decture 13
Applications of BFPT

- Bellmon Equation
- Picard-Lindelill Thearede

Remenber: [Blachwells denna]

- $d=d$ sup
- $X \subseteq B(Z, \mathbb{R})$ contacins every constant function.

Furtherdiore, if $f_{\in} X, \alpha \in \mathbb{R}, \alpha$ coon be then $f+\alpha \in X$.
(x can be $(f+x)(x)=f_{(x)+1 x(x)}$ perceived as a coustant function $=f(x)+x$

$$
z \rightarrow \mathbb{R}, \alpha(x)=\alpha \quad \forall x \in Z)
$$

(e.g. $B(z, \mathbb{R})$ satisfies the above)

- if $f, g \in X$ then $f \geqslant g \Leftrightarrow f(x) \geqslant g(x) \forall x \in Z$. (Definition)
(pertial order on
Blackivell Hypotheses:
BLL. if $f \geqslant g \Rightarrow \phi(f) \subsetneq \phi(g)$ (ilonotonicity

$$
\left[\begin{array}{c}
\phi(f), \stackrel{f}{\phi}(g): z \rightarrow \mathbb{R} \in X \quad \text { of } \phi) \\
(\phi(f))(x) \geqslant(\phi(g))(x), \forall x \in z
\end{array}\right]
$$

BL2. $\exists \delta \in(0,1): \forall f \in x, \alpha \in \mathbb{R}$

Blackwell's Lemmar: Under BLL and BL2 Φ is a drap-controction.

Further Structure. [Remember i, ii, iii]
i. We will assume that Z is endowed with the Metric $d z$, w.r.t. which it is totally bounded and complete. (z is then tersued compact w.r.t. the topology generated by $d z$).
ii. It is possible to prove that if $z, d z$ is coapocct then $C(z, \mathbb{R}):=\left\{f: z \rightarrow \mathbb{R}, f \mathrm{du} / \mathrm{dz}^{- \text {-continuous }\}}\right.$ is a closed Subset of $B(z, \mathbb{R})$ wist. dsap. Since $B(z, \mathbb{R})$, dup is complete, this implies that $C(Z, \mathbb{R})$, dup is a Complete, Metric subspore.
iiii. If $z, d z$ is compact and $f \in C(z, \mathbb{R})$ then $\underset{x \in z}{\operatorname{argarax}} f(x) \neq \phi$.
Application: Bellman Equation $Z, d z$ is coupoccf. $w: Z x z \rightarrow \mathbb{R}$ is faintly continuous, $\delta_{\in}(0, D)$.

Definition: [Bellman Equation]

$$
\forall x \in Z
$$

(*) $\quad f(x)=\sup _{y \in z}[\omega(x, y)+\delta f(y)], f \in C(z, \mathbb{R})$.
Levrera. Bellman equation has a unique solution inside $C(z, \mathbb{R})$.

Remarks: $\omega(x, y)+\delta f(y)$ is jointly continuous due to the
Continuity of a, f. For any $x, \omega(x, y)+\delta f(y)$ is then continuous w.r.f. y. $y \in Z$, and Z is compact hence due to iii $\operatorname{arggatex}[\omega(x, y)+\delta f(y)] \neq \phi \quad \forall x \in X$ and thereby not only the $y \in z$
Supreavar in the equation exists and $\sup _{y \in z}[\omega(x, y)+8 f(y)]=$ $\operatorname{lax}_{y \in z}[w(x, y)+\delta f(y)] \forall_{x \in z}$. Since sup in this context is Continuous (Remeaber our first application!) Max $[\omega(x, y)+\delta f(y))]$ is a continue function of x y ez is a continuous function of x, ie, $\underset{y \in z}{\operatorname{Max}[\omega(x, y)+\delta f r y s]} \notin((z, \mathbb{R})$. Proof of Leaver.
$X=((Z, \mathbb{R})$ and $d=d$ sup. (this mores sense due to ii)
Consider Φ defined on $C(Z, \mathbb{R})$ as:

$$
(\phi(f))(x):=\operatorname{diax}_{y \in z}[\omega(x, y)+\delta f(y)], \underset{x \in Z}{ } \underset{x \in}{ }((z, \mathbb{R})
$$

Due to the previous remark ϕ is well-defined as a function $(C Z, \mathbb{R}) \rightarrow C(Z, \mathbb{R})$ (ie it is a self Map on $C(z, \mathbb{R}))$.
Furthermore $(*) \Leftrightarrow f(x)=\underset{y \in z}{\operatorname{Max}}[\omega(x, y)+s f(y)] \quad \forall x \subset Z$

$$
\Leftrightarrow \quad f(x)=(\phi(f))(x) \quad f x \in Z
$$

$$
\Leftrightarrow \quad f=\phi(f)
$$

Hence f satisfies Bellman Equation inf it is a fixed point of ϕ.
Hence in order to prove the Lemma it suffices to prove that Φ has a unique fixed point. We will ure the BTPT.
a. We hove that $((Z, \mathbb{R})$, dup is complete due to ii above.
b. we will use Blackwell's heavia in order to show that ϕ is a dsup-contraction:
I. constant functions $Z \rightarrow \mathbb{R}$ are obviously continuous and and if f continuous and α constant then $f+\infty$ continuous $z \rightarrow \mathbb{R}$.
II. BLL: Let $f, g \in(C Z, \mathbb{R})$ and $f \stackrel{\rightharpoonup}{r} g \Leftrightarrow$

$$
\begin{aligned}
& \quad f(y) \geqslant g(y) \quad f y \in z \Leftrightarrow \delta f(y) \geqslant \delta g(y) \quad \forall y \in Z \\
& \\
& \Rightarrow \quad \omega(x, y)+\delta f(y) \geqslant \omega(x, y)+\delta g(y) \quad \forall x, y \in Z \\
& \Rightarrow \quad \sup ^{\Rightarrow}[\omega(x, y)+\delta f(y)] \geqslant \sup _{y \in z}[\omega(x, y)+\delta g(y)] \quad \forall x \in z
\end{aligned}
$$ of sup

$$
\Rightarrow(\phi(f))(x) \geqslant((g))(x) \forall x \in Z \Leftrightarrow \phi(f) \geqslant \phi(g)
$$

Since f, g are arbitrary, ϕ is Monotone and BLL holds.
III. BLQ. For the δ that appears in the equation, if $f \in C(Z, \mathbb{R}), \alpha \in \mathbb{R}$ we have

$$
\begin{aligned}
& (\phi(f+\alpha))(x)=\sup _{y \in Z}[\omega(x, y)+\delta(f(y p+\alpha)] \quad \forall x \in Z \\
& =\sup _{y \in z}[w(x, y)+\delta f(y)+\delta \alpha] \quad \forall x \in Z \\
& =\sup _{y \in z}[\omega(x,-y)+\delta f(y)]+\delta x \quad \text { fez } \\
& \delta_{\alpha} \text { is } \quad y \in z \\
& \begin{array}{l}
\text { independent } \\
\text { of } y
\end{array}=(\phi(f))(x)+\delta \alpha \\
& \forall x \in z\left[\begin{array}{l}
\text { hold as } \\
\text { equality }
\end{array}\right]
\end{aligned}
$$

Hence we have shown that: $(\phi(f+x))(x)=(\phi(f))(x)+d x \quad t x \in z$

$$
\Leftrightarrow \phi(f+\alpha)=\phi(f)+\delta_{\alpha}
$$

Hence BLK holds as equality.
Hence Blacrivell's lemma applies and thereby Φ is a dup contraction.
Hence BFPT applies and thereby of has a unique fixed point, and thereby Bellman equation has a clique solution. ©

Application: Pisard-Lindelof Thecreals
$-Z=[\alpha, b], \alpha<b, \alpha, b \in \mathbb{R} . Z$ is calypecce w.st da.
$-H:[\alpha, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is fointly continuous, $\exists S>0$: $f_{x} \in[\alpha, b], f_{y_{1}, y_{2}} \in \mathbb{R}$ we have:

$$
\left|H\left(x, y_{1}\right)-H\left(x, y_{2}\right)\right| \leq \delta\left|y_{1}-y_{2}\right|
$$

$(H(x, y)$ is Lipschitz contincuas w.r.t. $y, \forall x \in X$ and the Lipschitz coelficient f, does not depend on x.)

$$
\ldots x_{0} \in[\alpha, b], y_{0} \in \mathbb{R}
$$

Consider the following Boundory Value Problear (BUP):

$$
(x) \quad\left\{\begin{array}{l}
f^{\prime}(x)=H(x, f(x)), f_{x \in[}[x, 0] \\
f\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

Picard-Lindelöf Theorem. There exists a anique $f \in C[x, b], \mathbb{R})$ that solves $(*)$.

Applications of BFPT: Picard-Linklät Thearen
Renlinder: - $z=[\alpha, b] \quad d_{z}=d u$, coupactness

- $H: Z \times \mathbb{R} \rightarrow \mathbb{R}$, fointly centinuous, $\exists \delta>0$:
$\forall x \in Z, y_{1}, y_{2} \in \mathbb{R}$

$$
\left|H\binom{z(())}{\left(x, y_{1}\right)}-H\left(x_{1}^{z}, y_{2}\right)\right| \leq \delta\left|y_{1}-y_{2}\right|
$$

$\left[\begin{array}{l}\text { Lipschitz continuty of } H(x, y) \text { w. .6.t. } y \text { centorasely }] \\ \text { in } x \text {. }\end{array}\right.$

$$
\left.\begin{array}{l}
\quad-x_{0} \in z, y_{0} \in \mathbb{R} \\
* \\
* B \cup P: \\
f^{\prime}(x)=H(x, f(x)), \\
f x \in[\alpha, b] \\
f\left(x_{0}\right)=y_{0}
\end{array}\right]
$$

P-L Thecien: BYP has a unvique solution in $(C[x, b], \mathbb{R})$
Pioof: (we aill we an BTPT Nethodology. At first it would be helpulh if we obtecined an equicortent formerlation of BIP that includes only f instead of f^{\prime} this wiay we could hope to identify sume ϕ the fixedpoints of which dlatch the solutions of BVP.)

We thus integrate (*) Then:

$$
\begin{aligned}
& (*) \Leftrightarrow\left\{\begin{array}{l}
\int_{x_{0}}^{x} f^{\prime}(z) d z=\int_{x_{0}}^{x} H(z, f(z)) d z \quad \forall x \in[\alpha, b] \\
f\left(x_{0}\right)=y_{0}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
f(x)-f\left(x_{0}\right)=\int_{x_{0}}^{x} 1 f(z, f(z)) d z \quad \forall x \in[x, b] \\
f\left(x_{0}\right)=y_{0}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} H(z, f(z)) d z \quad \forall x \in[x, b] \\
f\left(x_{0}\right)=y_{0} \\
\Leftrightarrow \quad f(x)=y_{0}+\int_{x_{0}}^{x} H(z, f(z)) d z \quad \forall x \in[x, b] \quad(* *)
\end{array}\right.
\end{aligned}
$$

Remari: the integral equation (ax) is equivalent to the BUP (BVP and (**) have the same solutions). It suffices to prove that $(x *)$ has a unique solution in $C([\alpha, b], \Omega)$. ($x *$) contains f and not f^{\prime} in both sides.
Remark: Consider $y_{0}+\int_{x_{0}}^{x} 1 f(z, f(z)) d z$. Due to the continuity of H and f, $\int_{x_{0}}^{x} f(z, f(z)) \in \mathbb{R} \quad \forall_{x} \in[x, b], f f \in([x, b], \mathbb{R})$. Hence $y_{0}+\int_{x_{0}}^{x} H(z, f(z)) d z$ is a well-defined function $[x, b] \rightarrow \mathbb{R}$, $\forall f \in C([a, b], 1 R) . \forall x_{n}, x \in[a, b], x_{n} \rightarrow x, \int_{x_{0}}^{x_{n}} H(z, f(z)) d z \rightarrow \int_{x_{0}}^{x} H(z, f(e z)) d z$, hence $y_{0}+\int_{x_{0}}^{x} H(z, f(z)) d z \in C([x, b], \mathbb{R})$.

Define ϕ on $C([a, b], \mathbb{R})$ as follows: if $f \in\left(([x, B], R R),(\phi(f))(x):=y_{0}+\int_{x_{0}}^{x} H(z, f(z) d z, t x \in[\alpha, b]\right.$.
Due to the previous remecvir $\phi(f)$ is a well-defined function $[\alpha, b] \rightarrow \mathbb{R}$ that is also continuous. Hence ϕ is a self map on $(C[\alpha, b], \mathbb{R})$ (ie. $\phi: C([\alpha, b], \mathbb{R}] \rightarrow C([a, b], \mathbb{R}))$.

Furthermore $\quad f$ is a fixed point of $\phi \in$,

$$
\begin{aligned}
& f=\phi(f) \Leftrightarrow \\
& \left.f(x)=(\phi(f))_{(x)} \quad \forall x \in[\alpha, b] \Leftrightarrow\right) \\
& \left.f(x)=y_{0}+\int_{x_{0}}^{x} H(z, f(z)) d z, \quad f x \in[\alpha, b] \Leftrightarrow\right)
\end{aligned}
$$

f is a solution of $(* *)$.
Hence in order to prove P-L Theoreal if suffices to prove that ϕ has ea unique fixed point. We will use BFPT:

We have that:

$$
-X=C([\alpha, b], \mathbb{R}) \leq B([\alpha, b], \mathbb{R})
$$

- We know froal previous remarks (ii) that
$C([a, b], \mathbb{R})$, dup is complete. It is possible to show (exercise!!!) that ϕ is a dsup-Contraction under farther restrictions on $x_{0},, \alpha, b$ which
do not appear in the P-L Theorem. Such restrictions would constitute a "focal "version of the theorems.

Me will worn with $d_{\text {sup }}^{*}$ defined as: $f, g \in C([a, 8], \mathbb{R})$

$$
d_{\text {sup }}^{*}(f, g)=\sup _{x \in[\alpha, b]}\left(e^{-\delta\left(x-x_{0}\right)}|f(x)-g(x)|\right)
$$

$d_{\text {sup }}^{*}$ is a "alodificection" of dsup in a way that "reflects" Properties of the BYP.

Exercise: Show that dsup is a well-definedmetric.
We thus endow $(C[x, 8], \mathbb{R})$ with $d_{\text {sup }}^{x}$.

1. Completeness: $\quad e^{-\delta\left(b-x_{0}\right)}|f(x)-g(x)| \leq e^{-\delta\left(x-x_{0}\right)}|f(x)-g(x)|$

$$
\begin{aligned}
& \leq e^{-\delta\left(\alpha-x_{0}\right)}|f(x)-g(x)| \quad \forall_{x \in[\alpha, b]} \\
& \Rightarrow \sup _{x \in[q, b]} e^{-\delta\left(k-x_{0}\right)}|f(x)-g(x)| \leq \sup _{x \in[x, b]} e^{-\delta\left(x-x_{0}\right)}|f(x)-g(x)| \\
& \leq \sup _{x \in[\alpha, 1]} e^{-\delta\left(x-x_{0}\right)}|f(x)-g(x)| \Leftarrow \\
& e^{-\delta\left(b-x_{0}\right)} \sup _{x \in(a, 0)}|f(x)-g(x)| \leqslant d_{\text {sup }}^{*}(f, g) \leqslant e^{-\delta\left(x-x_{0}\right)} \sup _{x \in[\operatorname{Lu}, 0]}|f(x)-g(x)| \\
& { }^{1} \operatorname{dsup}(f, g) \\
& \Leftrightarrow e^{-\delta\left(b-x_{0}\right)} d_{\text {sup }}(f, g) \leqslant d_{\text {sup }}^{*}(f, g) \leqslant e^{-\delta\left(x-x_{0}\right)} d_{\text {sup }}(f, g) \\
& c_{1}=e^{-\delta\left(1-x_{0}\right)}
\end{aligned}
$$

hence we have: $\quad c_{1} d_{\text {sup }} \leqslant d_{\text {sup }}^{*} \leqslant c_{2} d_{\text {sup }}, \begin{aligned} & c_{1}=e_{2}=e^{-\delta\left(\alpha-x_{0}\right)}\end{aligned}$

Then we know $(([\alpha, B], \mathbb{R})$, dup is complete \Longrightarrow due to our results on completeness $C([x, b], \mathbb{R}), d_{\text {sup }}^{*}$ is couplets due to the previous inequalities.
(This essentially justifies all our previous works on Metric (comparisons).
Q. Contrectivity: we will use the definition, we cornnot use Blackwell's Learda since we ore working with $d_{\text {sup. }}^{\text {E }}$
Let $f, g \in(C[\alpha, \beta], \mathbb{R})$, we howe that

$$
\begin{aligned}
& \left.d_{\sup }^{*}(\phi(f), \phi(g))=\sup _{x \in[x, \theta)}\left[e^{-\delta\left(x-x_{0}\right)} \mid(\phi(f))\right)(x)-(\phi(g))(x) \mid\right] \\
& =\sup _{x \in[x, b]}\left[e^{-\delta\left(x-x_{0}\right)}\left|y_{0}+\int_{x_{0}}^{x} H(z, f(z)) d z-\left(y_{0}+\int_{x_{0}}^{x} H(z, g(z)) d z\right)\right|\right] \\
& =\sup _{x \in[x, 0]}\left[e^{-\delta\left(x-x_{0}\right)}\left|\int_{x_{0}}^{x}(\|(z, f(z))-H(z, g(z))) d z\right|\right] \\
& \leq \sup _{x \in[\alpha \beta]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{x_{0}}^{x}|H(z, f(z))-H(z, g(z))| d z\right] \quad \begin{array}{c}
\text { ipschitz property } \\
\text { interval illonotonicing }
\end{array} \\
& \leq \sup _{x \in[x, b]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{x_{0}}^{x} \delta|f(z)-g(z)| d z\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sup _{x \in[x, y]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{x_{0}}^{x} \delta e^{-\delta\left(z-x_{0}\right)} e^{\delta\left(z-x_{0}\right)}|f(z)-g(z)| d z\right] \\
& \text { take } \sup \text { cu.s.t.z } \\
& =\sup _{x \in[x, b]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{x_{0}}^{x} \mid e^{-\delta\left(z-x_{0}\right)|f(z)-g(z)|} \delta e^{\delta\left(z-x_{0}\right)} d z\right. \\
& \leq \sup _{x \in\left[\alpha_{1}, \theta\right]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{\left.x_{0}^{z \in[x, ~}, 8\right]}^{x}\left(\sup ^{x}\left(e^{-\delta\left(z-x_{0}\right)}|f(z)-g(z)|\right)\right) \delta e^{\delta\left(z-x_{0}\right)} d z\right. \\
& \text { tonicity } \\
& \text { of integral } \\
& \text {] } \\
& d_{\sup }^{*}(f, s) \geqslant 0 \\
& \text { and index- } \\
& \text { pendent of } \\
& z, x \\
& =d_{\sup }^{*}(f, g) \sup _{x \in[\alpha, 0]}\left[e^{-\delta\left(x-x_{0}\right)} \int_{x_{0}}^{x} \delta e^{\delta\left(z-x_{0}\right)} d z\right]=\delta e^{\delta\left(2-x_{0}\right)} \\
& =d^{*} \sup _{x \in[G, b]}(f, g) \sup _{x \in[}\left[\left.e^{-\delta\left(x-x_{0}\right)} e^{\delta\left(e-x_{0}\right)}\right|_{x_{0}} ^{x}\right]= \\
& =\operatorname{dsup}^{*}(f, g) \sup _{x \in[\alpha, B]}\left[e^{-\delta\left(x-x_{0}\right)}\left(e^{\delta\left(x-x_{0}\right)}-1\right)\right] \\
& =d_{\sup }^{*}(f, g) \sup _{x \in[\alpha, b]}\left(1-e^{-\delta\left(x-x_{0}\right)}\right)=\left(1-e^{-\delta\left(b-x_{0}\right)}\right) d^{*} \operatorname{cup}(f, g)
\end{aligned}
$$

We have shown that: $\forall f, g \in C([\alpha, b], \mathbb{R})$

$$
d_{\text {sup }}^{*}(\phi(f), \phi(g)) \leq\left(1-e^{-\delta\left(l-x_{0}\right)}\right) d_{\text {sup }}^{*}(f, g)
$$

We have that $0<e^{-\delta\left(8-x_{0}\right)} \leq 1 \Leftrightarrow 0 \leq 1-e^{-\delta\left(8-x_{0}\right)}<1$
Hence the dsup $_{*}^{*}$ - Liprchitz coefficient of Φ is <1 and ϕ is or $d_{\text {sup }}^{*}$ - Contraction

Hence due to the BFPT ϕ has a unique fixed point $\Leftrightarrow(\notin *)$ has or unique solution \Leftrightarrow SUP has a unique solution.

