LECTURE I:
 The Deterministic Neoclassical Growth Model
 in Discrete Time
A.   Model
1.   Preliminaries:
We consider an economy that consists of a large number of infinitely lived identical households. The number of these households at the beginning of period t is 
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. We assume that population grows at a fixed rate, 
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(I.1)
Production of a single homogeneous final good takes place in a large number of firms, 
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, using capital and labor services, supplied by households. Each household is endowed by one unit of labor that is supplied inelastically. Households buy the single homogeneous final good from firms and they consume it or save it and invest it in the form of physical capital. All product and factor of production markets are competitive. And, households own the firms.
2.   Production Technology:

In each and every period, t, production of the single homogeneous final good takes place according to the following production technology:
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where: 
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is final good output, input of capital services, and input of labor services, respectively. And, 
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is a technological efficiency parameter that represents Harrod- neutral  technical progress. The level of technological efficiency, 
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, is assumed to grow at a fixed rate, 
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(I.3)

The production function 
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is assumed to be twice continuously differentiable, strictly increasing and strictly concave in both arguments and satisfies the Inada conditions: as 
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. Moreover, both factors of production are essential. That is, 
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. Furthermore, the production function 
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is assumed to be linearly homogeneous (i.e., 
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 . The latter implies that production takes place under constant returns to scale and allows as to express the economy’s production technology, in terms of representative household units:
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where : 
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are the output and capital input in the economy per “efficient” household. That is,


[image: image22.wmf]t

t

tt

mY

y

nz

=

 and 
[image: image23.wmf]t

t

tt

mK

k

nz

=


Finally, the productivity function 
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is twice continuously differentiable, strictly increasing and strictly concave and such that:
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Exercise 1: Given the properties of the production function
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, in A.2, prove the properties of the productivity function, defined in (I.4).

Note: Henceforth all quantity variables associated with the representative household are expressed in terms of efficient household units. Also, the wage rate is expressed in terms of technological efficiency parameter units. 

3.   Preferences :
 Preferences of the representative household are characterized by a time-separable utility function of the form:
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where: 
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 is a time discount factor, 
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 is the consumption of the representative household in period t, and 
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is a temporal utility function such that: (a) 
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is twice continuously differentiable, strictly increasing, strictly concave and satisfies the Inada conditions: 
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4.   Household Budget Constraint:

In each and every period households can spend the income they receive from supplying capital and labor services to firms as well as dividends from the firms to buy the final good product that they can either consume or save and invest. That is,
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where: 
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 is investment in period t, 
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 is capital at the beginning of period t, 
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is labor supplied by the household in period t; and 
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 are the real rental cost of capital, the wage rate, and dividends received by the household.
5.   Capital Transition Constraint:

Physical capital depreciates geometrically at fixed rate, 
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6.   Physical Contraints:

As has been already mentioned :
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Further, we impose the physical constraint:
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7.   Initial Condition:

Finally, we take the economy’s initial stock of capital as given:
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8.   Equilibrium: 
We are interested in characterizing the equilibrium (resource allocation) of this economy. Competitive equilibrium is defined as a sequence of the form 
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is a solution to the representative household’s problem. That is, 
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(II)
       Given 
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is a solution to the representative firm’s problem. That is, 
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is a solution to :
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where: 
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 stands for the representative firm’s profits:
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and 
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stands for the firm’s exogenous discount factor and will be specified later.
(III) Given 
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 clear all markets: That is,
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The fundamental question is: How do we solve for the equilibrium and in particular the dynamic problems in I and II? First, note that the firm’s problem is not truly dynamic. Clearly, this problem can be decomposed in a series of static problems of the form:
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The necessary and sufficient condition for an interior solution to this problem are:
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That is, the marginal product of each factor of production must be equal to its real price. In view of the equilibrium conditions in (III) and the production function properties, the preceding conditions may be expressed in terms of the productivity function, as follows:
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Also, it follows that profits and therefore dividends are zero. Turning, now, to the problem of the representative household, we observe that in view of the form of the utility function (i.e., strictly increasing in consumption), the budget constraint in (I.6) must be satisfied with equality in the solution. This and the capital transition and physical constraints (I.7) and (I.8), respectively, allow as to re-express this problem as:
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This is a truly dynamic problem that must be solved. Before doing so, however, it is interesting to note that, in view of (I.16) and (I.17), the preceding problem may be further reexpressed as follows:
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This is the problem of a social planner that seeks a plan for capital so as to maximize the utility of the representative household, subject to the production technology constraint, the transition of the capital stock, the physical constraints and the initial condition. That in a frictionless economy such as the one we have characterized, the competitive equilibrium can be obtained as a solution to the social planner’s problem is a consequence of the First Fundamental Theorem of Welfare Economics (i.e., “Every competitive equilibrium is Pareto optimum”)  It is simpler, thereafter, to work with the social planner’s problem (I.19).
B.  The Basic Mathematical Problem

Note that the preceding problem is a problem of the form:
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subject to: 
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where:
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	state variable (i.e., a vector of real numbers that characterizes the state of a system at the beginning of period t)
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	plan (i.e., a sequence of consecutive state variables that describe the path followed by the system throughout the planning horizon) 
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	 set with the possible values of the state variable
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	correspondence that describe the constraints in the transition of the state variable  from one time period to the next (i.e., 
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 is the set of all feasible values of the state variable at the beginning of the next period, if the value of the state variable at the beginning of the current period is 
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	time discount factor
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	temporal objective function
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	set of all feasible combinations of any two successive states of the system 


We shall refer to (I.20) – (I.22) as the Basic Mathematical Problem or simply as the Basic Problem. Clearly then, the social planner’s is an example of the Basic Problem, where: 
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Remark 1:
Suppose there exists a solution to the Basic Problem and suppose that the plan 
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subject to:
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Proof:
Suppose on the contrary, that 
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Observe then, that the plans 
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But, from (I.26), it follows that
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 is not a solution of the Basic Problem. This establishes a contradiction, since we have assumed that 
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QED
To fully comprehend both Remark 1 and its proof, note that what Remark 1 implies is that no possible change of the plan 
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 in any given period 
[image: image113.wmf]t

 can lead to a greater value of the objective function of the Basic Problem than the one achieved under the solution 
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. For, if  
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 was not a solution to problem (I.23)-(I.25), choosing another feasible value for the state variable at the beginning of period t+1, 
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, would result in a feasible plan that increases the value of the objective function of the Basic Problem in (I.20). And, the increase in the infinite sum of the objective function of the Basic Problem would be exactly the same as the increase in the sum of the two successive terms of this infinite sum that appear in (I.23). But then, this change in the solution plan at the beginning of period 
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 would result in a feasible plan that improves the value of the objective function of the Basic Problem over and above the value of this function under the solution 
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 to be a solution of the Basic Problem. The following expresses this necessary condition in an operational form.
Theorem 1 (Necessary Conditions):
If 
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 is continuously differentiable in the interior of Α and 
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 is an interior solution to the Basic Problem, (I.20)-(I.22)(i.e., 
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If in addition, 
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Condition (I.27) is the, so called, Euler Condition. This is the workhorse of modern macroeconomics. Condition (I.28) is the, so called, Legendre condition.  
Both of these conditions are necessary for an interior solution to the Basic Problem. Moreover, they generalize to cover situations of corner solutions, where the correspondence that describes the constraints in the transition of the state variable  from one time period to the next takes the form of inequality constraints of the form 
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with each term in the LHS of (I.29) be zero, if and only if the corresponding term in 
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is strictly positive. More complicated inequality constraints can be handled following standard nonlinear optimization techniques. Some examples are given in the exercises at the end of this lecture. 
The Euler Conditions (I.27) form a system of second order difference equations. Suppose 
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. Then, this system of n second order difference equations together with the n initial conditions in (I.22) gives a family of solutions that depend in n unknown parameters. Consequently, we need n more equations to tie down these parameter and distinguish, from the family of solutions that satisfy the Euler and Initial conditions, the one that is a solution to the Basic Problem.  These additional n equations come from the, so called, Transversality Condition, where we turn next. 

Theorem 2 (Sufficient Conditions):
Suppose 
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. Further suppose that 
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is a solution to the Basic Problem. 
Proof:
Let 
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be any feasible plan and consider the difference in the objective function associated with 
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It follows that 
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for any feasible plan 
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. Then it follows that:
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In view of the Euler condition (I.27) and the Initial condition (I.22), the first two terms in the LHS of the last inequality are zero. Hence, it follows that: 
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and therefore if (I.30) holds ,
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is a solution to the Basic Problem.       …………………………………………….    QED 

Note that if 
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Remark 2 (Transversality Condition): 
If 
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, Condition (I.30) follows from:
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Condition (I.31) is the Transversality condition. The meaning of the Transversality Condition will be illustrated in the next section.

In conclusion, if 
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, satisfies the the Euler condition and provided that the temporal objective function is concave, if the Initial and Transversality conditions are satisfied, then 
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 is a solution to the Basic Problem. In other words, in this case the Euler condition is a necessary and sufficient condition for an interior solution to the Basic Problem. In addition, if the temporal objective function, 
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, is strictly concave, the Euler condition is a necessary and sufficient condition for a unique interior solution to the Basic Problem.

C.   Qualitative vs Quantitative Analysis

It is straightforward from the preceding section, that since, 
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(a) (Euler Condition)
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is a necessary condition for an interior solution to the social planner’s problem (I.19).

(b) (Sufficiency)
The Euler condition (I.32), along with the Initial condition (I.10) and the Transversality condition:
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form a set of sufficient conditions for a unique interior solution to the social planner’s problem (I.19).

The meaning of the Euler condition (I.32) is that the social planner decides how much the representative household should consume, save, and invest in each period by equating the cost of the last unit of output that the representative household saves and invests in the form of physical capital, any given period t, 
[image: image178.wmf](c)

t

u

¢

, to the present value of the benefit the household gets from consuming the undepreciated portion of this capital next period, 
[image: image179.wmf](c)[(1)

1

(1)1

 )

(

u

t

gg

nz

b

d

¢

-

+

++

, plus the present value of the benefit the household gets from consuming the proceeds from using this capital in production next period,  
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 more “efficient” households next period. Alternatively, the meaning of the Euler condition (I.32) is that the social planner equates the marginal rate of substitution between current consumption and consumption next period 
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with the opportunity cost of consumption in the current period, 
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. The meaning of the Transversality condition is that the social planner decides how much the representative household should consume, save, and invest as time goes to infinity by setting the value of available (i.e., not already consumed) capital, 
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Solving analytically the set of necessary and sufficient conditions for the solution to the social planner’s problem or obtaining the competitive equilibrium analytically is not possible, in general. This is because, for even the simplest specifications of preferences,  production technology, and capital transition, the Euler condition (I.32) is a 2nd order nonlinear difference equation. It is well known that these equations do not, in general, have analytic solutions. To check this consider the, so called, Cass-Koopmans Neoclassical Growth Model, where: (a) preferences are characterized by a “constant relative risk aversion” temporal utility function, 
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; (b) production technology is characterized by a Cobb-Douglas production function, 
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; and (c) the  transition of capital is characterized by is given by (I.7). It is straightforward to show that in this case, Euler condition (I.32) becomes:
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                       (I.34)
which is clearly not possible to solve analytically. For that matter, economic analysis proceeds on two fronts. First, the solution of the system of the Euler, Initial, and Transversality  conditions is characterized qualitatively and second, the solution of this system is computed numerically (quantitative analysis).

Exercise 2 (Useful Special Cases): Characterize the solution of the social planner’s problem in the following three cases:
(i) (a) preferences are characterized by a logarithmic temporal utility function, 
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; (b) production technology is characterized by a Cobb-Douglas production function, 
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; and (c) the  transition of capital is characterized by (I.7), with 
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(i.e., full capital depreciation)

(ii) (a) preferences are characterized by a quadratic temporal utility function, 
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; (b) production technology is characterized by a linear productivity function, 
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(iii) TBR
D.  Global Stability Analysis
In this section, it will be convenient to work with the Cass-Koopmans version of the Neoclassical Growth model.
 In this case, the capital transition constraint and the Euler, Initial and Transversality may be written as follows:
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            (I.38)
The capital transition constraint is useful to define consumption as another state variable that converts the second order difference equation (I.34) into the first order system of difference equations (I.35) and (I.36), that is more convenient to analyze qualitatively. We are first interested whether the solution to this system (i.e., (I.35)-(I.38)) can be characterized in terms of a steady state. That is, a situation where there is no change in capital per efficient household and therefore consumption per efficient household. That is, 
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It follows from (I.35) and (I.36), that any such steady state must be on the following equilibrium loci in the 
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where:
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[image: image211.wmf]()

gk

 is continuously differentiable, with a U-shaped graph, such that:


[image: image212.wmf](0)()0

ggk

==

   and 
[image: image213.wmf]()()

max

0

goldgold

gkgkc

k

=º

³

, where:

[image: image214.wmf]1

1

A

k

a

J

æö

-

=

ç÷

èø

and   
[image: image215.wmf]1

1

A

gold

k

a

a

J

æö

-

=

ç÷

èø



[image: image216.wmf]k

is the maximum level of steady state capital and 
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 is the maximum level of steady state consumption, what is referred to as the “golden rule”. The intersection of the two loci defines the steady state levels of capital and consumption per efficient household, 
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It follows that: 
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The two loci 
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 and their intersection are illustrated in Figure 1. This figure presents a phase diagram, that indicates the movement of the state of a difference equation system, such as (I.35)-(I.38), for various initial values of that state. In dong so, we can characterize the stability properties of the steady state. 
First, note that taking consumption to be a state variable creates a situation were a state variable is not associated with an initial condition. That is, 
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[image: image226.wmf](,)

00

kc

vis a vis the equilibrium loci. To see this rewrite (I.35) and (I.36) as follows:
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For any given level of capital, consumption is above the 
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locus capital is decreasing. And, if for any given level of capital, consumption is below the 
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 locus capital is increasing. Likewise, for any given level of consumption, if capital is to the right of the  
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 locus, consumption is decreasing. And, for any given level of consumption, if  capital is to the left of the  
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 locus consumption is increasing. The arrows in Figure 1 indicate  the directions of the movement of the state following (I.35) and (I.36). The arrows characterize a situation called saddle-path stability, whereby whether the state of the system approaches the steady state or not depends on the initial 
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and transversality conditions.  Clearly, the state will converge to the steady state if it starts and remains either in region A or C, in Figure 1, where it follows the trajectories  that converge to the steady state. These trajectories are called stable manifolds in the jargon of differential equations and there is one and only one stable manifold, for each initial level of the state variable.  To see what is the case here, suppose that the system starts at a capital level 
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,then the state of the system converges to the steady state along the unique stable manifold. To prove that this is the only possible alternative suppose on the contrary that consumption jumps to 
[image: image237.wmf]00

cc

¢

<

. Then, following the directions of the arrows in Figure 1, the state will move to the north east eventually to the south east crossing over to region B. Eventually the state of the system will end up, in finite time, with zero consumption and maximum sustainable capital, 
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. This, however, would had violated the transversality condition (I.38). Similarly, if consumption jumps to 
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, the state will move north east and eventually north west crossing over to region D. Eventually the state of the system will end up, in finite time, with positive consumption and zero capital. This, however, would have violated our nonnegativity constraint in capital, implying that the Euler condition would no longer be satisfied. Likewise, if  the initial capital level 
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, there will be a unique stable manifold, satisfying the Euler and Transversality conditions and the capital transition constraint, that will converge towards the steady state 
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. If this was not to be the case, the economy would have ended up with zero capital or zero consumption violating the physical or the Transversality constraint. Summarizing results, we have established the following: 

Proposition 1 (Neoclassical Growth Theory): The Neoclasical Growth Model economy, introduced in Section A, has a unique competitive equilibrium that coincides with the solution to the Social Planner’s problem, (I.19).Along this equilibrium, capital and consumption per efficient household satisfy conditions (I.35)-(I.38), such that the following are true:

(a) There exists a unique (interior) steady state 
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(b) If 
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Exercise 3: Show that the competitive equilibrium of the Neoclassical Growth Model satisfies the Kaldor Stylized Facts (i.e., output capital per capita increases, output per capita increases, the capital – output ratio is constant, the return to capital is constant, the capital and labor income shares are constant), along the steady state.
Exercise 4: Show that the competitive equilibrium of the Neoclassical Growth Model satisfies the Convergence hypothesis (i.e., the growth rate of less developed countries will converge to the growth rate of developed countries monotonically).
E.  Local Stability Analysis
We can also characterize quantitatively the behavior of the competitive equilibrium around the steady state. This is called local stability analysis. Here, it will be convenient to work with the second order difference equation (I.34), directly. In fact, it is more convenient to begin with the more general case of the Euler condition of the Basic Problem, (I.27). If a steady state, 
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Moreover, if 
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which, in view  of (I.43) simplifies to the homogeneous second order linear difference equation with constant coefficients:
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(I.44)
For the Neoclassical Growth Model, omitting function arguments, the coefficients of (I.44) are given by:


[image: image259.wmf]1

2nz

2

11

12nz

2

22nz

Φ=u[f+(1-δ)]>0

Φ=u[(-1)(1+g)(1+g)]<0

Φ=u[f+(1-δ)]+uf<0

Φ=u[f+(1-δ)][(-1)(1+g)(1+g)]>0

Φ=u[(1+g)(1+g)]<0

¢¢

¢

¢¢¢¢¢¢

¢¢¢

¢¢

 

To solve (I.44) in a way that satisfies the initial and Transversality conditions, or equivalently follows the stable manifold of the preceding subsection, we proceed with the following steps:

Step 1: Define the variables:
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to convert (I.44) to the following system of two homogeneous first order linear difference equations:
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which, in view of the fact that   
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Step 2: Find the eigenvalues and eigenvectors of matrix 
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, so as to diagonalize it. The eigenvalues of this matrix are the solutions of the characteristic equation:
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Therefore, we must have:
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Note that the last inequality follows from the facts that both 
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are strictly increasing and strictly concave. Therefore the roots of the characteristic equation are such that:
(a)
λ1,  λ2  > 0
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The configuration of these roots are illustrated in Figure 2, below.
Now, the eigenvectors 
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Let 
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(i.e., be any arbitrary real number different from zero) and 
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And, therefore,
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Step 3: Find the values of the undetermined constants, 
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Clearly, for the solution to converge to the steady state, we need 
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Hence, we must have:
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Substituting this solution into the Euler condition (I.44) gives:
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. Hence, we must have, 
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(I.46)
The last equation, known as the “flexible accelerator” , characterizes the convergence of capital per efficient household towards the steady state of the Neoclassical Growth Model. Clearly, the further away from the steady state the faster the movement towards the steady state.

Exercise 6 : Show that the  rate of convergence towards the steady state of the Neoclassical Growth Model, 
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 , decreases, if: (a) the discount rate decreases (i.e., households are more impatient); (b) the growth rate of population decreases.
F.   Quantitative Analysis
1.   The equilibrium laws of motion

The preceding results imply that the unique steady state of the competitive equilibrium of the Cash-Koopmans version of the Neoclassical Growth model is given by:
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where: 
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where: 
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Further, consumption and investment per efficient household are given by:
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And, the real cost of capital and the real wage rate are given by:
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Assigning values to the model’s parameters (i.e., 
[image: image318.wmf](,,

 

,,,,)

Agg

nz

abgd

) and 
[image: image319.wmf]0

k

, we can compute the equilibrium paths followed by all endogenous variables in this model. And, moreover we can investigate quantitatively the response of the equilibrium to any changes in the parameters or the exogenous variable, 
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2.   Calibration
Typically, we assign values that are broadly consistent with the data of a real economy.
3.   The Code
% This program analyzes short and long run effects of a 10 percent increase in total factor productivity in the discrete time Cass-Koopmans model.
% Two cases are examined:
% 1. A permanent 10 percent increase in total factor productivity
% 2. A temporary (one period) 10 percent increase in total factor productivity
% The program calls the function: 
%
% ss_ck.m, which computes the steady-state as well as the transition matrix for the linear approximation to the model.
clear all;
clc
%  structural parameters
A = 1;                                     %   Technology level
beta = 0.96;                            %   Discount factor
gamma = 2;                            %   Relative risk aversion
gn = 0.01;                               %   Population growth rate
gz = 0.025;                             %   Technological growth rate
delta = 0.07;                           %   Depreciation rate of capital
alpha = 0.33;                          %   Capital share
theta = (1+gn)*(1+gz)-(1-delta);
% initial steady state (before the 10 percent increase in total factor productivity)
kss0 = ((alpha*A*beta)/(theta+(1-beta)*(1-delta)))^(1/(1-alpha)); % capital stock
css0 = A*kss0^alpha - theta*kss0; % consumption
iss0 = theta*kss0; % investment
rss0 = alpha*A*kss0^(alpha-1); % real rental cost of capital
wss0 = (1-alpha)*A*kss0^alpha; % wage
yss0 = A*kss0^alpha; % output
display('Initial Steady State')
display('   k   c   i   r   w   y   ')
display('==================================')
display([kss0 css0 iss0 rss0 wss0 yss0])
display(' ')
display(' ')
display('1. A PERMANENT INCREASE IN TOTAL FACTOR PRODUCTIVITY')
display(' ')
display(' ')
%short run and long run effects of a permanent change in total factor productivity
nobs=99;
param=[A beta gamma gn gz delta alpha];
x0=[kss0 kss0 css0 css0]';
    param1=param;
    x01=x0;
    % computes the new steady state (after a permanent ten percent increase in total factor productivity)
    param1(1) = 1.1*param(1);
    x=fsolve('ss_ck',x01,optimset,param1);
    kss = x(1);   % capital
    css = x(3);   % consumption
    iss = theta*kss; % investment
    rss = alpha*param1(1)*kss^(alpha-1); % real rental cost of capital
    wss = (1-alpha)*param1(1)*kss^alpha; % wage
    yss = param1(1)*kss^alpha; % output
display('Steady State After a Permanent 10 Percent Increase in Total Factor Productivity')
display('   k   c   i   r   w   y   ')
display('==================================')
display([kss css iss rss wss yss])
    J=jacobian('ss_ck',x,param1); % transition matrix
    MA=[J(1,1) J(1,3);
        J(2,1) J(2,3)];
    MB=[J(1,2) J(1,4);
        J(2,2) J(2,4)];
    MG=-inv(MA)*MB;
    [Mvec,Meig]=eig(MG);
    Meig2=diag(Meig);
    [Meig3,Mord]=sort(abs(Meig2));
    Meig4=Meig2(Mord);
    Mlambda=diag(Meig4);
    MM=Mvec(:,Mord);
    Mm=inv(MM);
    stab=-Mm(2,1)/Mm(2,2); % stabilizing constant
    k0=kss0;
    c0=css+stab*(k0-kss);
    vk1=[];vk1=[vk1;k0];
    vc1=[];vc1=[vc1;c0];
    for i=1:nobs
        k1 = ((1-delta)*k0+param1(1)*k0^(alpha)-c0)/((1+gn)*(1+gz));
        c1=css+stab*(k1-kss);
        c0 = c1;
        k0 = k1;
        vk1 = [vk1;k0];  % capital stock
        vc1 = [vc1;c0];  % consumption
    end
    vy1 = param1(1).*(vk1.^alpha);    % output
    vr1 = (alpha*param1(1)).*vk1.^(alpha-1); % real rental cost of capital
    vw1 = ((1-alpha)* param1(1)).*vk1.^alpha; % wage
    vi1 = -(1-delta).*vk1(1:nobs-1) + ((1+gn)*(1+gz)).*vk1(2:nobs); % investment
%short run effects of a one period change in total factor productivity.
% Total factor productivity increases by 10 percent at period t=0 and goes back to its %initial value at period t=1
display(' ')
display(' ')
display('2. A TEMPORARY INCREASE IN TOTAL FACTOR PRODUCTIVITY')
display(' ')
display(' ')
% the state of the system at period t=1
kss1 = vk1(2); % capital is a state variable
css1 = vc1(1); 
iss1 = vi1(1);
rss1 = vr1(1);
wss1 = vw1(1);
yss1 = vy1(1);
x02=[kss1 kss1 css1 css1]';
display('State of the System at Period t=1')
display('   k   c   i   r   w   y   ')
display('==================================')
display([kss1 css1 iss1 rss1 wss1 yss1])
% computes the new steady state (after the reduction of total factor productivity)
% Note that this steady state must be the same as the initial steady state
    x1=fsolve('ss_ck',x02,optimset,param);
    kss2 = x1(1);   % capital
    css2 = x1(3);   % consumption
    iss2 = theta*kss2; % investment
    rss2 = alpha*param(1)*kss2^(alpha-1); % real rental cost of capital
    wss2 = (1-alpha)*param(1)*kss2^alpha; % wage
    yss2 = param(1)*kss2^alpha; % output
display('Steady State After the Temporary Total Factor Productivity Increase')
display('   k   c   i   r   w   y   ')
display('==================================')
display([kss2 css2 iss2 rss2 wss2 yss2])
J=jacobian('ss_ck',x1,param); % transition matrix
MA=[J(1,1) J(1,3);
    J(2,1) J(2,3)];
MB=[J(1,2) J(1,4);
    J(2,2) J(2,4)];
MG=-inv(MA)*MB;
[Mvec,Meig]=eig(MG);
Meig2=diag(Meig);
[Meig3,Mord]=sort(abs(Meig2));
Meig4=Meig2(Mord);
Mlambda=diag(Meig4);
MM=Mvec(:,Mord);
Mm=inv(MM);
stab=-Mm(2,1)/Mm(2,2); % stabilizing constant
    vk3(1:2) = vk1(1:2); 
    vc3(1) = vc1(1); 
    vy3(1) = vy1(1);
    vr3(1) = vr1(1); 
    vw3(1) = vw1(1); 
    vi3(1) = vi1(1); 
    k0=kss1;
    c0=css2+stab*(k0-kss2);
    vk2=[];vk2=[vk2;k0];
    vc2=[];vc2=[vc2;c0];
    nobs1 = 49;
    for i=1:nobs
        k1 = ((1-delta)*k0+param(1)*k0^(alpha)-c0)/((1+gn)*(1+gz));
        c1=css2+stab*(k1-kss2);
        c0 = c1;
        k0 = k1;
        vk2 = [vk2;k0];  % capital stock
        vc2 = [vc2;c0];  % consumption
    end
    for s=3:nobs1
    vk3(s-1) = vk2(s-2); %capital 
    %vk3(s) = vk2(s-2); %capital 
    vc3(s-1) = vc2(s-2);    %consumption
    vy3(s-1) = param(1).*(vk2(s-2).^alpha); %output
    vr3(s-1) = (alpha*param(1)).*vk2(s-2).^(alpha-1); % real rental cost of capital
    vw3(s-1) = ((1-alpha)* param(1)).*vk2(s-2).^alpha; % wage
    vi3(s-1) = -(1-delta).*vk2(s-2) + ((1+gn)*(1+gz)).*vk2(s-1); % investment
    end    
    % setting all variables to start from their steady state values
    vk1= [kss0; vk1];
    vc1= [css0; vc1];
    vy1= [yss0; vy1];
    vr1= [rss0; vr1];
    vw1= [wss0; vw1];
    vi1= [iss0; vi1];
    vk3= [kss0; vk3'];
    vc3= [css0; vc3'];
    vy3= [yss0; vy3'];
    vr3= [rss0; vr3'];
    vw3= [wss0; vw3'];
    vi3= [iss0; vi3'];
    figure('Name','Figure 1: Responses After a Permanent 10 Percent Increase in Total Factor Productivity','NumberTitle','off')
    hold on
    subplot(3,2,1);
    plot(vk1);
    title('Capital Stock');
    grid on
    subplot(3,2,2);
    plot(vc1);
    title('Consumption');
    grid on
    subplot(3,2,3);
    plot(vi1);
    title('Investment');
    grid on
    subplot(3,2,4);
    plot(vy1);
    title('Output');
    grid on
    subplot(3,2,5);
    plot(vr1);
    title('Real Rental Cost of Capital');
    grid on
    subplot(3,2,6);
    plot(vw1);
    title('Wage');
    grid on
    hold off
figure('Name','Figure 2: Responses After a One Period 10 Percent Increase in Total Factor Productivity','NumberTitle','off')
hold on
    subplot(3,2,1);
    plot(vk3);
    title('Capital Stock');
    grid on
    subplot(3,2,2);
    plot(vc3);
    title('Consumption');
    grid on
    subplot(3,2,3);
    plot(vi3);
    title('Investment');
    grid on
    subplot(3,2,4);
    plot(vy3);
    title('Output');
    grid on
    subplot(3,2,5);
    plot(vr3);
    title('Real Rental Cost of Capital');
    grid on
    subplot(3,2,6);
    plot(vw3);
    title('Wage');
    grid on
hold off
function f=ss_ck(x0,param)
% solves for the steady state and gets the transition matrix of the linear approximation to %the first order conditions of the Cass-Koopmans model in discrete time
A = param(1);                %   Technology level
beta = param(2);            %   Discount factor
gamma = param(3);       %   Relative risk aversion
gn = param(4);               %   Population growth rate
gz = param(5);               %   Technological growth rate
delta = param(6);           %   Depreciation rate of capital
alpha = param(7);          %   Capital share
k1 = x0(1);
k = x0(2);
c1 = x0(3);
c = x0(4);
f(1) = (1+gn)*(1+gz)*k1-(1-delta)*k-A*k^alpha+c;
f(2) = (1+gn)*(1+gz)*c1^gamma - beta*c^(gamma)*((1-delta)+alpha*A*k1^(alpha-1));
f(3) = k1-k;
f(4) = c1-c;
f = f';

function J=jacobian(func,x0,param)
%
%  A function that uses numerical derivatives to compute the Jacobian matrix of any system of functions of several variables. 
auxi=diag(max(abs(x0)*1e-8,1e-8));
n=length(x0);
 for j=1:n
    J(:,j)=0.5.*(feval(func,x0+auxi(:,j),param)-...
        feval(func,x0-auxi(:,j),param))/auxi(j,j);
 end
1. Simulations
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Figure 1: Responses After a Permanent 10 Percent Increase in Total Factor Productivity
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Figure 2: Responses After a One Period 10 Percent Increase in Total Factor Productivity
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� For the general case see Stokey et al. (), pp. 


� These properties also characterize the case of the more general productivity function specified in Subsection A.2, above.
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