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Syllabus of the Course: “Mathematical Economics” 
General Information: 
Office: Derigni Wing, 4th floor.  1

e-Class: https://eclass.aueb.gr/courses/OIK231/.  2

Microsoft Teams Code: hvf14gm  3

Tutor: Dimitrios Zaverdas, Office: Derigni Wing, 5th floor, E-Mail: zaverdasd@aueb.gr  
Tutorial Information: tba. 

Course Description 
The course is an introduction to notions of mathematical analysis appearing in the 
theory of metric spaces with applications in economic theory and/or econometrics. 
We examine topological notions enabled in general metric spaces. Examples are 
the notion of convergence of sequences of elements, or the continuity of functions 
defined between them, finitary notions such as compactness, etc. 
We are also occupied with non-topological notions, such as uniformities and 
completeness, and their interplay with the topological ones. 
In this respect we construct a vocabulary which initially enables us to address the 
issue of approximation of optimisation problems and possibly consider relevant 
applications. Furthermore the aforementioned construction enables us to state and 
prove a variety of fixed point theorems. We use them in order to establish existence 
(and occasionally uniqueness and/or approximability) of solutions of general systems 
of equations. We apply those notions to problems appearing in dynamic 
optimisation, game theory, etc. 
The combination of the aforementioned applications enables the unified 
consideration of both the existence of solutions in problems appearing in 
economic theory as well as the approximation of those (potentially not easily 
tractable) solutions with ones that are possibly easier to derive. 

Due to the pandemic any communication with the course’s instructor and/or the tutor will be 1

exclusively held electronically.

 The course's e-class contains the course’s blog, notes, exercises, further readings and information 2

concerning the lectures, corrections, announcements, etc. The relevant material could be updated 
during the course. The students must consult the e-class systematically and are strongly encouraged 
to upload questions, answers, comments, etc.

Due to the pandemic the course’s lectures and tutorials will be exclusively held electronically and via 3

the particular MS Teams group.
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Outline 
The following consists of a synopsis of the course material. It is understood that any 
partial modification, rearrangement, etc, is in the instructor's facility. 

A.1 Sets, cardinality, sequences, structures and morphisms. Metric and metriz-
able spaces, metrics, open and closed balls. Topological notions enabled by the 
existence of open balls: open and closed subsets, convergence and separation 
properties, continuity and characterization by convergent sequences, continu-
ous mapping theorem. Compactness and connectedness. Non topological no-
tions: bounded and totally bounded metric spaces, metric entropy, metric 
completeness, Cauchy sequences, Lipchitz and uniform continuity. Topological 
comparison and general comparison between metrics defined on the same set. 
Examples: discrete spaces, Euclidean spaces, spaces of bounded and continu-
ous functions, etc. Self-maps, contractions and the Banach fixed point theorem. 
Approximation of the unique fixed point. Generalisations and the fixed point 
theorem of Matkowski. Retractions, the Lemma of Borsuk and Ulam, the Brow-
er’s fixed point theorem and generalisations. 
A.2 Applications: Convergence of sequences of minimisers and approximation 
of optimisation problems. Parametric optimisation. Existence and uniqueness 
of solutions to functional equations such as the Bellman equation in dynamic 
programming, or the Fredholm integral equation. Differential equations and 
Picard’s Theorem. Existence of Nash equilibria in games. Sequences of games, 
notions of limit games and convergence of sequences of Nash equilibria. 
B. (If time permits): Probability theory on metric spaces. Borel algebras and 
measures. Measurability and random elements with values on metric spaces. 
Polish spaces, measurability of suprema, the argmax theorem and consistency 
of M-estimators. Examples. 

Indicative Readings 
The following references are merely indicative. During the lectures this catalogue 
can be enriched with further readings. In any case the students are strongly advised 
to study from more available sources and try to solve plethora of exercises. 

1. Aliprantis Ch., and K.C. Border. In!nite Dimensional Analysis. Springer, 2005. 
2. Ok Efe. Real Analysis with Economic Applications. Princeton University Press, 

2007. 
3. Corbae D., Stinchcombe M, and J. Zeman. An Introduction to Mathematical 

Analysis for Economic Theory and Econometrics. Princeton U.P., 2009. 
4. O'Searcoid, M. Metric Spaces. Springer Science & Business Media, 2006. 
5. Sutherland, Wilson Alexander. Introduction to metric and topological spaces. 

Oxford University Press, 1975. 
6. Border, K. C. Fixed Point Theorems with Applications to Economics and Game 

Theory. Cambridge Books, 1990. 
7. Ambrosio, Luigi, and Paolo Tilli. Topics on analysis in metric spaces. Vol. 25. 

Oxford University Press on Demand, 2004. 
8. Subrahmanyam, P. V. Elementary Fixed Point Theorems. Springer, 2018.

[ ] 2



At .

✓
available

Procedural Info : de des
Teams

right
after each
lecture

* declass deg :
JNotes hectares Whiteboards

E K

already there those notes will be

could beupdated concurrently uploaded
Cdlose of lectures 2019-20 already

there)
Tutorial Notes Soave Bibliography
already there limes etc
could be updated could be updated

Exercises Optional Exercises Blog -roll
previous will be Updated Lectures reviews

years
could be updated etc leg . announcements)

* Ms Teams degree Analogous into to the
above; Could also contain video lectures

and tutorials
, complementary stuff , etc .



* Complementary Evaluation : Optional Exercises
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Correlated properties .

- We will examine More complicated examples
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