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Lemma

Let (Y,d) be a complete metric space and X # & a non-empty set, then the structured set
(B(X,Y),d2,) with d?,,(f.g) = sup d(f(x), g(x)), Vf.g € B(X,Y) is a complete metric space.
zeX

» Ysup sup

Proof
We need to show that:

1. (B(X,Y),d%, ) is a metric space, which requires that:

» Ysup
e 3(X,Y) be a non-empty set.

e d¢_ be a metric function on B(X,Y) (properties i-iv).

sup

2. Every d? -Cauchy sequence on B(X,Y) has a d?_-limit in B(X,Y’), which requires that for

sup sup

all (fp)nen : fn € B(X,Y), Vn € N that are d?, -Cauchy, there exists a function, f, such that:

sup

o f=d —limf,

sup

e fEB(X,Y)

1. Since X # @ we can define at least one function (if not more) that maps elements of X to
elements of Y (also non-empty). For example, the constant function f. : X — Y such that

Vo € X, f.(x) = y. for some y. € Y.

Furthermore, observe that f.(X) = {y.} C Y, i.e. the image of X through f. is a subset of Y’
(naturally) and it is also a singleton set (it has only one element). Thus f(X) is certainly a

d-bounded subset of Y.

*Please report any typos, mistakes, or even suggestions at zaverdasd®@aueb.gr.



We have found at least one example of a bounded function from X to Y. So B(X,Y) is

non-empty.

Also, d¢,, is a metric function on B(X,Y’) since:

i) Vf.g € BOX,Y), d, (f.9) = sup d(f(x), g(x)) >0

zeX

ii) Vf,g € B(X,Y),

dgup(fa g) - 0 —

sup d(f(z),g(z)) =0 N
d(f(z),g(x)) =0, Vo € X N
flx)=g(x),Vr e X —

iii) Vf,g € B(X,Y), d%,(f.g) = sup d(f(x), g(z)) = sup d(g(z), f(x)) = d,(g, f)

zeX reX

iV) vfagah S B(X,Y),

d?,,(f,9) = sup d(f(z),g(z))

rzeX

< sup (d(f(x), h(z)) + d(h(x), g(x)))

zeX

< sup d(f(x), h(x)) + sup d(h(zx), g(x))

zeX zeX

So d?, is a metric function on the non-empty B(X,Y) and (B(X,Y),d¢,) is a metric space.

sup 7 sup

2. Consider an arbitrary d¢,_-Cauchy sequence on B(X,Y), (fu)nen : fn € B(X,Y)Vn € N.

sup

Then Ve > 0 3 n(e) such that

e, (fn, fm) < €, ¥n,m > n(e)
sup d(fn(2), fm(x)) < &, Vn,m > n(e)
zeX

Ve € X, d(fo(x), fm(z)) <&, Yn,m > n(e)

so that (f,(z))nen is a d-Cauchy sequence on Y, Vr € X.

d

Here is an informal breakdown to facilitate your intuition. From one d,,

-Cauchy sequence
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in the set of bounded Y-valued functions, B(X,Y’), we can get multiple sequences, (¥,)nen,
in Y that are d-Cauchy, one for every x € X. For each such starting sequence, (f,)nen, there
are as many such (y,)nen Sequences as elements in the domain of those f,,, X, and their n-th

element is given by vy, = f,.(x).

Furthermore, because (Y, d) is complete, (f,(z))nen converges to a d-limit in Y, say ¢, € Y,
for all z € X.

d

So starting from a dg,,

-Cauchy sequence on B(X,Y) we can generate a collection of

d-convergent sequences on Y (one sequence for each z € X). That is, we have that

¥ (fu)new (fa)nen dey,-Cauchy on B(X,Y)

F{(Yn)nen Yn = fu(x)Vn € N, (y,)nen d-convergent on Y, Vo € X'}

Now, for any such starting sequence (f,(x)),en using the corresponding ¢, of each z € X,
define the function f : X — Y such that f(z) = ¢, Vo € X. To show that (B(X,Y),dZ,))

is complete, it suffices to show that dZ,, —lim f,, = f and that f € B(X,Y) (since we have
taken (f,,(x))nen to be d-Cauchy).

Firstly, notice that

d3p(fus ) =sup d(fa(2), f(2))

reX
:supd(fn(:c), d— lim fm(x»
zeX m——+0oo

—oup tim_ (407 (0) )

zeX m—r-+00

This last equality follows by the fact that metrics are continuous functions (needs proof).

Now consider d(f,(z), fm(z)) for some z € X (notice that it is a real number). Choose
an arbitrary fixed n € N and think of the real valued sequence (z,,)men € R, such that

Zm = d(fo(x), fr(x)) for any given n € N and z € X.

d;lup(fn’f):sup lim Zm

zeX m——+00

<sup sup 2,
zeX m>n

This holds because we are considering more z,, than just those that “tend to infinity”. Keep

in mind that, if we denote z as the limit here, even if z,, < z, Vm € N it still holds that



SUp,,en Zm = 2. This can be generalized to cases where a finite number of z,, are greater than

the limit (if they were infinite, then it wouldn’t be a limit).

So we have that

Aoy (Fr f) <sup sup d(fu(@), fin(2))

zeX m>n

<sup sup sup d(f(x), f(x))
zeX m>nxeX

= sup sup d(fn<17)> fm(l‘))

m>n xeX

= sup . (frs fin)

So we showed that d,,(fn, f) < sup,,s, d,(fa, fm). Now consider the following

sup

(fu)nen is dZ,,-Cauchy

Ve >0, An(e): d;lup(fn, fm) <€ Vn,m > n(e)

Ve >0, 3 n(e) : sup dl,(fu, fn) <€ Vn > n(e)
m>n

Ve >0, In(e): dfup(fn, f)<e Vn > n(e)

d
sup*

thus as n — +o00, f, — f with respect to d

d

sup

d

And because (f,,(7))nen Was arbitrarily chosen, any dg, -Cauchy sequence in B(X,Y) is dg,, -

convergent. It still remains to show that its d?, -limit (say f) is in B(X,Y).

sup

So, for any two points f(z), f(y) € Y and some n € N we have that

sup d(f(x)a f(y)) < sup d(fn(e)(x)a f(:)?)) + sup d(fn(a) (ZE), f(y))

o yeX ryeX
< sup d(fuie (@), f(2)) + s A(frie) (), () a A(fue) (@), fuie)(¥))
< sup d(foe) (), f(2)) + sup A(fue) (), f(y)) + S A(fu(e) (@), fuie)(¥))
= 2supd(fuie) (@), f(2)) + S d(fu(e) (@), faie)(¥))
= 2% (fuo) ) + S d(fre) (@), fae) ()

where n(e) is such that d?,,(fn(), f) < e. This n(e) exists since f,, — f with respect to d?,,.

sup
Thus, the first additive term is bounded by 2¢. The second additive term is the maximum

distance between all values of f,) on Y. Since f,) € B(X,Y) this number is also bounded.
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Thus, sup, ,ex d(f(7), f(y)) < +oo, which establishes that f € B(X,Y), i.e. f is a bounded
Y-valued function.

d

sup

d

sup”

So for (Y, d) complete metric space, every d¢, -Cauchy sequence on B(X,Y) is d

in B(X,Y).

convergent

Thus, if (Y, d) is a complete metric space, then (B(X,Y),d%, ) is also a complete metric space.

) Ysup



