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Lemma

Let (Y,d) be a complete metric space and X # @ a non-empty set, then the structured set (B(X,Y),d?, ) with

s Ysup

sup

d, (f,g) = sup d(f(z),g(x)), Vf,g € B(X,Y) is a complete metric space.
reX

Proof
We need to show that:

1. (B(X,Y),dd, ) is a metric space, which requires that:

» Ysup
¢ B(X,Y) be a non-empty set.

e d?,, be a metric function on B(X,Y) (properties i-iv).

2. Every d?,,-Cauchy sequence on B(X,Y) has a d?, -limit in B(X,Y’), which requires that for all (f,)nen : fn €

sup

B(X,Y), ¥n € N, there exists a function, f, such that:

o f=dl —limf,

sup
o fc B(X s Y)
1. Since X # @ we can define at least one function (if not more) that maps elements of X to elements of Y (also
non-empty). For example, the constant function f. : X — Y such that Vz € X, f.(z) = y. for some y. € Y.

Furthermore, observe that f.(X) = {y.} C Y, i.e. the image of X through f. is a subset of Y (naturally) and

it is also a singleton set (it has only one element). Thus f(X) is certainly a d-bounded subset of Y.
We have found at least one example of a bounded function from X to Y. So B(X,Y) is non-empty.

Also, d¢,, is a metric function on B(X,Y’) since:

) Vf.g € BX.Y). df,,(f.9) = sup d({(z).9(x) 20
ii) Vf,g € B(X,Y),

d,,(f,9) =0 .

sup d(f(z), g(x)) =0 R
d(f(z),g(z)) =0,Vr € X R
flx) = g(x), Ve e X —

=g

*Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.



i) V.9 € BX.Y), di,,(f.9) = sup d(f(2), g(a)) = sup d(g(a), f(z)) = 2, (9, /)

iv) Vf.9,h € B(X,Y),

., (f.9) = sup d(f(z),g(x))

zeX
< sup (d(f(2), h(z)) + d(h(z), g(x)))
< sup d(f(x), h(x)) + sup d(h(z), g(x))
zeX reX

= dgup(f, 1) + iy (b, 9)

So d?,, is a metric function on the non-empty B(X,Y) and (B(X,Y),d?, ) is a metric space.

sup sup

2. Consider an arbitrary d‘siup—Cauchy sequence on B(X,Y), (fu)nen : fn € B(X,Y)Vn € N. Then Ve > 0 3 n(e)
such that

dgup(fnvfm) <eg, Vn,m > ’I’L(E)

sup d(fn(x), fm(z)) < &, Yn,m > n(e)
reX

Ve € X, d(fn(z), fm(z)) <&, Vn,m > n(e)

so that (f,(z))nen is a d-Cauchy sequence on Y, Vz € X.

Here is a breakdown to facilitate your intuition. From one dgup—Cauchy sequence in the set of bounded Y-valued

functions, B(X,Y’), we can get multiple sequences, (y,)nen, in Y that are d-Cauchy. For each such starting
sequence, (fn)nen, there are as many such (y,)nen sequences as elements in the domain of those f,, X, and

their n-th element is given by y,, = f.(z).

Furthermore, because (Y, d) is complete, (f,,(z))nen converges to a d-limit in Y, say ¢, € Y, for all z € X.

d

So starting from a dg,,,,

-Cauchy sequence on B(X,Y’) we can generate a collection of d-convergent sequences on

Y (one sequence for each x € X). That is, we have that

v (fn)nEN :(fn)nGN d(siup'caUChy on B(X7 Y)

F{(Yn)neN Yn = fu(x)Vn € N, (yn)nen d-convergent on Y, Vo € X}

We can define a function, f : X — Y, for any such starting sequence and subsequent collection such that
f(x) == ¢y, Vo € X. To show that (B(X,Y), dgup) is complete, it suffices to show that dglup —lim f, = f and
that f € B(X,Y).

Firstly, notice that

dt ) (fur ) = sup d(fu(), f(x))

zeX
= sup d(fn(x)a d— lim fm(m))
z€X m—+00

—oup i (404 e

z€X m—r—+00



This last equality follows by the fact that metrics are continuous functions (needs proof).

Now consider d(f,(z), fm(z)) for some x € X (notice that it is a real number). Choose an arbitrary fixed
n € N and think of the real valued sequence (2, )men € R, such that z,, = d(fn(x), fm(z)) for any given n € N

and r € X.

d .
dsup(fna f) = Sup lim Zm

reX m——+00

< sup sup zm
rzeX m>n

This holds because we are considering more z,, than just those that “tend to infinity”. Keep in mind that,
if we denote z as the limit here, even if 2, < z, Vm € N it still holds that sup,,cy zm = 2. This logic can
be generalized to cases where a finite number of z,, are greater than the limit (if they were infinite, then it

wouldn’t be a limit).

So we have that

dgup(fnaf) S Sup sup d(fn(x)7fm(x))

zeX m>n

< sup sup sup d(fn(z), fm(z))
rzeX m>nzxeX

= sup sup d(fn (), fm(x))

m>nx€X

= Sl;p dcslup(fna fm)

So we showed that d¢

sup

(frs [) < 8UDy sy A2y, (fr,y fm). Now consider the following

(fn)nEN is dfup—Cauchy

Ve >0, 3n(e) : diyy(fo, fm) <€ Vn,m > n(e)

Ve >0, 3n(e): sup d,(fu, fm) <€ Vn > n(e)
m>n

Ve >0, In(e): dgup(fn,f) <e Yn > n(e)

thus as n = +o0, f, — f with respect to dgup.

Secondly, for any two points f(x), f(y) € Y and some n € N we have that

sup d(f(z), f(y)) < sup d(fn(e)(2), [(2)) + sup d(fn(e)(2), f(y))

r,yeX z,ycX r,ycX

< sup d(fn(s) (z), f(x)) + sup d(fn(s)(y)7 f(y)) + sup d(fn(s)(x)7 fn(s)(y))
z,yeX z,yeX z,yeX

< sup d(fn(s) (33), f(x)) -+ sup d(fn(s) (y)a f(y)) + sup d(fn(s) (ZE), fn(s) (y))
reX yeX z,yeX

=2 sup d(fn(e) (CC), f(:r)) + sup d(fn(s)(‘r)v fn(s)(y))
reX r,yeX

z,y€X

where n(e) is such that d2,,(fu), f) < . This n(e) exists since f, — f with respect to d?,,. Thus the first



additive term is bounded by 2e. The second additive term is the maximum distance between all values of
fn(e) on Y. Since f, o) € B(X,Y) this number is also bounded. Thus, sup, ,cx d(f(z), f(y)) < +oo, which
establishes that f € B(X,Y), i.e. f is a bounded Y-valued function.

So for (Y, d) complete space, every dfup—Cauchy sequence on B(X,Y) is dfup—convergent in B(X,Y).

Thus, if (Y, d) is a complete metric space, then (B(X,Y),d?, ).

s Ysup



