Lecture 1

- Syllabus [plus some pRocedural info]
- Prelivinocries [Mathematical]
- Metrics and Metric Spares
[Initial Definitions and Examples]

Syllabus of the Course: "Mathematical Economics"

General Information:

Office: Derigni Wing, 4th floor. ${ }^{1}$ e-Class: https://eclass.aueb.gr/courses/OIK231/.2 Microsoft Teams Code: hvf14 gm ${ }^{3}$ \rightarrow essentially not applicable Tutor: Dimitrios Zaverdas, Office: Derigni Wing, Fth floor, E-Mail: zaverdasd@aueb.gr Tutorial Information tba.
will not start before 3ralecture

Course Description

The course is an introduction to notions of mathematical analysis appearing in the theory of metric spaces with applications in economic theory and/or econometrics. We examine topological notions enabled in general metric spaces. Examples are the notion of convergence of sequences of elements, or the continuity of functions defined between them, finitary notions such as compactness, etc. We are also occupied with non-topological notions, such as uniformities and completeness, and their interplay with the topological ones.
In this respect we construct a vocabulary which initially enables us to address the issue of approximation of optimisation problems and possibly consider relevant applications. Furthermore the aforementioned construction enables us to state and prove a variety of fixed point theorems. We use them in order to establish existence (and occasionally uniqueness and/or approximability) of solutions of general systems of equations. We apply those notions to problems appearing in dynamic optimisation, game theory, etc.
The combination of the aforementioned applications enables the unified consideration of both the existence of solutions in problems appearing in economic theory as well as the approximation of those (potentially not easily tractable) solutions with ones that are possibly easier to derive.

[^0]
Outline

The following consists of a synopsis of the course material. It is understood that any partial modification, rearrangement, etc, is in the instructor's facility.
A. 1 Sets, cardinality, sequences, structures and morphisms. Metric and metrizable spaces, metrics, open and closed balls. Topological notions enabled by the existence of open balls: open and closed subsets, convergence and separation properties, continuity and characterization by convergent sequences, continuous mapping theorem. Compactness and connectedness. Non topological notions: bounded and totally bounded metric spaces, metric entropy, metric completeness, Cauchy sequences, Lipchitz and uniform continuity. Topological comparison and general comparison between metrics defined on the same set. Examples: discrete spaces, Euclidean spaces, spaces of bounded and continuous functions, etc. Self-maps, contractions and the Banach fixed point theorem. Approximation of the unique fixed point. Generalisations and the fixed point theorem of Matkowski. Retractions, the Lemma of Borsuk and Ulam, the Brower's fixed point theorem and generalisations.
A. 2 Applications: Convergence of sequences of minimisers and approximation of optimisation problems. Parametric optimisation. Existence and uniqueness of solutions to functional equations such as the Bellman equation in dynamic programming, or the Fredholm integral equation. Differential equations and Picard's Theorem. Existence of Nash equilibria in games. Sequences of games, notions of limit games and convergence of sequences of Nash equilibria.
B. (If time permits): Probability theory on metric spaces. Borel algebras and measures. Measurability and random elements with values on metric spaces. Polish spaces, measurability of suprema, the argmax theorem and consistency of M-estimators. Examples.

Indicative Readings

The following references are merely indicative. During the lectures this catalogue can be enriched with further readings. In any case the students are strongly advised to study from more available sources and try to solve plethora of exercises.

1. Aliprantis Ch., and K.C. Border. Infinite Dimensional Analysis. Springer, 2005.
2. Ok Efe. Real Analysis with Economic Applications. Princeton University Press, 2007.
3. Corbae D., Stinchcombe M, and J. Zeman. An Introduction to Mathematical Analysis for Economic Theory and Econometrics. Princeton U.P., 2009.
4. O'Searcoid, M. Metric Spaces. Springer Science \& Business Media, 2006.
5. Sutherland, Wilson Alexander. Introduction to metric and topological spaces. Oxford University Press, 1975.
6. Border, K. C. Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge Books, 1990.
7. Ambrosio, Luigi, and Paolo Tilli. Topics on analysis in metric spaces. Vol. 25. Oxford University Press on Demand, 2004.
8. Subrahmanyam, P. V. Elementary Fixed Point Theorems. Springer, 2018.

Procedural Info: at MS Reals

* Eclocss deg:

could be updated

Lectures Whiseboords
those notes will be
concurrently uploaded
(alost of lectures 2019.20 olkeady
there)
Tutorial Totes already there
could be updated
iblioyraghy
links etc could be cepodoted

Exercises
previous years could be up docked

Optional Exercises Blog-roll will be Up doted dectures reviews etc (ley. avmouncellents)

* Us Teocus Leg: Analogous info to the
abovej Could also contain video lectures and tutorials, complementary stchlf, etc.
* Couplementary Evaluation: Optional Exercisec
\rightarrow Quocilable arrand dlay, cauld partially extend teaching Material [Upload details tba]
* In oong cose: Try to solve as dlany exercises as poscible
* We are not using a particular textboows? tiy to approxidecte the networn of notions by as llany sources as poscible [Mores + Whitcboards etc provide with the Mlain sseeleton]
* Coursés Aial:

Construct a longuage of analysis in Metric Spaces

Cuetaromous
rabue with Epplicactions

B quick overview of
B. Some frelineinory Notions \downarrow
Not exhomstive
any other needed will be
locally introduced
Analysis on spaces with a notion of distance Some auxiliour ideas -especially related to \mathbb{R},
will be useful:

- Bounded subsets of IR spf and only if sion $* A \leq \mathbb{R}$ bounded from above (inf) $\exists A \in \mathbb{R}_{5} x \leq 4, H \times A$ M is teryled upper bocand of A - not Unique (why?? the sulullest upper bound supx exists inf A upper bounded and it is unique
* Dually $A \leq \mathbb{R}$ bounded frore below inf $\exists u \in \mathbb{R}: ~ u \leq x \quad f_{x \in A}$, u is termed lower bound Hon enrique, the greatest upper bound, $\underset{x \in f}{ }$
exists inf A is lower bounded and is critique * A is bounded iff it is upper and lower bounded $\Leftrightarrow \exists \mu, \mu \in \mathbb{R}: \mu \leq x \leq M(\forall x \in \mathcal{L}$ $\Leftrightarrow \quad 7 \inf _{x \in A} x$ and $\sup _{x \in A} x$
$\underset{b}{4} \exists(0)>0: \quad 1 \times 1 \leq \mu \quad \forall x \in A$ show it! absolute bound

Ergo
i. $A=(-\infty, 1)$ upper bounded $\operatorname{sap} A=1$, not lower bounded
ii. $A=(L,+\infty)$ lower bounded in fA $=1$, dot upper becended
iii. if A has a diu \Rightarrow lower boconded $\inf _{x \in A} x=\lim _{x \in A} x$ - Dually if A has a lax \Rightarrow upper bounded and $\sup _{x \in t} x=\operatorname{llog}_{x \in A} x$
\Rightarrow io. if A is finite \Rightarrow bounded
IT. $A=\mathbb{N}$ not bounded: Suppose not
$\Rightarrow \exists U 00 ;|m| \leq U \quad \forall n \in \mathbb{N} \Leftrightarrow n \leqslant l l \quad \forall n \in \mathbb{N}$
\rightarrow Hence A is not bounded iff impossible

$$
\forall u>0 \text { च } x \in \ell:|x|>U . a
$$

- Bounded Deal function:
* X a non-eupty set, $f: x \rightarrow \mathbb{R}$ a real function defined on X.
* If $f, g=x \rightarrow \mathbb{R},(f+g): x \rightarrow \mathbb{R}$ where
$(f+y)(\infty)=f(\infty)+g(x)$ [poimecois addition]
$*$ if $\lambda \in \mathbb{R}$ ($\lambda 4$): $x \rightarrow \mathbb{R}$ where
$(a f)(x):=a P(x)$ Scalar Multiplication
* $f: x \rightarrow \mathbb{R}$ is bounded of $f(x):\left\{f(x), x \in x^{\prime}\right\}$ is a bounded subset of $\left.\mathbb{R} \Leftrightarrow \sup _{x \in X}|f(x)|<+\infty\right) \mid$
* $\left(B(x, \mathbb{R})=\left\{f_{8} x \rightarrow \mathbb{R}_{1}, f\right.\right.$ bounded $\}$
\triangle Ser of bounded
seal functions defined
$-B\left(X_{J}, \mathbb{R}\right) \neq \phi$ since it contemns the constant functions
eg. $f: x \rightarrow \mathbb{R}$ with $f(x)=0 \quad \forall x \in X$ is bounded since $\sup _{x \in 1}|f(x)|=\sup _{x x \times x}|0|=0$

-4 sup $1+g) \leq \operatorname{sep} p+\operatorname{supg} g \rightarrow$ show it $]$
if $f g \in B(x, \mathbb{R}) \Rightarrow f+g \in B(x, \mathbb{R})$

Show thou it $f \in B(x, \mathbb{R}), \lambda \in \mathbb{R} \quad \lambda f \in B(x, \mathbb{R})$

- Reminder: Cartesiar Product

$$
X_{0}(\neq \varnothing, \quad X_{x y}=\underbrace{\left.(x, y), x \in X_{0}, y \in\right\}}_{\substack{ \\\text { Lp odered pairs of }}}
$$

elecerents of x, Y
e.g.

$$
\begin{aligned}
& x=\{\alpha 3 \\
& y=\{0,1\}, \quad \text { \{ } \alpha 3 \times\{0,1\}=\{(\alpha, 0),(\alpha, 1)\}
\end{aligned} \quad \text { elecents of } x, y
$$

C. Introduction to Netric Speces

Merric Space: Q set coupled with Mloche Notrol structure that attribates a viotion of distance betsisen evary pair of eleaterts

Distance fencitar or Mletric
Definition: Suppose theat $X \neq \phi$ of fenction $* d: X \times x \rightarrow \mathbb{R}^{\Rightarrow}$ real fanction $\frac{5}{5}$ pairs of eloments
or a dustance function on X iff it sacisfies: $\int_{(1)} d d(x, y) \geqslant 0 \quad \forall_{x, y \in X} \quad\left[(x, y) \in x_{x} x\right]$ [positive definite]
(Q) $d(x, y)=0 \Leftrightarrow x=y \sqrt{[\text { sepparation }]}$
(3) ' $\quad d(x, y)=d(y, x) \quad \forall_{x, y \in X} \quad$ [syancuetry]
$J(4) d(x, y) \leqslant d(x, z)+d(z, y) \quad \forall x, y, z \in X$ Triangle inequt aliyy

Rellars: - 1-4 codify our gealletric intcition of "dleasconng disternces,

- When d satisfies 1,3,4 and $H_{x \in}, X, d(x, x)=0$ [peartially 2] then it is fercmed
a pseudo-distonce (pseacdo-Hfetric)
\rightarrow does not necessarily seqpareite paink
LD every clstance is a pseudo-distrayce

Definition. The pour (x, d) is called a detric space [Pseudo-metric when d is apsendo distance]
$*(X, d) \rightarrow$ codifies the info of $\downarrow \stackrel{\downarrow}{ } \downarrow$ a set cohere distances between carrier alefric "As points, conn be attributed

Examples:

1. Discrete Spaces
X is anything (as long as it is non empty)

$$
\begin{aligned}
d_{1}: x x x \rightarrow \mathbb{R} \text { defined } & \text { by } \\
x, y \in x & d_{1}(x, y):= \begin{cases}0, & x=y \\
& x \neq y\end{cases}
\end{aligned}
$$

We have to check the it is well" defined obviously $d(x, f) \in \mathbb{R} \quad \forall x f g \in X$
(1) Obviaus, (2) obvious,
(3) det $x, y \in X, d(y, x)=\left\{\begin{array}{l}0, \frac{y z x}{2} \\ 1, \frac{y \neq x}{2}\end{array}\right.$

$$
=\left\{\begin{array}{l}
0, x=y \\
1, x \neq y
\end{array}=d(x, y)\right.
$$

(4) det $x, y, z \in X$ then envmenoating cases

$$
\begin{aligned}
& d(\tilde{x}, z)+d_{1}(z, y)= \begin{cases}a & \text { iff } x=z k^{\prime} z=y \\
B 1 & \text { iff } x=z \text { and } z \neq y \\
\text { or } x \neq z \text { and } z=y \\
02 & \text { iff } x \neq z<^{\prime} z \neq y\end{cases} \\
& \alpha \Rightarrow d(x, y)=0 \quad\left[x=z k^{\prime} z=y \Rightarrow x=y, d,(x, y)=0\right]
\end{aligned}
$$

6,0 in ayy case $d(x, y) \leq 1$
d_{t} is termed a discrete Metric

4 interesting propertles to Rolloos!

* Since X is non empty arbitrary EVERY non empty SET can be endowed with de and become a discrete space.
* The "set "of Metric spaces is non empty hence can become a discrete space \rightarrow Russell's
Davadox - it comnot be a set [Category'
- Suppose for now that $X=\mathbb{R}$, obviously \mathbb{R} can be endowed with d_{t} and become diccerte but not only:

2. $x=\mathbb{R} \quad d_{a}(x, y)=|x-y|$, $x, y \in \mathbb{R}$ the properties holed trivially
$\left(\mathbb{R}, d_{\alpha}\right)$ is the real line endowed with the usccal distance
3. let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $1-1(f(x)=f(y) x=\Delta x=y)$ Conxider $x=\mathbb{R}, d_{R}(x, y s:=\underbrace{|f(x)-f(y)|}_{V}, x, x y \in \mathbb{R}$ d_{f} is a Metric:
(1) $\quad \forall x, y \in \mathbb{R} \quad d_{f}(x, y)=|f(x)-f(y)| \geqslant 0$
(2)

$$
\begin{aligned}
& 0=d f(x, y)=|f(x)-f(y)| \Leftrightarrow \\
& f(x)=f(y) \Leftrightarrow x=y
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } V
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.g. } f(x)=e^{x} /[1 \text { it } 1-17] \\
& d_{e}(x, y)=\left|e^{x}-e^{y}\right| \\
& \lceil\text { Propertics } 1,3,4] \\
& \text { and part of } 6 \\
& \text { hald even if f } \\
& \text { is not } 1-1 \\
& \text { e.g. } \left.f(x)=x\left[\begin{array}{lll}
1+i s & 1-1
\end{array} d_{f}(x, y)=\mid f(x)-k y\right) \right\rvert\,= \\
& =|x \cdot y|=d_{x}(x, y)
\end{aligned}
$$

* if f is not L-1 the $d f$ is Merely s on Pseudo- Metric - why?

$$
*\left(\mathbb{R}, d_{1}\right) \neq\left(\mathbb{R}, d_{e}\right) \neq\left(\mathbb{R}, d_{\alpha}\right)
$$

Different dletric Spores
[lan howe curie different properties]
\rightarrow It is possible frat the same carrier coon be endowed with different (pseudo-) Metrics resulting into different spaces -with different properties L Different d's shed light to different "relations" between elements of X]
\rightarrow It is also possible that different Metrics con be related to each other resulting to

Correlated Properties

- We wall examine More couplicocted examples and relations in the next lecture. For now:
* $d_{f}=d_{\alpha} \quad$ for $f(x)=x$
* X general,$c \in \mathbb{R}$

$$
d_{c}(x, y):= \begin{cases}0, & x=y \\ c, & x \neq g\end{cases}
$$

For which values of c is d_{c} a pseendo-desric, a metric? Are there relations between dc and d_{1} ? [Exp!]
Counterexample.

$$
1=\alpha(0,0)>\frac{1}{3}+\frac{1}{3}
$$

$$
\begin{aligned}
& \quad d_{x, \in \in \mathbb{R}}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \text { defined as triangetimequar } \\
& d_{x}(x, y)=\left\{\left.\begin{array}{ll}
(x-y), & (x, y) \in(0,0) \\
1, & (x, y)=(0,0)
\end{array} \right\rvert\, \begin{array}{l}
x=y=0 \\
z=1 / 3
\end{array}\right.
\end{aligned}
$$

[^0]: ${ }^{1}$ Due to the pandemic any communication with the course's instructor and/or the tutor will be exclusively held electronically.

 2 The course's e-class contains the course's blog, notes, exercises, further readings and information concerning the lectures, corrections, announcements, etc. The relevant material could be updated during the course. The students must consult the e-class systematically and are strongly encouraged to upload questions, answers, comments, etc.
 ${ }^{3}$ Due to the pandemic the course's lectures and tutorials will be exclusively held electronically and via the particular MS Teams group.

