Athens University of Economics and Business
Department of Economics
Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas*
Semester: Spring 2020-2021

Problem Set 2

Open and Closed Balls, Boundness, and Total Boundness

Exercise 1

Show that open and closed balls can be defined for pseudo-metric spaces.

Exercise 2

For the following (X, d) pairs, show that they constitute (pseudo-)metric spaces and define the unit open balls on them and visualize them:

1. $X=\mathbb{R}$ and $d: X \times X \rightarrow \mathbb{R}$, such that

$$
d(x, y)=\left\{\begin{array}{ll}
0, & x=y \\
c, & x \neq y
\end{array} \quad, \forall x, y \in X\right.
$$

with $c>0$.
2. $X=\mathbb{R}^{2}$ and $d: X \times X \rightarrow \mathbb{R}$, such that

$$
d(x, y)=\sqrt{(x-y)^{\prime} A(x-y)}, \forall x, y \in X
$$

with $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
3. $X=\mathbb{R}^{3}$ and $d: X \times X \rightarrow \mathbb{R}$, such that

$$
d(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \sqrt{\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}\right\}, \forall x, y \in X
$$

[^0]
Exercise 3

Let (X, d) be a metric space and for some $x, y \in X$ and $\varepsilon>0$ let $y \in \mathcal{O}_{d}(x, \varepsilon)$. Show that $\exists \delta>0: \mathcal{O}_{d}(y, \delta) \subseteq \mathcal{O}_{d}(x, \varepsilon)$.

Exercise 4

Let (X, d) be a metric space and $Y \subseteq X$. Define $d^{\prime}: Y \times Y \rightarrow \mathbb{R}$ such that $d^{\prime}=\left.d\right|_{Y \times Y}$. Then $\left(Y, d^{\prime}\right)$ is a metric subspace of (X, d). Show that $\mathcal{O}_{d^{\prime}}(x, \varepsilon)=\mathcal{O}_{d}(x, \varepsilon) \cap Y$ and $\mathcal{O}_{d^{\prime}}[x, \varepsilon]=\mathcal{O}_{d}[x, \varepsilon] \cap Y$.

Exercise 5

Is $(0,1)$ a bounded set?

Exercise 6

Let $d: \mathbb{R}_{++} \times \mathbb{R}_{++} \rightarrow \mathbb{R}$ such that $d(x, y)=|\ln (x)-\ln (y)|, \forall x, y \in \mathbb{R}_{++}$be a metric on \mathbb{R}_{++}. Is $(0,1)$ a d-bounded subset of \mathbb{R}_{++}?

Exercise 7

Let (Y, d) be a metric space and $X \neq \varnothing$. For $d_{\text {sup }}: \mathcal{B}(X, Y) \times \mathcal{B}(X, Y) \rightarrow \mathbb{R}$ such that

$$
d_{\text {sup }}(f, g)=\sup _{x \in X} d(f(x), g(x)), \forall f, g \in \mathcal{B}(X, Y)
$$

show that:

1. $\left(\mathcal{B}(X, Y), d_{\text {sup }}\right)$ is a metric space.
2. If (Y, d) is bounded, then $\left(\mathcal{B}(X, Y), d_{\text {sup }}\right)$ is also bounded.

Exercise 8

Let $X \subseteq \mathbb{R}^{N}$ with $N \in \mathbb{N}^{*}$ and $d: X \times X \rightarrow \mathbb{R}$ such that $d(x, y)=\left(\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}, \forall x, y \in X$ be the Euclidean metric on X. Show that d-boundeness in X is sufficient for d-total boundeness in X.
(Hint: Consider a d-bounded set in X and show that the ball that covers it is d-totally bounded.)

Exercise 9

Let $X=\left\{\left(x_{n}\right)_{n \in \mathbb{N}^{*}}: x_{n} \in \mathbb{R}, \sum_{i=1}^{\infty} x_{i}^{2}<+\infty\right\}$ (i.e. X is the set of square summable real sequences) and $d: X \times X \rightarrow \mathbb{R}$ such that $d(x, y)=\left(\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}, \forall x, y \in X$ be a metric on X. Show that d-boundeness in X is not sufficient for d-total boundeness in X.
(Hint: Consider the sequence $\mathbf{0}=\{0\}_{n \in \mathbb{N}^{*}} \in X$ and the d-closed unit ball centered at it. Use Riesz's Lemma and the Pigeonhole Principle.)

Exercise 10

Let $X=\left\{f:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} f^{2}(x) d x<+\infty\right\}$ be the set of square integrable functions from $[0,1]$ to \mathbb{R}. Consider the metric function $d(f, g):=\left(\int_{0}^{1}(f(x)-g(x))^{2} d x\right)^{\frac{1}{2}}$ on X. If $\mathbf{0}:[0,1] \rightarrow \mathbb{R}$ is a function in X such that $\mathbf{0}(x):=0 \forall x \in[0,1]$, consider $\mathcal{O}_{d}[\mathbf{0}, 1]$ and show that it is not d-totally bounded.

Exercise 11

Let $\left(X_{i}, d_{i}\right)$ be metric spaces $\forall i \in \mathcal{I}$ with \mathcal{I} a finite index set. For the cartesian product $X:=\prod_{i \in \mathcal{I}} X_{i}$ there can be defined the following structured sets $\left(X, d_{\Pi}\right)$ with $d_{\Pi} \in\left\{d_{\Pi_{\max }}, d_{\Pi_{I}}, d_{\Pi_{\|}}\right\}$and d_{Π} are defined as

$$
\begin{aligned}
d_{\Pi_{\max }} & =\max _{i \in \mathcal{I}} d_{i} \\
d_{\Pi_{I}} & =\left(\sum_{i \in \mathcal{I}} d_{i}^{2}\right)^{\frac{1}{2}} \\
d_{\Pi_{\mid ।}} & =\sum_{i \in \mathcal{I}} d_{i}
\end{aligned}
$$

and are appropriate metric functions on X. Let $A_{i} \subseteq X_{i}, \forall i \in \mathcal{I}$ and $A:=\prod_{i \in \mathcal{I}} A_{i}$, which implies that $A \subseteq X$. Show that A is a d_{Π}-totally bounded subset of X iff A_{i} are d_{i}-totally bounded subsets of $X_{i} \forall i \in \mathcal{I}$, for each of the three d_{Π} defined above.

Exercise 12

Let d_{1} and d_{2} be both metrics on a non empty set X such that $d_{1} \leq c d_{2}$ with $c>0$. Show that:

1. for $x \in X$ and $0<\varepsilon$ then $\mathcal{O}_{d_{2}}(x, \varepsilon) \subseteq \mathcal{O}_{d_{1}}(x, c \cdot \varepsilon)$.
2. if $A \subseteq X$ is d_{2}-bounded, then it is d_{1}-bounded.
3. if there exists $c^{\prime}>0$ such that $c^{\prime} d_{2} \leq d_{1} \leq c d_{2}$, then $A \subseteq X$ is d_{1}-bounded iff it is d_{2}-bounded.
4. if $A \subseteq X$ is d_{2}-totally bounded, then it is d_{1}-totally bounded.
5. if there exists $c^{\prime}>0$ such that $c^{\prime} d_{2} \leq d_{1} \leq c d_{2}$, then $A \subseteq X$ is d_{1}-totally bounded iff it is d_{2}-totally bounded.

Useful Theorems and Results

Diagonal of a Euclidean N-cube

Let C be a "cube" in a Euclidean space with side length $\alpha>0$. That is, if $x \in \mathbb{R}^{N}$ is the "center" of C, then

$$
C=\left[x_{1}-\frac{\alpha}{2}, x_{1}+\frac{\alpha}{2}\right] \times\left[x_{2}-\frac{\alpha}{2}, x_{2}+\frac{\alpha}{2}\right] \times \ldots \times\left[x_{N}-\frac{\alpha}{2}, x_{N}+\frac{\alpha}{2}\right]
$$

Then the maximum distance from this center x is equal to

$$
\begin{aligned}
\max _{y \in C} d(x, y) & =\max _{y \in C} \sqrt{\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{2}} \\
& =\max _{\left\{y_{i} \in\left[x_{i}-\frac{\alpha}{2}, x_{i}+\frac{\alpha}{2}\right]\right\}_{i=1}^{N}} \sqrt{\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{2}} \\
& =\sqrt{\sum_{i=1}^{N}\left|x_{i}-x_{i} \pm \frac{\alpha}{2}\right|^{2}} \\
& =\sqrt{\sum_{i=1}^{N}\left| \pm \frac{\alpha}{2}\right|^{2}} \\
& =\frac{\alpha}{2} \sqrt{\sum_{i=1}^{N} 1} \\
& =\frac{\alpha}{2} \sqrt{N}
\end{aligned}
$$

and corresponds to all the "corners" of this N-cube.

Riesz's Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), $\left(S,\left.d\right|_{S \times S}\right)$ non-dense linear subspace of (X, d), and $0<\varepsilon<1$, there exists $x \in X$ of unit norm (i.e. $d(\mathbf{0}, x)=\|x\|_{p}=1$) such that $d(x, s) \geq 1-\varepsilon, \forall s \in S$.

Pigeonhole Principle

For $n, m, k \in \mathbb{N}$ with $n=k m+1$, if we distribute n elements across m sets then at least one set will contain at least $k+1$ elements.

[^0]: *Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.

