Part I

Homework Set 1

0.1 Numerical Application

The system of differential equations that describe the solution:

$$
\begin{gathered}
\dot{\lambda}=-\lambda \\
\dot{y}=y+\frac{a+\lambda}{2}
\end{gathered}
$$

0.2 Exhaustible Resources

$$
\begin{gathered}
\dot{\lambda}=\rho \lambda+2 x+\delta \lambda \\
\dot{x}=\frac{1+\lambda}{2}-\delta x
\end{gathered}
$$

0.3 The Saving Problem

Euler equation: $u^{\prime}\left(c_{t}\right)=u^{\prime}\left(c_{t+1}\right) \beta R_{t+1}$

Part II

Homework Set 2

0.1. a) $2 y_{t+1}+3 y_{t}+2=0, y_{0=1}$
$y_{t=\frac{7}{5}}\left(-\frac{3}{2}\right)^{t}-\frac{2}{5}$
The term of the homogeneous equation dominates the equilibrium value as time goes to infinity. yt movement is unstable-explosive and alterenates in signs.
b) $y_{t+1}-\frac{1}{2} y_{t}=t+3, y_{0}=3$
$y_{t}=\left(\frac{1}{2}\right)^{t}+2 t+2$
yt converges to its equilibrium value, but this equilibrium value is not stable, so yt goes to infinity as time goes to infinity.
0.2.a)
$y_{t}=-3^{t}+\frac{3}{2} 2^{t}+\frac{1}{2} 4^{t}$
Since both distinct roots are in abolute value bigger than one, then yt goes to infinity as t goes to infinity.
b)
$y_{t}=3^{t}-\frac{1}{6} t^{3}-\frac{1}{2} t^{2}-\frac{1}{3} t$
$y t$ goes to infinity as t goes to infinity

$$
\begin{aligned}
& 0.3 . \\
& y_{t}=\left[-c_{1}+c_{2}(t-0.5)\right](-1)^{t}-\frac{2 a}{(a+1)^{2}} a^{t} \\
& x_{t}=\left[-c_{1}-c_{2}(t-1)\right](-1)^{t}+\frac{a-1}{(a+1)^{2}} a^{t}
\end{aligned}
$$

This is the same application as in Tutorial 3, case $\Delta=0$

