Athens University of Economics and Business
Department of Economics
Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas*
Semester: Spring 2020-2021

Completeness and Function Spaces

by Dimitris Zaverdas

Lemma

Let (Y, d) be a complete metric space and $X \neq \varnothing$ a non-empty set, then the structured set $\left(\mathcal{B}(X, Y), d_{\text {sup }}^{d}\right)$ with $d_{\text {sup }}^{d}(f, g)=\sup _{x \in X} d(f(x), g(x)), \forall f, g \in \mathcal{B}(X, Y)$ is a complete metric space.

Proof

We need to show that:

1. $\left(\mathcal{B}(X, Y), d_{\text {sup }}^{d}\right)$ is a metric space, which requires that:

- $\mathcal{B}(X, Y)$ be a non-empty set.
- $d_{\text {sup }}^{d}$ be a metric function on $\mathcal{B}(X, Y)$ (properties i-iv).

2. Every $d_{\text {sup }}^{d}$-Cauchy sequence on $\mathcal{B}(X, Y)$ has a $d_{\text {sup }}^{d}$-limit in $\mathcal{B}(X, Y)$, which requires that for all $\left(f_{n}\right)_{n \in \mathbb{N}}: f_{n} \in$ $\mathcal{B}(X, Y), \forall n \in \mathbb{N}$, there exists a function, f, such that:

- $f=d_{\text {sup }}^{d}-\lim f_{n}$
- $f \in \mathcal{B}(X, Y)$

1. Since $X \neq \varnothing$ we can define at least one function (if not more) that maps elements of X to elements of Y (also non-empty). For example, the constant function $f_{c}: X \rightarrow Y$ such that $\forall x \in X, f_{c}(x)=y_{c}$ for some $y_{c} \in Y$.

Furthermore, observe that $f_{c}(X)=\left\{y_{c}\right\} \subseteq Y$, i.e. the image of X through f_{c} is a subset of Y (naturally) and it is also a singleton set (it has only one element). Thus $f(X)$ is certainly a d-bounded subset of Y.

We have found at least one example of a bounded function from X to Y. So $\mathcal{B}(X, Y)$ is non-empty.
Also, $d_{\text {sup }}^{d}$ is a metric function on $\mathcal{B}(X, Y)$ since:
i) $\forall f, g \in \mathcal{B}(X, Y), d_{\text {sup }}^{d}(f, g)=\sup _{x \in X} d(f(x), g(x)) \geq 0$
ii) $\forall f, g \in \mathcal{B}(X, Y)$,

$$
\begin{aligned}
d_{\text {sup }}^{d}(f, g) & =0 & & \Longleftrightarrow \\
\sup _{x \in X} d(f(x), g(x)) & =0 & & \Longleftrightarrow \\
d(f(x), g(x)) & =0, \forall x \in X & & \Longleftrightarrow \\
f(x) & =g(x), \forall x \in X & & \Longleftrightarrow \\
f & =g & & \Longleftrightarrow
\end{aligned}
$$

[^0]iii) $\forall f, g \in \mathcal{B}(X, Y), d_{\text {sup }}^{d}(f, g)=\sup _{x \in X} d(f(x), g(x)) \stackrel{i i i}{=} \sup _{x \in X} d(g(x), f(x))=d_{\text {sup }}^{d}(g, f)$
iv) $\forall f, g, h \in \mathcal{B}(X, Y)$,
\[

$$
\begin{aligned}
d_{\text {sup }}^{d}(f, g) & =\sup _{x \in X} d(f(x), g(x)) \\
& \leq \sup _{x \in X}(d(f(x), h(x))+d(h(x), g(x))) \\
& \leq \sup _{x \in X} d(f(x), h(x))+\sup _{x \in X} d(h(x), g(x)) \\
& =d_{\text {sup }}^{d}(f, h)+d_{\text {sup }}^{d}(h, g)
\end{aligned}
$$
\]

So $d_{\text {sup }}^{d}$ is a metric function on the non-empty $\mathcal{B}(X, Y)$ and $\left(\mathcal{B}(X, Y), d_{\text {sup }}^{d}\right)$ is a metric space.
2. Consider an arbitrary $d_{\text {sup }}^{d}$-Cauchy sequence on $\mathcal{B}(X, Y),\left(f_{n}\right)_{n \in \mathbb{N}}: f_{n} \in \mathcal{B}(X, Y) \forall n \in \mathbb{N}$. Then $\forall \varepsilon>0 \exists n(\varepsilon)$ such that

$$
\begin{array}{r}
d_{\text {sup }}^{d}\left(f_{n}, f_{m}\right)<\varepsilon, \forall n, m>n(\varepsilon) \\
\sup _{x \in X} d\left(f_{n}(x), f_{m}(x)\right)<\varepsilon, \forall n, m>n(\varepsilon) \\
\forall x \in X, d\left(f_{n}(x), f_{m}(x)\right)<\varepsilon, \forall n, m>n(\varepsilon)
\end{array}
$$

so that $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is a d-Cauchy sequence on $Y, \forall x \in X$.
Here is an informal breakdown to facilitate your intuition. From one $d_{\text {sup }}^{d}$-Cauchy sequence in the set of bounded Y-valued functions, $\mathcal{B}(X, Y)$, we can get multiple sequences, $\left(y_{n}\right)_{n \in \mathbb{N}}$, in Y that are d-Cauchy, one for every $x \in X$. For each such starting sequence, $\left(f_{n}\right)_{n \in \mathbb{N}}$, there are as many such $\left(y_{n}\right)_{n \in \mathbb{N}}$ sequences as elements in the domain of those f_{n}, X, and their n-th element is given by $y_{n}=f_{n}(x)$.

Furthermore, because (Y, d) is complete, $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ converges to a d-limit in Y, say $\phi_{x} \in Y$, for all $x \in X$.
So starting from a $d_{\text {sup }}^{d}$-Cauchy sequence on $\mathcal{B}(X, Y)$ we can generate a collection of d-convergent sequences on Y (one sequence for each $x \in X$). That is, we have that

$$
\begin{aligned}
& \forall\left(f_{n}\right)_{n \in \mathbb{N}}:\left(f_{n}\right)_{n \in \mathbb{N}} d_{\text {sup }}^{d} \text {-Cauchy on } \mathcal{B}(X, Y) \\
& \exists\left\{\left(y_{n}\right)_{n \in \mathbb{N}}: y_{n}=f_{n}(x) \forall n \in \mathbb{N},\left(y_{n}\right)_{n \in \mathbb{N}} d \text {-convergent on } Y, \forall x \in X\right\}
\end{aligned}
$$

Now, for any such starting sequence $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ using the corresponding ϕ_{x} of each $x \in X$, define the function $f: X \rightarrow Y$ such that $f(x):=\phi_{x}, \forall x \in X$. To show that $\left(\mathcal{B}(X, Y), d_{\text {sup }}^{d}\right)$ is complete, it suffices to show that $d_{\text {sup }}^{d}-\lim f_{n}=f$ and that $f \in \mathcal{B}(X, Y)$ (since we have taken $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ to be d-Cauchy).

Firstly, notice that

$$
\begin{aligned}
d_{\text {sup }}^{d}\left(f_{n}, f\right) & =\sup _{x \in X} d\left(f_{n}(x), f(x)\right) \\
& =\sup _{x \in X} d\left(f_{n}(x), d-\lim _{m \rightarrow+\infty} f_{m}(x)\right) \\
& =\sup _{x \in X} \lim _{m \rightarrow+\infty}\left(d\left(f_{n}(x), f_{m}(x)\right)\right)
\end{aligned}
$$

This last equality follows by the fact that metrics are continuous functions (needs proof).
Now consider $d\left(f_{n}(x), f_{m}(x)\right)$ for some $x \in X$ (notice that it is a real number). Choose an arbitrary fixed $n \in \mathbb{N}$ and think of the real valued sequence $\left(z_{m}\right)_{m \in \mathbb{N}} \in \mathbb{R}$, such that $z_{m}=d\left(f_{n}(x), f_{m}(x)\right)$ for any given $n \in \mathbb{N}$ and $x \in X$.

$$
\begin{aligned}
d_{\text {sup }}^{d}\left(f_{n}, f\right) & =\sup _{x \in X} \lim _{m \rightarrow+\infty} z_{m} \\
& \leq \sup _{x \in X} \sup _{m \geq n} z_{m}
\end{aligned}
$$

This holds because we are considering more z_{m} than just those that "tend to infinity". Keep in mind that, if we denote z as the limit here, even if $z_{m}<z, \forall m \in \mathbb{N}$ it still holds that $\sup _{m \in \mathbb{N}} z_{m}=z$. This can be generalized to cases where a finite number of z_{m} are greater than the limit (if they were infinite, then it wouldn't be a limit).

So we have that

$$
\begin{aligned}
d_{\text {sup }}^{d}\left(f_{n}, f\right) & \leq \sup _{x \in X} \sup _{m \geq n} d\left(f_{n}(x), f_{m}(x)\right) \\
& \leq \sup _{x \in X} \sup _{m \geq n} \sup _{x \in X} d\left(f_{n}(x), f_{m}(x)\right) \\
& =\sup _{m \geq n} \sup _{x \in X} d\left(f_{n}(x), f_{m}(x)\right) \\
& =\sup _{m \geq n} d_{\text {sup }}^{d}\left(f_{n}, f_{m}\right)
\end{aligned}
$$

So we showed that $d_{\text {sup }}^{d}\left(f_{n}, f\right) \leq \sup _{m \geq n} d_{\text {sup }}^{d}\left(f_{n}, f_{m}\right)$. Now consider the following
$\left(f_{n}\right)_{n \in \mathbb{N}}$ is $d_{\text {sup }}^{d}$-Cauchy

$$
\begin{array}{lr}
\forall \varepsilon>0, \exists n(\varepsilon): d_{\text {sup }}^{d}\left(f_{n}, f_{m}\right)<\varepsilon & \forall n, m \geq n(\varepsilon) \\
\forall \varepsilon>0, \exists n(\varepsilon): \sup _{m \geq n} d_{\text {sup }}^{d}\left(f_{n}, f_{m}\right)<\varepsilon & \forall n \geq n(\varepsilon) \\
\forall \varepsilon>0, \exists n(\varepsilon): d_{\text {sup }}^{d}\left(f_{n}, f\right)<\varepsilon & \forall n \geq n(\varepsilon)
\end{array}
$$

thus as $n \rightarrow+\infty, f_{n} \rightarrow f$ with respect to $d_{\text {sup }}^{d}$.
And because $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ was arbitrarily chosen, any $d_{\text {sup }}^{d}$-Cauchy sequence in $\mathcal{B}(X, Y)$ is $d_{\text {sup }}^{d}$-convergent. It still remains to show that its $d_{\text {sup }}^{d}$-limit (say f) is in $\mathcal{B}(X, Y)$.

So, for any two points $f(x), f(y) \in Y$ and some $n \in \mathbb{N}$ we have that

$$
\begin{aligned}
\sup _{x, y \in X} d(f(x), f(y)) & \leq \sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f(x)\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f(y)\right) \\
& \leq \sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f(x)\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(y), f(y)\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)\right) \\
& \leq \sup _{x \in X} d\left(f_{n(\varepsilon)}(x), f(x)\right)+\sup _{y \in X} d\left(f_{n(\varepsilon)}(y), f(y)\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)\right) \\
& =2 \sup _{x \in X} d\left(f_{n(\varepsilon)}(x), f(x)\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)\right) \\
& =2 d_{\text {sup }}^{d}\left(f_{n(\varepsilon)}, f\right)+\sup _{x, y \in X} d\left(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)\right)
\end{aligned}
$$

where $n(\varepsilon)$ is such that $d_{\text {sup }}^{d}\left(f_{n(\varepsilon)}, f\right)<\varepsilon$. This $n(\varepsilon)$ exists since $f_{n} \rightarrow f$ with respect to $d_{\text {sup }}^{d}$. Thus, the first additive term is bounded by 2ε. The second additive term is the maximum distance between all values of $f_{n(\varepsilon)}$ on Y. Since $f_{n(\varepsilon)} \in \mathcal{B}(X, Y)$ this number is also bounded. Thus, $\sup _{x, y \in X} d(f(x), f(y))<+\infty$, which establishes that $f \in \mathcal{B}(X, Y)$, i.e. f is a bounded Y-valued function.

So for (Y, d) complete metric space, every $d_{\text {sup }}^{d}$-Cauchy sequence on $\mathcal{B}(X, Y)$ is $d_{\text {sup }}^{d}$-convergent in $\mathcal{B}(X, Y)$.
Thus, if (Y, d) is a complete metric space, then $\left(\mathcal{B}(X, Y), d_{\text {sup }}^{d}\right)$ is also a complete metric space.

[^0]: *Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.

