$
$$y_t + bLy_t = X_t$$
$$(1 + bL)y_t = X_t$$

If |-b| < 1, then the particular solution is:

$$\overline{y}_t = (1 - (-b)L)^{-1}X_t = \sum_{i=0}^{\infty} (-b)^i L^i X_t = \sum_{i=0}^{\infty} (-b)^i X_{t-i}$$

Note that \overline{y}_t is a bounded sequence if |-b| < 1 (same: |b| < 1) but will be divergent if |-b| > 1. In this latter case consider an alternative expansion.

$$\overline{y}_{t} = (1 - (-b)L)^{-1}X_{t} = -\sum_{i=1}^{\infty} (-\frac{1}{b})^{i}L^{-i}X_{t} = -\sum_{i=1}^{\infty} (-\frac{1}{b})^{i}X_{t+i}$$