# MSc MATHS ECON - Tutorial 5 Qualitative Analysis 

Spyros Tsangaris, Maria Gioka

Athens University of Economics and Business

$$
12 / 1 / 2024
$$

The system of n first-order differential equations can be written as:

$$
\left\{\begin{array}{c}
\dot{x}_{1}=f_{1}\left(t, x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
\dot{x}_{2}=f_{2}\left(t, x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
\vdots \\
\dot{x}_{n}=f_{n}\left(t, x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)
\end{array}\right\}
$$

where $\dot{x}(t)=\frac{d x}{d t}$. In vector notation:

$$
\dot{x}(t)=f(x(t), t)
$$

Qualitative analysis analyzes differential equations without solving them analytically or numerically. Therefore, we can obtain the behavior of the solution without having them explicitly.

## Autonomous System

When $f$ does not explicitly depend on time the system is called autonomous

$$
\dot{x}(t)=f(x(t))
$$

The $n=1$ case

$$
\dot{x}_{1}=f_{1}\left(x_{1}(t)\right)
$$

The $n=2$ case

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}(t), x_{2}(t)\right) \\
\dot{x}_{2}=f_{2}\left(x_{1}(t), x_{2}(t)\right)
\end{array}\right\}
$$

An equilibrium point, or fixed point, or critical point, or rest point, or steady state of the system is a point $x^{*}$ such that $f\left(x^{*}\right)=0$, or equivalently a point $x^{*}: \dot{x}(t)=0$

The $\mathrm{n}=1$ case
Consider the autonomous ODE $\dot{x}=x(1-x)$.
The differential equation gives a formula for the slope. In this example, the slope just depends on the independent variable.
The slope field gives us a rough idea about solutions to the differential equation, since solutions to the differential equation are tangent to the small slope lines.
Find equilibrium points: $\dot{x}=0 \Rightarrow x(1-x)=0$
Equilibrium points: $x=0, x=1$


Figure: The slope field, solution graphs and phase line for $\dot{x}=x(1-x)$
$x=1$ : Stable equilibrium point (often called attractor or sink) $x=0$ : Unstable equilibrium point (also known as repeller or source)

Consider the autonomous ODE $\dot{x}=x-x^{3}$ ．
Find equilibrium points：$\dot{x}=0 \Rightarrow x\left(1-x^{2}\right)=0$
Equilibrium points：$x=0, x=1, x=-1$


Figure：The slope field，solution graphs and phase line for $\dot{x}=x-x^{3}$
$x=1$ and $x=-1$ ：Stable equilibrium points
$x=0$ ：Unstable equilibrium point

Consider the linear system with constant coefficients:

$$
\dot{x}=A x+b
$$

The equilibrium point is defined as:

$$
x^{*}: \dot{x}=0 \text { or } x^{*}=-A^{-1} b
$$

The equilibrium point is globally asymptotically stable if and only if the real parts of the eigenvalues (characteristic roots) of $A$ are negative. Matrix A is then called a stable matrix.

$$
\lambda_{1}, \quad \lambda_{2}=\frac{1}{2}[\operatorname{tr} A \pm \sqrt{\Delta}], \Delta=(\operatorname{tr} A)^{2}-4|A|
$$

## Classification of Equilibrium Points ( $\mathrm{n}=2$ )

| Characteristic roots | $\operatorname{tr}(A),\|A\|, \Delta$ | Type of Equilibrium |
| :--- | :--- | :--- |
| $\lambda_{1}=\lambda_{2}=\lambda>0$ | $\operatorname{tr}(A)>0,\|A\|>0, \Delta=0$ | Unstable proper node |
| $\lambda_{1}=\lambda_{2}=\lambda<0$ | $\operatorname{tr}(A)<0,\|A\|>0, \Delta=0$ | Stable proper node |
| $\lambda_{1}+\lambda_{2}, \lambda_{1}, \lambda_{2}>0$ | $\operatorname{tr}(A)>0,\|A\|>0, \Delta>0$ | Unstable improper |
| $\lambda_{1}+\lambda_{2}, \lambda_{1}, \lambda_{2}<0$ | $\operatorname{tr}(A)<0,\|A\|>0, \Delta>0$ | Stable improper node |
| $\lambda_{1}>0, \lambda_{2}<0$ | $\|A\|<0$ | Saddle point |
| $\lambda_{1}, \lambda_{2}$ complex | $\operatorname{tr}(A)>0, \Delta<0$ | Unstable focus |
| positive real parts |  |  |
| $\lambda_{1}, \lambda_{2}$ complex <br> negative real parts | $\operatorname{tr}(A)<0, \Delta<0$ | Stable focus |
| $\lambda_{1}, \lambda_{2}$ complex | $\operatorname{tr}(A)=0, \Delta=0$ | Center |
| zero real parts |  |  |



Figure: Stable focus

$$
\begin{gathered}
\left\{x^{\prime}=-x-y, \quad y^{\prime}=x-y, \quad x(0)=1, \quad y(0)=0\right\} \\
\lambda_{1}, \lambda_{2}=-1 \pm i \quad \Delta=-4<0, \quad \operatorname{tr}(A)<0
\end{gathered}
$$



Figure: Unstable focus

$$
\begin{gathered}
\left\{x^{\prime}=x-y, \quad y^{\prime}=x+y, \quad x(0)=0, \quad y(0)=0\right\} \\
\lambda_{1}, \lambda_{2}=1 \pm i \quad \Delta=-4<0, \quad \operatorname{tr}(A)>0
\end{gathered}
$$

Consider

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
2 \\
6
\end{array}\right]
$$

Matrix $A$ is diagonal and the system is uncoupled (since the off-diagonal elements of $A$ are zero). Hence

$$
\lambda_{1}=-2<0, \quad \lambda_{2}=-3<0
$$

implying

$$
\lambda_{1}, \lambda_{2}<0 \quad \text { and } \quad \lambda_{1} \neq \lambda_{2}
$$

So, the system is stable and the steady state is a stable node i.e. orbits flow non-cyclically towards it. That is,

$$
\Delta>0, \quad \operatorname{det}(A)>0, \quad \operatorname{tr}(A)<0
$$

$$
\begin{aligned}
& \dot{x_{1}}(t)=0: \dot{x}_{1}(t)=-2 x_{1}(t)+2=0 \Leftrightarrow x_{1}(t)=1 \\
& \dot{x}_{2}(t)=0: \dot{x}_{2}(t)=-3 x_{2}(t)+6=0 \Leftrightarrow x_{2}(t)=2
\end{aligned}
$$

Therefore $\left(\bar{x}_{1}, \bar{x}_{2}\right)=(1,2)$ is the steady state. Moreover:

$$
\frac{\partial \dot{x}_{1}(t)}{\partial x_{1}(t)}=-2<0
$$

i.e. $\dot{x}_{1}(t)$ decreases as $x_{1}(t)$ increases (convergence). Thus, the directional arrows point $[+, 0,-]$ as we move $W \rightarrow E$ along the $x_{1}$ axis. Furthermore

$$
\frac{\partial \dot{x}_{2}(t)}{\partial x_{2}(t)}=-3<0
$$

i.e. $\dot{x}_{2}(t)$ decreases as $x_{2}(t)$ increases (convergence). Thus, the directional arrows point $\left[\begin{array}{c}- \\ 0 \\ \hline\end{array}\right]$ as we move $S \rightarrow N$ along the $x_{2}$ axis.



Figure: Stable Improper Node - Phase Diagram

## Unstable Improper Node

Consider

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
$$

This example is the opposite of the "stable improper node" example. The eigenvalues are:

$$
\lambda_{1}=2>0, \quad \lambda_{2}=3>0
$$

Implying

$$
\lambda_{1}, \lambda_{2}>0 \quad \text { and } \quad \lambda_{1} \neq \lambda_{2}
$$

So, the system is unstable and the steady state is an unstable improper node i.e. orbits flow non-cyclically away from it. That is,

$$
\Delta>0, \quad \operatorname{det}(A)>0, \quad \operatorname{tr}(A)>0
$$

$$
\begin{aligned}
& \dot{x}_{1}(t)=0: \dot{x}_{1}(t)=2 x_{1}(t)-2=0 \Leftrightarrow x_{1}(t)=1 \\
& \dot{x}_{2}(t)=0: \dot{x}_{2}(t)=3 x_{2}(t)-6=0 \Leftrightarrow x_{2}(t)=2
\end{aligned}
$$

Therefore $\left(\bar{x}_{1}, \bar{x}_{2}\right)=(1,2)$ is the steady state (as in the stable node example). Moreover:

$$
\frac{\partial \dot{x}_{1}(t)}{\partial x_{1}(t)}=2>0
$$

i.e. $\dot{x}_{1}(t)$ increases as $x_{1}(t)$ increases (divergence). Thus the directional arrows point $[-, 0,+]$ as we move $W \rightarrow E$ along the $x_{1}$ axis. Furthermore,

$$
\frac{\partial \dot{x}_{2}(t)}{\partial x_{2}(t)}=3>0
$$

i.e. $\dot{x}_{2}(t)$ increases as $x_{2}(t)$ increases (divergence). Thus the directional arrows point $\left[\begin{array}{c}+ \\ 0 \\ -\end{array}\right]$ as we move $S \rightarrow N$ along the $x_{2}$ axis.

## Unstable Improper Node




Figure：Unstable Improper Node－Phase Diagram

Of special interest in economics is the saddle point equilibrium occurring when one of the characteristic roots is positive while the other is negative. In this case the general solution of the homogeneous system is:

$$
\left\{\begin{array}{l}
x_{1}(t)=v_{11} c_{1} e^{\lambda_{1} t}+v_{21} c_{2} e^{\lambda_{2} t} \\
x_{2}(t)=v_{12} c_{1} e^{\lambda_{1} t}+v_{22} c_{2} e^{\lambda_{2} t}
\end{array}\right\}
$$

$$
\lambda_{1} \rightarrow\binom{v_{11}}{v_{12}} \quad \lambda_{2} \rightarrow\binom{v_{21}}{v_{22}} \quad\binom{c_{1}}{c_{2}}: \text { constants }
$$

In a saddle point equilibrium the system converges towards equilibrium only along the trajectory MM , which is called the stable arm of the equilibrium. The other arm is the unstable arm.


Consider

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
\frac{1}{4} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-2 \\
-\frac{1}{2}
\end{array}\right]
$$

Find the characteristic polynomial:

$$
|A-\lambda I|=0 \Leftrightarrow \lambda^{2}-\frac{1}{4}=0 \Leftrightarrow\left(\lambda-\frac{1}{2}\right)\left(\lambda+\frac{1}{2}\right)=0
$$

where

$$
\lambda_{u}=0.5>0 \quad \text { and } \quad \lambda_{s}=-0.5<0
$$

So, the steady state is a saddle point, hence unstable. That is,

$$
\operatorname{det}(A)=-\frac{1}{4}<0
$$

Find the eigenvectors

$$
\left[\begin{array}{cc}
0-\frac{1}{2} & 1 \\
\frac{1}{4} & 0-\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{u 1} \\
v_{u 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \begin{aligned}
& -\frac{1}{2} v_{u 1}+v_{u 2}=0 \\
& \frac{1}{4} v_{u 1}-\frac{1}{2} v_{u 1}=0
\end{aligned}
$$

So, we have that $v_{u 1}=2 v_{u 2}$. Therefore

$$
v_{u}=\left[\begin{array}{l}
v_{u 1} \\
v_{u 2}
\end{array}\right]=\left[\begin{array}{c}
2 v_{u 2} \\
v_{u 2}
\end{array}\right]=v_{u 2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

So, the eigenvector corresponding to the unstable root $\lambda_{1}=\frac{1}{2}$ is

$$
v_{u}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

and the second eigenvector:

$$
\left[\begin{array}{cc}
\frac{1}{2} & 1 \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
v_{s 1} \\
v_{s 2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
\frac{1}{2} v_{s 1}+v_{s 2}=0 \\
\frac{1}{4} v_{s 1}+\frac{1}{2} v_{s 2}=0
\end{gathered}
$$

So, we have that $v_{s 1}=-2 v_{s 2}$. Therefore

$$
v_{s}=\left[\begin{array}{l}
v_{s 1} \\
v_{s 2}
\end{array}\right]=\left[\begin{array}{c}
-2 v_{s 2} \\
v_{s 2}
\end{array}\right]=v_{s 2}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

So, the eigenvector corresponding to the stable root $\lambda_{s}=-\frac{1}{2}$ is

$$
v_{s}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Next, find the steady state (i.e. $\dot{x}_{1}(t)=0$ and $\left.\dot{x}_{2}(t)=0\right)$

$$
\bar{x}_{1}=2, \bar{x}_{2}=2
$$

Write the general solution in deviation from the steady state

$$
x(t)-\bar{x}=c_{u} v_{u} e^{\lambda_{u} t}+c_{s} v_{s} e^{\lambda_{s} t}
$$

The general solution is: $\left\{\begin{array}{c}x_{1}(t)=c_{u} 2 e^{0.5 t}-c_{s} 2 e^{-0.5 t}+2 \\ x_{2}(t)=c_{u} e^{0.5 t}+c_{s} e^{-0.5 t}+2\end{array}\right\} \Leftrightarrow$

$$
\left\{\begin{array}{c}
x_{1}(t)-2=c_{u} 2 e^{0.5 t}-c_{s} 2 e^{-0.5 t} \\
x_{2}(t)-2=c_{u} e^{0.5 t}+c_{s} e^{-0.5 t}
\end{array}\right\}
$$

## Saddle Point

Saddle path (asymptotic) stability requires:

$$
c_{u}=0
$$

so that

$$
\lim _{t \rightarrow+\infty}(x(t)-\bar{x})=c_{u} v_{u} e^{\lambda_{u} t}=0
$$

Next draw the phase diagram
Demarcation lines:

$$
\begin{gathered}
\dot{x}_{1}(t)=0: \dot{x}_{1}(t)=x_{2}(t)-2=0 \Leftrightarrow x_{2}(t)=2 \\
\dot{x}_{2}(t)=0: \dot{x}_{2}(t)=0.25 x_{1}(t)-0.5=0 \Leftrightarrow x_{1}(t)=2
\end{gathered}
$$

Draw directional arrows using the vector field:
$\left[\begin{array}{c}\left(x_{1}(t), x_{2}(t)\right)=(3,1) \Rightarrow\left(\dot{x}_{1}(t), \dot{x}_{2}(t)\right)=(-1,0.25) \text { implying movement }(\leftarrow, \uparrow) \\ \left(x_{1}(t), x_{2}(t)\right)=(1,1) \Rightarrow\left(\dot{x}_{1}(t), \dot{x}_{2}(t)\right)=(-1,-0.25) \text { implying movement }(\leftarrow, \downarrow) \\ \left(x_{1}(t), x_{2}(t)\right)=(3,3) \Rightarrow\left(\dot{x}_{1}(t), \dot{x}_{2}(t)\right)=(1,0.25) \text { implying movement }(\rightarrow, \uparrow) \\ \left(x_{1}(t), x_{2}(t)\right)=(1,3) \Rightarrow\left(\dot{x}_{1}(t), \dot{x}_{2}(t)\right)=(1,-0.25) \text { implying movement }(\rightarrow, \downarrow)\end{array}\right]$

Streamlines/Orbits: As far as $\dot{x}_{1}(t)=0$ is concerned, (asymptotic) movement is indicated by the vertical arrows. As far as $\dot{x}_{2}(t)=0$ is concerned, (asymptotic) movement is indicated by the horizontal arrows.
Finally, draw the manifolds:
$\frac{x_{2}(t)-\bar{x}_{2}}{x_{1}(t)-\bar{x}_{1}}=\frac{v_{s 2}}{v_{s 1}}=\frac{1}{-2} \Leftrightarrow x_{2}(t)=3-0.5 x_{1}(t)($ Stable manifold $)$
and
$\frac{x_{2}(t)-\bar{x}_{2}}{x_{1}(t)-\bar{x}_{1}}=\frac{v_{u 2}}{v_{u 1}}=\frac{1}{2} \Leftrightarrow x_{2}(t)=1+0.5 x_{1}(t)$ (Unstable manifold)

## Saddle Point - Phase Diagram




Figure: Saddle Point - Phase Diagram

Consider

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

the eigenvalues are

$$
\lambda_{u}=2>0 \quad \text { and } \quad \lambda_{s}=-2<0
$$

So, the steady state is a saddle point, hence unstable. The eigenvectors are:

$$
\lambda_{u} \rightarrow\binom{3}{1} \quad \lambda_{s} \rightarrow\binom{1}{-1}
$$

the general solution:

$$
X=c_{u}\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{2 t}+c_{s}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-2 t}
$$



Figure: Saddle Point - Phase Diagram

## Stability of nonlinear systems: Qualitative analysis

 (Linearization)Consider the system of nonlinear differential equations $\dot{x}(t)=f(x(t)), f: R^{n} \rightarrow R^{n}$. Assume that $x^{*}$ is an isolated equilibrium point $f\left(x^{*}\right)=0$. Take the first-order Taylor expansion around the equilibrium point. The linearized system can be obtained as

$$
\begin{aligned}
\dot{x}(t) & =f\left(x^{*}\right)+A\left(x(t)-x^{*}\right) \\
\dot{x}(t)=A\left(x-x^{*}\right), A & =\left[\frac{\partial f\left(x_{i}^{*}\right)}{\partial x_{j}}\right]_{i j}=\operatorname{Df}\left(x^{*}\right), i, j=1, \ldots, n
\end{aligned}
$$

Where $A$ is the Jacobian matrix of the system evaluated at the equilibrium point. An equilibrium point $x^{*}$ is called hyperbolic if $A=D f\left(x^{*}\right)$ has no eigenvalues with zero real parts. An equilibrium point $x^{*}$ is called non-hyperbolic if at least one eigenvalue of $A=\operatorname{Df}\left(x^{*}\right)$ has zero real part. If a hyperbolic equilibrium point is globally stable in the liner approximation, then it is locally stable at the original nonlinear system. The converse however is not necessarily true.

Stability of nonlinear systems：Qualitative analysis
（Linearization）


Solve the following optimal growth problem. All quantities are in per capita terms. Utility is concave and the production function is classical CRS.

$$
\begin{array}{ll} 
& \max _{\left\{c_{t}\right\}} \int_{0}^{\infty} e^{-\theta t} u(c(t)) d t \\
\text { s.t. } \quad \dot{k}(t)= & f(k(t))-c(t)-n k(t)  \tag{2}\\
& k(0)=k_{0}
\end{array}
$$

Use the current-value formulation:

$$
\begin{equation*}
H^{c v}(t, c(t), k(t))=u(c(t))+\mu(t)(f(k(t))-c(t)-n k(t)) \tag{3}
\end{equation*}
$$

According to Maximum Principle:

$$
\begin{align*}
\frac{\partial H^{c v}}{\partial c(t)} & =0 \Rightarrow u^{\prime}(c(t))=\mu(t) \Rightarrow  \tag{4}\\
\dot{\mu}(t) & =u^{\prime \prime}(c(t)) \dot{c}(t) \tag{5}
\end{align*}
$$

From the Maximum Principle Condition:

$$
\begin{equation*}
\dot{\mu}(t)=-\frac{\partial H^{c v}}{\partial k(t)}+\theta \mu(t) \Rightarrow \dot{\mu}(t)=-\mu(t)\left(f^{\prime}(k(t))-n\right)+\theta \mu(t) \tag{6}
\end{equation*}
$$

Plugging (5) into (6) yields the Euler equation:

$$
\begin{gather*}
u^{\prime \prime}(c(t)) \dot{c}(t)=-\mu(t)\left(f^{\prime}(k(t))-n\right)+\theta \mu(t) \stackrel{(4)}{\Longrightarrow}  \tag{7}\\
u^{\prime \prime}(c(t)) \dot{c}(t)=-u^{\prime}(c(t))\left(f^{\prime}(k(t))-n-\theta\right) \Leftrightarrow  \tag{8}\\
\frac{\dot{c}(t)}{c(t)}=-\frac{u^{\prime}(c(t))}{u^{\prime \prime}(c(t))} \frac{1}{c(t)}\left(f^{\prime}(k(t))-n-\theta\right) \tag{9}
\end{gather*}
$$

where

$$
\begin{equation*}
\sigma:=\sigma(c(t))=-\frac{u^{\prime}(c(t))>0}{u^{\prime \prime}(c(t))<0} \frac{1}{c(t)>0}>0 \tag{10}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\dot{c}(t)}{c(t)}=\sigma\left(f^{\prime}(k(t))-n-\theta\right) \tag{11}
\end{equation*}
$$

the Euler Equation. Moreover,

$$
\begin{equation*}
\dot{k}(t)=f(k(t))-c(t)-n k(t) \tag{12}
\end{equation*}
$$

the state motion, and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mu(t) e^{-\theta t} k^{*}(t)=0 \tag{13}
\end{equation*}
$$

or using (4)

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u^{\prime}(c(t)) e^{-\theta t} k^{*}(t)=0 \tag{14}
\end{equation*}
$$

which implies that it would not be optimal to end up with positive capital because it could be consumed instead, since marginal utility of consumption, $u^{\prime}(c(t))$, and its present value $u^{\prime}(c(t)) e^{-\theta t}$, is positive by assumption (concave utility function). Hence, we forced, terminal per capita capital to be zero.

In steady state, we obtain a non-linear canonical system:

$$
\begin{gathered}
\left\{\begin{array}{c}
\dot{c}(t)=\sigma(c(t)) \cdot c(t) \cdot\left(f^{\prime}(k(t))-n-\theta\right)=0 \\
\dot{k}(t)=f(k(t))-c(t)-n k(t)=0
\end{array}\right\} \Leftrightarrow \\
\left\{\begin{array}{c}
f^{\prime}\left(k^{*}\right)=n+\theta \\
c^{*}=f\left(k^{*}\right)-n k^{*}
\end{array}\right\}
\end{gathered}
$$

where

$$
\begin{equation*}
f\left(k^{*}\right)=n+\theta \tag{15}
\end{equation*}
$$

is called the Modified Golden Rule.

The phase-space, $k(t)-c(t)$, is divided in 4 regions. The stability conditions imply the following movement (directional arrows/ flow):

$$
\begin{equation*}
\frac{\partial \dot{k}(t)}{\partial c(t)}=-1<0, \quad \text { convergence } \quad \text { Horizontal flow } \tag{16}
\end{equation*}
$$

i.e. as $c(t)$ increases, $\dot{k}(t)$ implies movement in the opposite direction $[+, 0,-]$. Thus the horizontal directional arrows point $\rightarrow$ below $\dot{k}(t)=0$ and $\leftarrow$ above it.

$$
\begin{equation*}
\frac{\partial \dot{c}(t)}{\partial k(t)}=\underset{>0}{\sigma} \cdot \underset{>0}{c(t)} \cdot \underset{<0}{f^{\prime \prime}(t)<0, \quad \text { convergence } \quad \text { Verical flow }} \tag{17}
\end{equation*}
$$

i.e. as $k(t)$ increases, $\dot{c}(t)$ implies movement in the opposite direction $[+, 0,-]$. Thus the vertical directional arrows point $\uparrow$ to the left and $\downarrow$ to the right of $\dot{c}(t)=0$.

## Local stability

Linearise system (15) using first order Taylor's expansion around the steady state

$$
\begin{gathered}
\left.\dot{c}(t) \simeq \frac{\partial \dot{\bar{c}}(t)}{\partial k(t)}\right|_{k^{*}, c^{*}}\left[k(t)-k^{*}\right]+\left.\frac{\partial \dot{c}(t)}{\partial c(t)}\right|_{k^{*}, c^{*}}\left[c(t)-c^{*}\right] \\
\dot{c}(t) \simeq \sigma\left(c^{*}\right) \cdot c^{*} \cdot f^{\prime \prime}\left(k^{*}\right)\left[k(t)-k^{*}\right]+0\left[c(t)-c^{*}\right] \\
\dot{c}(t) \simeq-\beta \cdot\left(k(t)-k^{*}\right)
\end{gathered}
$$

define $\sigma\left(c^{*}\right) \cdot c^{*} \cdot f^{\prime \prime}\left(k^{*}\right):=-\beta<0$, since $\sigma>0$ and

$$
\begin{gathered}
\left.\dot{k}(t) \simeq \frac{\partial \dot{k}(t)}{\partial k(t)}\right|_{k^{*}, c^{*}}\left[k(t)-k^{*}\right]+\left.\frac{\partial \dot{k}(t)}{\partial c(t)}\right|_{k^{*}, c^{*}}\left[c(t)-c^{*}\right] \\
\dot{k}(t) \simeq\left[f^{\prime}\left(k^{*}\right)-n\right]\left[k(t)-k^{*}\right]-\left[c(t)-c^{*}\right] \\
\dot{k}(t) \simeq \theta\left(k(t)-k^{*}\right)-\left(c(t)-c^{*}\right)
\end{gathered}
$$

## Local stability

Hence the linearized system

$$
\left[\begin{array}{c}
\dot{c}(t) \\
\dot{k}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -\beta<0 \\
-1 & 0<\theta<1
\end{array}\right]\left[\begin{array}{c}
c(t) \\
k(t)
\end{array}\right]+\left[\begin{array}{c}
\beta k^{*} \\
c^{*}-\theta \kappa^{*}
\end{array}\right]
$$

whose characteristic polynomial

$$
\lambda^{2}-\operatorname{tr}\left(\left.J\right|_{*}\right) \lambda+\operatorname{det}\left(\left.J\right|_{*}\right)=0
$$

with

$$
\Delta=\left[-\operatorname{tr}\left(\left.J\right|_{*}\right)\right]^{2}-4 \operatorname{det}\left(\left.J\right|_{*}\right)=\theta^{2}+4 \beta>0
$$

and

$$
\operatorname{det}\left(\left.J\right|_{*}\right)=-\beta<0
$$

the steady state will be a saddle point.
There are two ways to find the general solution:
a) Either solve the linearized first order $2 \times 2$ system
b) Or, proceed as follows:

## Local stability

Differentiate linearized $k(t)$ once with respect to time and solve a second order linear differential equation:

$$
\begin{gathered}
\ddot{k}(t)=\frac{d}{d t} \dot{k}(t)=\theta \dot{k}(t)-\dot{c}(t)=\theta \dot{k}(t)-(-\beta)\left(k(t)-k^{*}\right) \\
\ddot{k}(t)-\theta \dot{k}(t)-\beta k(t)=-\beta k^{*}
\end{gathered}
$$

The characteristic polynomial of the homogeneous equation is:

$$
\rho^{2}-\theta \rho-\beta=0
$$

with

$$
\Delta=\theta^{2}+4 \beta>0
$$

and

$$
\rho_{1,2}=\frac{\theta \pm \sqrt{\theta^{2}+4 \beta}}{2}
$$

with two opposite-signed roots

$$
\rho_{2}<0<\rho_{1}
$$

## Local stability

The solution of the homogeneous equation is:

$$
k(t)=A_{1} e^{\rho_{1} t}+A_{2} e^{\rho_{2} t}
$$

which $\rho_{1}>0$ is the unstable root and $\rho_{2}<0$ is the stable root.
The non-homogeneous equation has solution

$$
-\beta \bar{k}=-\beta k^{*} \Leftrightarrow \bar{k}=k^{*}
$$

Thus, the general solution (stated in deviation from the steady state values) equals:

$$
k(t)-k^{*}=A_{1} e^{\rho_{1} t}+A_{2} e^{\rho_{2} t}
$$

Saddle-path stability requires

$$
A_{1}:=0
$$

Finally, use the initial condition to determine arbitrary constant $A_{2}$ :

$$
k(0)=k_{0} \Leftrightarrow A_{2}=k_{0}-k^{*}
$$

Hence, the stable solution path:

$$
k(t)-k^{*}=\left(k_{0}-k^{*}\right) e^{\rho_{2} t}
$$

## Optimal growth problem: phase diagram



