Athens University of Economics and Business
Department of Economics
Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas*
Semester: Spring 2020-2021

Problem Set 1

Metric functions and metric spaces

Exercise 1

Is $d(x, y)=|x-y|$ a metric?

Exercise 2

Is the function $d: X \times X \rightarrow \mathbb{R}$ such that $d(x, y)=|x-y|, \forall x, y \in X$ a metric on the non-empty set $X \subseteq \mathbb{R}$?

Exercise 3

Suppose that (Y, d) is a metric space. Let $f: X \rightarrow Y$ be an injection from X to Y. Define $d_{f}: X \times X \rightarrow \mathbb{R}$ such that $d_{f}(x, y)=d(f(x), f(y)), \forall x, y \in X$. Is $\left(X, d_{f}\right)$ a metric space?

Exercise 4

Study whether or not the following pairs of sets and functions constitute metric spaces:

1. $X \neq \varnothing$ and $d(x, y)=\left\{\begin{array}{ll}0, & x=y \\ c, & x \neq y\end{array} \quad, \forall x, y \in X\right.$, with $c>0$ (Discrete distance)
2. $X=\mathbb{R}$ and $d(x, y)=\left|e^{x}-e^{y}\right|, \forall x, y \in X$ [Sutherland Ex. 5.4 (b)]
3. $X=\varnothing$ and $d(x, y)=|x-y|, \forall x, y \in X$
4. $X=\mathbb{R}$ and $d(x, y)=\ln \left(\left|e^{x}-e^{y}\right|\right), \forall x, y \in X$
5. $X=[-1,1]$ and $d(x, y)=\left|x^{2}-y^{2}\right|, \forall x, y \in X$
6. $X=\mathbb{R}$ and $d(x, y)=\left|x-y^{3}\right|, \forall x, y \in X$
7. $X=[0,1]$ and $d(x, y)=|x-y|^{2}, \forall x, y \in X$

[^0]8. $X=\mathbb{R}^{N}$ and $d(x, y)=\left(\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}, \forall x, y \in X$, with $p, N \in \mathbb{N}^{*}$ (Minkowski distance)

Exercise 5

For any metric space (X, d) and $\forall x, y, z, w \in X$, show that:

1. $|d(x, z)-d(z, y)| \leq d(x, y)$ [O'Searcoid Theorem 1.1.2, Sutherland Ex. 5.1]
2. $|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)$ [O'Searcoid Q 1.2, Sutherland Ex. 5.2]

Exercise 6

Let X be some non-empty set. Let d_{1}, d_{2}, and d_{s} be distance functions on X such that $d_{s}=d_{1}+d_{2}$ Determine whether the following statements always hold (or under which conditions they could hold):

1. If d_{1} and d_{2} are metrics on X, d_{s} is a metric on X .
2. If d_{1} is a metric and d_{2} a pseudo-metric on X, d_{s} is a metric on X .
3. If d_{1} and d_{2} are pseudo-metrics on X, d_{s} is a metric on X .

Exercise 7

Consider a finite index set $\mathcal{I}=\{1,2, \ldots, n\}$ with $n \in \mathbb{N}^{*}$ and for each of its elements, i, the functional metric spaces $\left(\mathcal{B}\left(X_{i}, \mathbb{R}\right), d_{\text {sup }}^{i}\right)$ with

$$
d_{\text {sup }}^{i}\left(f_{i}, g_{i}\right)=\sup _{x \in X_{i}}\left|f_{i}(x)-g_{i}(x)\right|, \forall f_{i}, g_{i} \in \mathcal{B}\left(X_{i}, \mathbb{R}\right)
$$

Consider the product set $B_{\Pi}:=\prod_{i \in I} \mathcal{B}\left(X_{i}, \mathbb{R}\right)$ with $f:=\left(f_{i}\right)_{i \in I} \in B_{\Pi}$ and the function d_{Π} : $B_{\Pi} \times B_{\Pi} \rightarrow \mathbb{R}$ such that

$$
d_{\Pi}(f, g)=\max _{i \in \mathcal{I}} \sup _{x \in X_{i}}\left|f_{i}(x)-g_{i}(x)\right|, \forall f, g \in B_{\Pi}
$$

Is $\left(B_{\Pi}, d_{\Pi}\right)$ a metric space?

Exercise 8 [O'Searcoid Q 1.8]

Let $P(S)$ be the power set of a non empty set, S. Let the function $d: P(S) \times P(S) \rightarrow \mathbb{R}$ such that

$$
d(A, B)=|(A \backslash B) \cup(B \backslash A)|, \forall A, B \in P(S)
$$

be a function that gives the cardinality of the symmetric difference between two elements of $P(S)$ (i.e. subsets of S). Is d a metric on $P(S)$?

Exercise 9 [Sutherland Ex. 5.14]

Let n be a positive natural number. The distance functions:

1. $d_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $d_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \forall x, y \in \mathbb{R}^{n}$ (Manhattan distance)
2. $d_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $d_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}}, \forall x, y \in \mathbb{R}^{n}$ (Euclidean distance)
3. $d_{\infty}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $d_{\infty}(x, y)=\max _{i=1}^{n}\left|x_{i}-y_{i}\right|, \forall x, y \in \mathbb{R}^{n}$ (Chebyshev distance)
are all metrics on \mathbb{R}^{n}. Show that the following functional inequalities hold:

$$
d_{\infty} \leq d_{2} \leq d_{1} \leq n \cdot d_{\infty} \leq n \cdot d_{2} \leq n \cdot d_{1}
$$

Exercise 10

Let X be an $n \times m$ real matrix, with $n, m \in \mathbb{N}^{*}$ and $n>m$, such that $\operatorname{rank}(X)=m$. Then $P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is the projection matrix of X. Let $Y \subseteq \mathbb{R}^{n}$ be non-empty and \hat{Y} be its projected image through P_{X}. Define $d_{X}: Y \times Y \rightarrow \mathbb{R}$ such that $d_{X}(x, y)=\left\|P_{X} \cdot x-P_{X} \cdot y\right\|, \forall x, y \in Y$ (i.e. d_{X} is the Euclidean norm of an n-dimensional real vector). Show that $\left(Y, d_{X}\right)$ is a pseudo-metric space.
(Hint: Consider the example of exercise 3. Under which conditions for f is $\left(X, d_{f}\right)$ a pseudo-metric space?)

Exercise 11

Let (X, d) be a metric space and consider a real function $f: \mathbb{R} \rightarrow \mathbb{R}$. Define $d^{\prime}: X \times X \rightarrow \mathbb{R}$ such that $d^{\prime}(x, y)=f(d(x, y)), \forall x, y \in X$.

1. Deduce the necessary conditions for f so that d^{\prime} be a metric on X.
2. Let $f(x)=\frac{x}{1+x}, \forall x \in \mathbb{R}_{+}$. Is d^{\prime} a metric on X ?
3. Let $f(x)=\ln (1+x), \forall x \in \mathbb{R}_{+}$. Is d^{\prime} a metric on X ?
4. Let $f(x)=x^{\alpha}, \forall x \in \mathbb{R}_{+}$with $0<\alpha<1$. Is d^{\prime} a metric on X ?
5. Let f be a strictly increasing concave real function such that $f(0)=0$. Is d^{\prime} a metric on X ?

Useful Theorems and Results

Cardinality and Set Operations

Cardinality is a measure of the number of elements in a set. The following properties hold with respect to cardinality:

$$
\begin{gather*}
|\varnothing|=0 \tag{1}\\
|A|+|B|=|A \cup B|+|A \cap B| \tag{2}\\
|A \backslash B|=|A|-|A \cap B| \tag{3}
\end{gather*}
$$

Square of the sum of N numbers

$$
\begin{equation*}
\left(\sum_{i=1}^{N} a_{i}\right)^{2}=\sum_{i=1}^{N} a_{i}^{2}+2 \sum_{i=1}^{N} \sum_{j=1}^{i-1} a_{i} a_{j} \tag{4}
\end{equation*}
$$

Hölder's inequality

For all $x, y \in \mathbb{R}^{N}$ and $\alpha, \beta \in(1,+\infty)$ such that $\frac{1}{\alpha}+\frac{1}{\beta}=1$, it holds that

$$
\begin{equation*}
\sum_{i=1}^{N}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{N}\left|x_{i}\right|^{\alpha}\right)^{\frac{1}{\alpha}}\left(\sum_{i=1}^{N}\left|y_{i}\right|^{\beta}\right)^{\frac{1}{\beta}} \tag{5}
\end{equation*}
$$

For $\alpha=\beta=2$ we get the Cauchy-Schwartz inequality.
For $x \in \mathbb{R}^{N}$ we call $\|x\|_{p}:=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ the p-norm of x.

[^0]: *Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.

