MSc MATHS ECON - TUTORIAL 2
 Difference Equations and Lag Operators

Spyros Tsangaris, Maria Gioka

Athens University of Economics and Business

$$
1 / 12 / 2023
$$

First-order Difference Equations

The general form is:

$$
b_{1} y_{t}+b_{0} y_{t-1}=g(t)
$$

where $g(t)$ is a known function. The solution of the homogeneous equations $b_{1} y_{t}+b_{0} y_{t-1}=0$ is:

$$
y_{t}^{h}=c(-\lambda)^{t}
$$

where c is an arbitrary constant and $\lambda=\frac{b_{0}}{b_{1}}$.
Use the method of undetermined coefficients to find a particular solution \bar{y}_{t}. The general solution equals the sum of the solutions of the homogeneous and the non-homogeneous equation (the particular solution):

$$
y_{t}=y_{t}^{h}+\bar{y}_{t}=c(-\lambda)^{t}+\bar{y}_{t}
$$

In order to determine the arbitrary constant we need one additional condition:

$$
y_{t}=y^{*} \quad \text { for } \quad t=t^{*}
$$

where y^{*} and t^{*} are known values.

Polynomial guess

Solve $y_{t+1}-5 y_{t}=3 t+2$ subject to $y_{0}=0$
We will start by solving the homogeneous equation $y_{t+1}-5 y_{t}=0$ Let non-trivial solution $y_{t}=\lambda^{t} \neq 0$ and substitute into the homogeneous equation:

$$
\begin{gathered}
y_{t+1}-5 y_{t}=0 \Rightarrow \lambda^{t+1}-5 \lambda^{t}=0 \Leftrightarrow \\
\lambda^{t}(\lambda-5)=0 \Leftrightarrow \lambda=5
\end{gathered}
$$

Therefore, the solution of the homogeneous equation is:

$$
y_{t}^{h}=c \lambda^{t}=c 5^{t}
$$

Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order polynomial guess function in t :

$$
y_{t}=a t+\beta, \quad y_{t+1}=a(t+1)+\beta
$$

and will substitute for y_{t} and y_{t+1} into the original equation leaving the RHS unchanged:

$$
\begin{gathered}
y_{t+1}-5 y_{t}=3 t+2 \Rightarrow a(t+1)+\beta-5(a t+\beta)=3 t+2 \Leftrightarrow \\
a t+a+\beta-5 a t-5 \beta=3 t+2 \Leftrightarrow \\
-4 a t-4 \beta+\alpha=3 t+2
\end{gathered}
$$

Equating coefficients on both sides yields a linear system in two unknown parameters (the undetermined coefficients):

$$
\left\{\begin{array}{c}
-4 a=3 \\
-4 \beta+a=2
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
a=-\frac{3}{4} \\
\beta=-\frac{11}{16}
\end{array}\right\}
$$

Therefore, the solution of the non-homogeneous equation is:

$$
\bar{y}_{t}=-\frac{3}{4} t-\frac{11}{16}
$$

The general solution equals the sum of the solution of the homogeneous and the non-homogeneous equation.

$$
\begin{gathered}
y_{t}=y_{t}^{h}+\bar{y}_{t} \Rightarrow \\
y_{t}=c 5^{t}-\frac{3}{4} t-\frac{11}{16} \quad \forall t
\end{gathered}
$$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$
\begin{gathered}
0=y_{0}=c 5^{0}-\frac{3}{4} 0-\frac{11}{16} \Leftrightarrow \\
c=\frac{11}{16}
\end{gathered}
$$

Therefore, the general solution equals:

$$
y_{t}=\frac{11}{16} 5^{t}-\frac{3}{4} t-\frac{11}{16} \quad \forall t
$$

Since the characteristic root is $\lambda=5>0$ and $|\lambda|>1$; the movement will be monotonically divergent (from the long run equilibrium) as $t \rightarrow \infty$.

Exponential guess

Solve $y_{t}-3 y_{t-1}=4^{t}$ subject to $y_{0}=0$.
We will start by solving the homogeneous equation $y_{t}-3 y_{t-1}=0$.
Let non-trivial solution $y_{t}=\lambda^{t} \neq 0$ and substitute into the homogeneous equation:

$$
\begin{gathered}
y_{t}-3 y_{t-1}=0 \Rightarrow \lambda^{t}-3 \lambda^{t-1}=0 \Leftrightarrow \\
\lambda^{t-1}(\lambda-3)=0 \Leftrightarrow \lambda=3
\end{gathered}
$$

Therefore, the solution of the homogeneous equation is:

$$
y_{t}^{h}=c \lambda^{t}=c 3^{t}
$$

Since the characteristic root is $\lambda=3>0$ and $|\lambda|>1$; the movement will be monotonically divergent as $t \rightarrow \infty$. Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order exponential guess function in t :

$$
y_{t}=a 4^{t}, \quad y_{t-1}=a 4^{t-1}
$$

Substitute for y_{t} and y_{t-1} into the original equation leaving the RHS unchanged:

$$
\begin{gathered}
y_{t}-3 y_{t-1}=4^{t} \Rightarrow a 4^{t}-3 a 4^{t-1}=4^{t} \Leftrightarrow \\
\left(a-3 a 4^{-1}\right) 4^{t}=4^{t} \Leftrightarrow a\left(1-\frac{3}{4}\right) 4^{t}=4^{t} \Leftrightarrow \\
a \frac{1}{4} 4^{t}=4^{t}
\end{gathered}
$$

Equating coefficients on both sides allows as to determine a:

$$
\frac{a}{4}=1 \Leftrightarrow a=4
$$

Therefore, the solution of the non-homogeneous equation is:

$$
\bar{y}_{t}=44^{t}=4^{t+1}
$$

The general solution equals the sum of the solution of the homogeneous and the non-homogeneous equation.

$$
\begin{gathered}
y_{t}=y_{t}^{h}+\bar{y}_{t} \Rightarrow \\
y_{t}=c 3^{t}+4^{t+1} \quad \forall t
\end{gathered}
$$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$
\begin{gathered}
0=y_{0}=c 3^{0}+4 \Leftrightarrow \\
c=-4
\end{gathered}
$$

Therefore, the general solution equals:

$$
\begin{gathered}
y_{t}=-43^{t}+4^{t+1} \Leftrightarrow \\
y_{t}=4\left(4^{t}-3^{t}\right) \quad \forall t
\end{gathered}
$$

$$
\begin{aligned}
& \cos (\omega t \pm \omega)=\cos \omega t \cos \omega \mp \sin \omega t \sin \omega \\
& \sin (\omega t \pm \omega)=\sin \omega t \cos \omega \pm \sin \omega \cos \omega t
\end{aligned}
$$

Solve $y_{t+1}+\frac{\sqrt{2}}{2} y_{t}=\cos \left(\frac{\pi t}{4}\right)$ subject to $y_{0}=0$.
We will start by solving the homogeneous equation
$y_{t+1}+\frac{\sqrt{2}}{2} y_{t}=0$.
Let non-trivial solution $y_{t}=\lambda^{t} \neq 0$ and substitute into the homogeneous equation:
$y_{t+1}+\frac{\sqrt{2}}{2} y_{t}=0 \Rightarrow \lambda^{t+1}+\frac{\sqrt{2}}{2} \lambda^{t}=0 \Leftrightarrow \lambda^{t}\left(\lambda+\frac{\sqrt{2}}{2}\right)=0 \Leftrightarrow \lambda=-\frac{\sqrt{2}}{2}$
Therefore, the solution of the homogeneous equation is:

$$
y_{t}^{h}=c \lambda^{t}=c\left(-\frac{\sqrt{2}}{2}\right)^{t}
$$

Next, we will solve the non-homogeneous equation by trying a solution in the form of a first order sinusoidal guess function in t :

$$
\begin{gathered}
y_{t}=a \cos (\omega t)+\beta \sin (\omega t) \\
y_{t+1}=a \cos (\omega(t+1))+\beta \sin (\omega(t+1))
\end{gathered}
$$

$$
\begin{aligned}
& y_{t+1}=a(\cos (\omega t) \cos \omega-\sin (\omega t) \sin \omega)+\beta(\sin (\omega t) \cos \omega+\sin \omega \cos (\omega t)) \\
& =a \cos (\omega t) \cos \omega-a \sin (\omega t) \sin \omega+\beta \sin (\omega t) \cos \omega+\beta \sin \omega \cos (\omega t)
\end{aligned}
$$

and will substitute for y_{t} and y_{t+1} into the original equation leaving the RHS unchanged:

$$
y_{t+1}+\frac{\sqrt{2}}{2} y_{t}=\cos \left(\frac{\pi t}{4}\right)
$$

$a \cos (\omega t) \cos \omega-a \sin (\omega t) \sin \omega+\beta \sin (\omega t) \cos \omega+\beta \sin \omega \cos (\omega t)+$ $\frac{\sqrt{2}}{2}[a \cos (\omega t)+\beta \sin (\omega t)]=\cos \left(\frac{\pi t}{4}\right) \Leftrightarrow$
$\left(a \cos \omega+\beta \sin \omega+a \frac{\sqrt{2}}{2}\right) \cos (\omega t)+\left(-a \sin \omega+\beta \cos \omega+\beta \frac{\sqrt{2}}{2}\right) \sin (\omega t)=\cos \left(\frac{\pi t}{4}\right)$

Equating coefficients and angles on both sides yields:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\omega=\frac{\pi}{4} \\
a \cos \omega+\beta \sin \omega+a \frac{\sqrt{2}}{2}=1 \\
\beta \cos \omega-a \sin \omega+\beta \frac{\sqrt{2}}{2}=0
\end{array}\right\} \Leftrightarrow \\
& \omega=\frac{\pi}{4} \\
& \left\{\begin{array}{c}
a \cos \frac{\pi}{4}+\beta \sin \frac{\pi}{4}+a \frac{\sqrt{2}}{2}=1 \\
\beta \cos \frac{\pi}{4}-a \sin \frac{\pi}{4}+\beta \frac{\sqrt{2}}{2}=0
\end{array}\right\} \Leftrightarrow \\
& \omega=\frac{\pi}{4} \\
& \left\{\begin{array}{c}
\frac{a}{\sqrt{2}}+\frac{\beta}{\sqrt{2}}+a \frac{\sqrt{2}}{2}=1 \\
\frac{\beta}{\sqrt{2}}-\frac{\alpha}{\sqrt{2}}+\beta \frac{\sqrt{2}}{2}=0
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
\omega=\frac{\pi}{4} \\
a=\frac{2 \sqrt{2}}{5} \\
\beta=\frac{\sqrt{2}}{5}
\end{array}\right\}
\end{aligned}
$$

Therefore, the solution of the non-homogeneous equation is:

$$
\bar{y}_{t}=\frac{\sqrt{2}}{5}\left(2 \cos \left(\frac{\pi}{4} t\right)+\sin \left(\frac{\pi}{4} t\right)\right)
$$

So, the general solution equals:

$$
\begin{gathered}
y_{t}=y_{t}^{h}+\bar{y}_{t} \Rightarrow \\
y_{t}=c\left(-\frac{\sqrt{2}}{2}\right)^{t}+\frac{\sqrt{2}}{5}\left(2 \cos \left(\frac{\pi}{4} t\right)+\sin \left(\frac{\pi}{4} t\right)\right) \quad \forall t
\end{gathered}
$$

We may use the initial condition in order to determine the arbitrary constant c in the general solution:

$$
\begin{gathered}
0=y_{0}=c\left(-\frac{\sqrt{2}}{2}\right)^{0}+\frac{\sqrt{2}}{5}\left(2 \cos \left(\frac{\pi}{4} 0\right)+\sin \left(\frac{\pi}{4} 0\right)\right) \Leftrightarrow \\
0=c+\frac{2 \sqrt{2}}{5} \Leftrightarrow c=-\frac{2 \sqrt{2}}{5}
\end{gathered}
$$

Therefore, the general solution equal:

$$
y_{t}=-\frac{2 \sqrt{2}}{5}\left(-\frac{\sqrt{2}}{2}\right)^{t}+\frac{\sqrt{2}}{5}\left(2 \cos \left(\frac{\pi}{4} t\right)+\sin \left(\frac{\pi}{4} t\right)\right) \quad \forall t
$$

Second Order Difference Equations

Solve $y_{t+2}-4 y_{t+1}+3 y_{t}=5^{t}$ subject to $y_{0}=1$ and $y_{1}=2$. Firstly consider the homogeneous equation:
$y_{t+2}-4 y_{t+1}+3 y_{t}=0$.
Its characteristic equation is:

$$
\begin{gathered}
\lambda^{2}-4 \lambda+3=0 \\
\lambda^{2}+\alpha_{1} \lambda+\alpha_{2}=0 \\
\alpha_{1}=-4 \quad \alpha_{2}=3
\end{gathered}
$$

The necessary and sufficient conditions for stability, namely:

$$
\begin{gathered}
1+a_{1}+a_{2}>0 \\
1-a_{2}>0 \\
1-a_{1}+a_{2}>0
\end{gathered}
$$

are not simultaneously satisfied.

Discriminant $\Delta>0$

Moreover, since $\Delta=4>0$ and the coefficient of the characteristic polynomial alternate in sign, the roots will be positive by Descartes' Theorem. Indeed:

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4 \pm \sqrt{(-4)^{2}-4 \cdot 1 \cdot 3}}{2 \cdot 1} \\
\lambda_{1}=3, \lambda_{2} & =1 \quad \lambda_{1} \neq \lambda_{2} \quad \lambda_{1}, \lambda_{2} \epsilon \operatorname{Re}
\end{aligned}
$$

Therefore, the solution of the homogeneous equation is:

$$
y_{t}^{h}=A_{1} \lambda_{1}^{t}+A_{2} \lambda_{2}^{t}=A_{1} 3^{t}+A_{2}
$$

Next, consider the non-homogeneous equation $y_{t+2}-4 y_{t+1}+3 y_{t}=5^{t}$. Try an exponential guess function.

$$
y_{t}=a 5^{t}, y_{t+1}=a 5^{t+1}, y_{t+2}=a 5^{t+2}
$$

Substituting in the non-homogeneous equation yields:

$$
a 5^{t+2}-4 a 5^{t+1}+3 a 5^{t}=5^{t} \Leftrightarrow 25 a-20 a+3 a=1 \Leftrightarrow a=\frac{1}{8}
$$

Therefore:

$$
\begin{gathered}
P S: \bar{y}_{t}=\frac{1}{8} 5^{t} \\
G S: y_{t}=A_{1} 3^{t}+A_{2}+\frac{1}{8} 5^{t}
\end{gathered}
$$

Moreover:

$$
\begin{aligned}
& \text { IC1 : } \quad y_{0}=1 \Leftrightarrow A_{1} 3^{0}+A_{2}+\frac{1}{8} 5^{0}=1 \Leftrightarrow A_{1}+A_{2}=\frac{7}{8} \\
& \text { IC2 : } y_{1}=2 \Leftrightarrow A_{1} 3^{1}+A_{2}+\frac{1}{8} 5^{1}=2 \Leftrightarrow 3 A_{1}+A_{2}=\frac{11}{8}
\end{aligned}
$$

Solving this linear system for A_{1} and A_{2} yields: $A_{1}=\frac{1}{4}, \quad A_{2}=\frac{5}{8}$ Therefore:

$$
G S: y_{t}=\frac{1}{4} 3^{t}+\frac{5}{8}+\frac{1}{8} 5^{t}
$$

and $\lim _{t \rightarrow+\infty} y_{t}=+\infty$

Discriminant $\triangle=0$

Solve $y_{t+2}-2 y_{t+1}+y_{t}=-6^{t}+t$ assuming arbitrary initial conditions.
Firstly consider the HE: $y_{t+2}-2 y_{t+1}+y_{t}=0$. Its characteristic equation is:

$$
\lambda^{2}-2 \lambda+1=0 \Leftrightarrow(\lambda-1)^{2}=0
$$

Moreover $\Delta=0$, and

$$
\lambda_{1}=\lambda_{2}=1 \epsilon \operatorname{Re} \text { with } m=2
$$

where m indicates the multiplicity of the real repeated root. Hence, the solution of the homogeneous equation equals:

$$
y_{t}^{h}=A_{1} \lambda_{1}^{t}+A_{2} t \lambda_{2}^{t}=A_{1}+A_{2} t
$$

while the necessary and sufficient conditions for stability, namely:

$$
\begin{gathered}
1+a_{1}+a_{2}>0 \\
1-a_{2}>0 \\
1-a_{1}+a_{2}>0
\end{gathered}
$$

are not simultaneously satisfied.

$$
y_{t+2}-2 y_{t+1}+y_{t}=-6^{t}+t
$$

Let us try a mixed guess function for the non-homogeneous part:

$$
\begin{gathered}
y_{t}^{g}=\left(a 6^{t}\right)+(\beta t+\gamma) \\
y_{t+1}^{g}=\left(a 6^{t+1}\right)+(\beta(t+1)+\gamma) \\
y_{t+2}^{g}=\left(a 6^{t+2}\right)+(\beta(t+2)+\gamma)
\end{gathered}
$$

Substituting in the non-homogeneous equation yields:
$a 6^{t+2}+\left(\beta(t+2)+\gamma-2\left[a 6^{t+1}+\beta(t+1)+\gamma\right]+\left(a 6^{t}\right)+(\beta t+\gamma)=-6^{t}+t\right.$
$a 6^{t+2}+\beta t+2 \beta+\gamma-2 a 6^{t+1}-2 \beta t-2 \beta-2 \gamma+a 6^{t}+\beta t+\gamma=-6^{t}+t$

$$
25 a 6^{t}=-6^{t}+t
$$

Equating coefficients implies that $25 a=-1 \Leftrightarrow a=-\frac{1}{25}$, but β and γ remain undetermined.

Try out an alternative guess function $y_{t}^{g 2}$ (multiplying the undetermined part of of y_{t}^{g} by t):

$$
\begin{gathered}
y_{t}^{g 2}=\left(a 6^{t}\right)+\left(\beta t^{2}+\gamma t\right) \\
y_{t+1}^{g 2}=\left(a 6^{t+1}\right)+\left(\beta(t+1)^{2}+\gamma(t+1)\right) \\
y_{t+2}^{g 2}=\left(a 6^{t+2}\right)+\left(\beta(t+2)^{2}+\gamma(t+2)\right)
\end{gathered}
$$

Substituting in the non-homogeneous equation yields: $a 6^{t+2}+\beta(t+2)^{2}+\gamma(t+2)-2\left[a 6^{t+1}+\beta(t+1)^{2}+\gamma(t+1)\right]+$ $a 6^{t}+\beta t^{2}+\gamma t=-6^{t}+t$

$$
25 a 6^{t}+2 \beta=-6^{t}+t
$$

Again, β and γ remain undetermined.

Try out an alternative guess function $y_{t}^{g 3}$ (multiplying the undetermined part of $y_{t}^{g 2}$ by t):

$$
\begin{gathered}
y_{t}^{g 3}=\left(a 6^{t}\right)+\left(\beta t^{3}+\gamma t^{2}\right) \\
y_{t+1}^{g 3}=\left(a 6^{t+1}\right)+\left(\beta(t+1)^{3}+\gamma(t+1)^{2}\right) \\
y_{t+2}^{g 3}=\left(a 6^{t+2}\right)+\left(\beta(t+2)^{3}+\gamma(t+2)^{2}\right)
\end{gathered}
$$

Substituting in the non-homogeneous equation yields:

$$
\begin{aligned}
& \left(a 6^{t+2}\right)+\left(\beta(t+2)^{3}+\gamma(t+2)^{2}\right)-2\left[\left(a 6^{t+1}\right)+\left(\beta(t+1)^{3}+\gamma(t+\right.\right. \\
& \left.\left.1)^{2}\right)\right]+\left(a 6^{t}\right)+\left(\beta t^{3}+\gamma t^{2}\right)=-6^{t}+t \Leftrightarrow
\end{aligned}
$$

$$
25 a 6^{t}+6 \beta t+(6 \beta+2 \gamma)=-6^{t}+t
$$

Equating coefficient yields a unique solution for β and γ as well:

$$
\begin{gathered}
6 \beta=1 \wedge 6 \beta+2 \gamma=0 \\
\beta=\frac{1}{6} \wedge \gamma=-\frac{1}{2}
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
P S: \bar{y}_{t}=-\frac{1}{25} 6^{t}+\frac{1}{6} t^{3}-\frac{1}{2} t^{2} \\
G S: y_{t}=A_{1}+A_{2} t-\frac{1}{25} 6^{t}+\frac{1}{6} t^{3}-\frac{1}{2} t^{2}
\end{gathered}
$$

Complex numbers

The imaginary number i is defined solely by the property that its square is -1 .

$$
i^{2}=-1
$$

A complex number z is a number that can be expressed in the form:

$$
z=a+b i
$$

where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $i^{2}=-1$.
Real part:

$$
\operatorname{Re}(a+b i):=a
$$

Imaginary part:

$$
\operatorname{Im}(a+b i):=b
$$

Complex conjugate:

$$
\overline{a+b i}:=a-b i
$$

That is, negate the imaginary component.

Complex numbers

The complex plane is a geometric representation of the complex numbers established by the real axis and the perpendicular imaginary axis.

Here r is the absolute value (or modulus or magnitude) of the complex number z

$$
r=\sqrt{a^{2}+b^{2}}
$$

and θ the argument of z

$$
a=r \cos \theta \quad \beta=r \sin \theta
$$

Solve $y_{t+2}+2 y_{t+1}+2 y_{t}=2^{t}$ assuming arbitrary initial conditions． Firstly consider the HE：

$$
\begin{gathered}
y_{t+2}+2 y_{t+1}+2 y_{t}=0 \\
y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=0 \\
a_{1}=2, \quad a_{2}=2
\end{gathered}
$$

while the necessary and sufficient conditions for stability，namely：

$$
\begin{gathered}
1+a_{1}+a_{2}>0 \\
1-a_{2}>0 \\
1-a_{1}+a_{2}>0
\end{gathered}
$$

are not simultaneously satisfied．

Discriminant $\Delta<0$

Moreover:

$$
\begin{gathered}
\lambda^{2}+2 \lambda+2 y_{t}=0 \\
\Delta=(2)^{2}-4 \cdot 2=-4<0
\end{gathered}
$$

Since $\Delta<0$, the roots of the characteristic equation are a complex conjugates:

$$
\lambda_{1,2}=\frac{-2 \pm \sqrt{-4}}{2}=-1 \pm i
$$

Cartesian coordinates:

$$
(a, b)=(-1,1)
$$

The absolute value (or modulus or magnitude) of the complex number $z=-1+i$ is:

$$
r=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

The argument of the complex number, denoted $\arg (z)$ and labeled θ :

$$
\begin{gathered}
a=r \cos \theta \Rightarrow-1=\sqrt{2} \cos \theta \Rightarrow \cos \theta=\frac{-1}{\sqrt{2}} \\
b=r \sin \theta \Rightarrow 1=\sqrt{2} \sin \theta \Rightarrow \sin \theta=\frac{1}{\sqrt{2}}
\end{gathered}
$$

From the trigonometric tables we find that the angle whose sine is $\frac{1}{\sqrt{2}}$ and whose cosine is $\frac{-1}{\sqrt{2}}$, is $\frac{3 \pi}{4}$.
Therefore, the solution of the homogeneous equation is:

$$
y_{t}=r^{t}\left(A_{1} \cos \theta t+A_{2} \sin \theta t\right) \Rightarrow y_{t}=\sqrt{2}^{t}\left(A_{1} \cos \left(\frac{3 \pi}{4} t\right)+A_{2} \sin \left(\frac{3 \pi}{4} t\right)\right)
$$

Discriminant $\Delta<0$

Next consider the non-homogeneous equation:

$$
y_{t+2}+2 y_{t+1}+2 y_{t}=2^{t}
$$

Try out an exponential guess function:

$$
y_{t}=a 2^{t}, \quad y_{t+1}=a 2^{t+1}, \quad y_{t+2}=a 2^{t+2}
$$

Substituting in the non-homogeneous equation:

$$
\begin{gathered}
a 2^{t+2}+2 a 2^{t+1}+2 a 2^{t}=2^{t} \Leftrightarrow\left(a 2^{2}+2 a 2+2 a\right) 2^{t}=2^{t} \Leftrightarrow 10 a 2^{t}=2^{t} \\
10 a=1 \Leftrightarrow a=\frac{1}{10}
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
P S: \bar{y}_{t}=\frac{1}{10} 2^{t} \\
G S: y_{t}=A_{1} \sqrt{2}^{t} \cos \left(\frac{3 \pi}{4} t\right)+A_{2} \sqrt{2}^{t} \sin \left(\frac{3 \pi}{4} t\right)+\frac{1}{10} 2^{t}
\end{gathered}
$$

Operators

\checkmark Operator: A mapping of one set into another, each of which has a certain structure.
\checkmark For most practical purposes, operators can be treated just as algebraic quantities.
We introduce the lag operator L such that:

$$
L y_{t}=y_{t-1}
$$

So,

$$
L^{2} y_{t}=y_{t-2}, L^{n} y_{t}=y_{t-n}, L^{-1} y_{t}=y_{t+1}
$$

Formally, the operator L^{n} maps one sequence into another sequence.
Lag operator applied to a constant c

$$
L c=c
$$

Distributive

$$
\left(L^{j}+L^{i}\right) y_{t}=y_{t-j}+y_{t-i}
$$

Associative

$$
L^{j} L^{i} y_{t}=L^{i} L^{j} y_{t}=L^{i+j} y_{t}=y_{t-i-j}
$$

Infinite-series expansions

Using a well-known infinite-series expansion, for $|c|<1$, we have

$$
\frac{1}{1-c}=1+c+c^{2}+\ldots=\sum_{i=0}^{\infty} c^{i}
$$

Treating $a L$ exactly like c we have that,

$$
\frac{1}{(1-a L)}=(1-a L)^{-1}=1+a L+a^{2} L^{2}+\ldots=\sum_{i=0}^{\infty} a^{i} L^{i}
$$

Notice that the above sequence is a bounded sequence if $|a|<1$, but will divergent if $|a|>1$. In this latter case, consider an alternative expansion:

$$
(1-a L)^{-1}=-\sum_{i=1}^{\infty}\left(\frac{1}{a}\right)^{i} L^{-i}
$$

The general form is:

$$
b_{1} y_{t}+b_{0} y_{t-1}=g(t)
$$

\checkmark It may happen that we do not know the functional form of $g(t)$. \checkmark We know the actual succession of values $g(0), g(1), \ldots, g(t)$. In other words, $g(t)$ is a sequence of known real values
\checkmark In such case the method of undetermined coefficients cannot be applied.
\checkmark It is possible to find a particular solution by applying operational methods.

Backward and forward solutions

Solve:

$$
b_{1} y_{t}+b_{0} y_{t-1}=x(t)
$$

where $x(t)$ is a sequence of known real values.

$$
y_{t}+\frac{b_{0}}{b_{1}} y_{t-1}=\frac{x(t)}{b_{1}}
$$

Setting $b=\frac{b_{0}}{b_{1}}$ and $X_{t}=\frac{x(t)}{b_{1}}$ we have:

$$
y_{t}+b y_{t-1}=X_{t}
$$

The solution of the homogeneous equation is:

$$
y_{t}^{h}=c(-b)^{t}
$$

where c is an arbitrary constant.

Backward and forward solutions

Next, find a particular solution:

$$
\begin{aligned}
& y_{t}+b y_{t-1}=X_{t} \\
& y_{t}+b L y_{t}=X_{t} \\
& (1+b L) y_{t}=X_{t}
\end{aligned}
$$

If $|-b|<1$, then the particular solution is:

$$
\bar{y}_{t}=(1-(-b) L)^{-1} X_{t}=\sum_{i=0}^{\infty}(-b)^{i} L^{i} X_{t}=\sum_{i=0}^{\infty}(-b)^{i} X_{t-i}
$$

Note that \bar{y}_{t} is a bounded sequence if $|-b|<1$ (same: $|b|<1$) but will be divergent if $|-b|>1$. In this latter case consider an alternative expansion.

$$
\bar{y}_{t}=(1-(-b) L)^{-1} X_{t}=-\sum_{i=1}^{\infty}\left(-\frac{1}{b}\right)^{i} L^{-i} X_{t}=-\sum_{i=1}^{\infty}\left(-\frac{1}{b}\right)^{i} X_{t+i}
$$

