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Lemma

Let (Y, d) be a complete metric space and X 6= ∅ a non-empty set, then the structured set (B(X,Y ), ddsup) with

ddsup(f, g) = sup
x∈X

d(f(x), g(x)), ∀f, g ∈ B(X,Y ) is a complete metric space.

Proof

We need to show that:

1. (B(X,Y ), ddsup) is a metric space, which requires that:

� B(X,Y ) be a non-empty set.

� ddsup be a metric function on B(X,Y ) (properties i-iv).

2. Every ddsup-Cauchy sequence on B(X,Y ) has a ddsup-limit in B(X,Y ), which requires that for all (fn)n∈N : fn ∈

B(X,Y ), ∀n ∈ N, there exists a function, f , such that:

� f = ddsup − lim fn

� f ∈ B(X,Y )

1. Since X 6= ∅ we can define at least one function (if not more) that maps elements of X to elements of Y (also

non-empty). For example, the constant function fc : X → Y such that ∀x ∈ X, fc(x) = yc for some yc ∈ Y .

Furthermore, observe that fc(X) = {yc} ⊆ Y , i.e. the image of X through fc is a subset of Y (naturally) and

it is also a singleton set (it has only one element). Thus f(X) is certainly a d-bounded subset of Y .

We have found at least one example of a bounded function from X to Y . So B(X,Y ) is non-empty.

Also, ddsup is a metric function on B(X,Y ) since:

i) ∀f, g ∈ B(X,Y ), ddsup(f, g) = sup
x∈X

d(f(x), g(x))
i
≥ 0

ii) ∀f, g ∈ B(X,Y ),

ddsup(f, g) = 0 ⇐⇒

sup
x∈X

d(f(x), g(x)) = 0
i⇐⇒

d(f(x), g(x)) = 0, ∀x ∈ X ii⇐⇒

f(x) = g(x), ∀x ∈ X ⇐⇒

f = g
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iii) ∀f, g ∈ B(X,Y ), ddsup(f, g) = sup
x∈X

d(f(x), g(x))
iii
= sup

x∈X
d(g(x), f(x)) = ddsup(g, f)

iv) ∀f, g, h ∈ B(X,Y ),

ddsup(f, g) = sup
x∈X

d(f(x), g(x))

≤ sup
x∈X

(d(f(x), h(x)) + d(h(x), g(x)))

≤ sup
x∈X

d(f(x), h(x)) + sup
x∈X

d(h(x), g(x))

= ddsup(f, h) + ddsup(h, g)

So ddsup is a metric function on the non-empty B(X,Y ) and (B(X,Y ), ddsup) is a metric space.

2. Consider an arbitrary ddsup-Cauchy sequence on B(X,Y ), (fn)n∈N : fn ∈ B(X,Y )∀n ∈ N. Then ∀ε > 0 ∃ n(ε)

such that

ddsup(fn, fm) < ε, ∀n,m > n(ε)

sup
x∈X

d(fn(x), fm(x)) < ε, ∀n,m > n(ε)

∀x ∈ X, d(fn(x), fm(x)) < ε, ∀n,m > n(ε)

so that (fn(x))n∈N is a d-Cauchy sequence on Y , ∀x ∈ X.

Here is a breakdown to facilitate your intuition. From one ddsup-Cauchy sequence in the set of bounded Y -valued

functions, B(X,Y ), we can get multiple sequences, (yn)n∈N, in Y that are d-Cauchy. For each such starting

sequence, (fn)n∈N, there are as many such (yn)n∈N sequences as elements in the domain of those fn, X, and

their n-th element is given by yn = fn(x).

Furthermore, because (Y, d) is complete, (fn(x))n∈N converges to a d-limit in Y , say φx ∈ Y , for all x ∈ X.

So starting from a ddsup-Cauchy sequence on B(X,Y ) we can generate a collection of d-convergent sequences on

Y (one sequence for each x ∈ X). That is, we have that

∀ (fn)n∈N :(fn)n∈N d
d
sup-Cauchy on B(X,Y )

∃ {(yn)n∈N :yn = fn(x)∀n ∈ N, (yn)n∈N d-convergent on Y, ∀x ∈ X}

We can define a function, f : X → Y , for any such starting sequence and subsequent collection such that

f(x) := φx, ∀x ∈ X. To show that (B(X,Y ), ddsup) is complete, it suffices to show that ddsup − lim fn = f and

that f ∈ B(X,Y ).

Firstly, notice that

ddsup(fn, f) = sup
x∈X

d(fn(x), f(x))

= sup
x∈X

d(fn(x), d− lim
m→+∞

fm(x))

= sup
x∈X

lim
m→+∞

(
d(fn(x), fm(x))

)
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This last equality follows by the fact that metrics are continuous functions (needs proof ).

Now consider d(fn(x), fm(x)) for some x ∈ X (notice that it is a real number). Choose an arbitrary fixed

n ∈ N and think of the real valued sequence (zm)m∈N ∈ R, such that zm = d(fn(x), fm(x)) for any given n ∈ N

and x ∈ X.

ddsup(fn, f) = sup
x∈X

lim
m→+∞

zm

≤ sup
x∈X

sup
m≥n

zm

This holds because we are considering more zm than just those that “tend to infinity”. Keep in mind that,

if we denote z as the limit here, even if zm < z, ∀m ∈ N it still holds that supm∈N zm = z. This logic can

be generalized to cases where a finite number of zm are greater than the limit (if they were infinite, then it

wouldn’t be a limit).

So we have that

ddsup(fn, f) ≤ sup
x∈X

sup
m≥n

d(fn(x), fm(x))

≤ sup
x∈X

sup
m≥n

sup
x∈X

d(fn(x), fm(x))

= sup
m≥n

sup
x∈X

d(fn(x), fm(x))

= sup
m≥n

ddsup(fn, fm)

So we showed that ddsup(fn, f) ≤ supm≥n d
d
sup(fn, fm). Now consider the following

(fn)n∈N is ddsup-Cauchy

∀ε > 0, ∃ n(ε) : ddsup(fn, fm) < ε ∀n,m ≥ n(ε)

∀ε > 0, ∃ n(ε) : sup
m≥n

ddsup(fn, fm) < ε ∀n ≥ n(ε)

∀ε > 0, ∃ n(ε) : ddsup(fn, f) < ε ∀n ≥ n(ε)

thus as n→ +∞, fn → f with respect to ddsup.

Secondly, for any two points f(x), f(y) ∈ Y and some n ∈ N we have that

sup
x,y∈X

d(f(x), f(y)) ≤ sup
x,y∈X

d(fn(ε)(x), f(x)) + sup
x,y∈X

d(fn(ε)(x), f(y))

≤ sup
x,y∈X

d(fn(ε)(x), f(x)) + sup
x,y∈X

d(fn(ε)(y), f(y)) + sup
x,y∈X

d(fn(ε)(x), fn(ε)(y))

≤ sup
x∈X

d(fn(ε)(x), f(x)) + sup
y∈X

d(fn(ε)(y), f(y)) + sup
x,y∈X

d(fn(ε)(x), fn(ε)(y))

= 2 sup
x∈X

d(fn(ε)(x), f(x)) + sup
x,y∈X

d(fn(ε)(x), fn(ε)(y))

= 2ddsup(fn(ε), f) + sup
x,y∈X

d(fn(ε)(x), fn(ε)(y))

where n(ε) is such that ddsup(fn(ε), f) < ε. This n(ε) exists since fn → f with respect to ddsup. Thus the first
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additive term is bounded by 2ε. The second additive term is the maximum distance between all values of

fn(ε) on Y . Since fn(ε) ∈ B(X,Y ) this number is also bounded. Thus, supx,y∈X d(f(x), f(y)) < +∞, which

establishes that f ∈ B(X,Y ), i.e. f is a bounded Y -valued function.

So for (Y, d) complete space, every ddsup-Cauchy sequence on B(X,Y ) is ddsup-convergent in B(X,Y ).

Thus, if (Y, d) is a complete metric space, then (B(X,Y ), ddsup).
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