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Open and Closed Balls, Boundness, and Total Boundness

Exercise 1

Show that open and closed balls can be defined for pseudo-metric spaces.

Let (X, d) be a pseudo-metric space (i.e d is a pseudo-metric on X 6= ∅). For x ∈ X and ε > 0 we can try and define

d-open balls with center x and radius ε as

Od(x, ε) = {y ∈ X : d(x, y) < ε}

and d-closed balls with center x and radius ε as

Od[x, ε] = {y ∈ X : d(x, y) ≤ ε}

To argue that Od(x, ε) and Od[x, ε] can be defined when d is a pseudo-metric, it suffices to show that they are

non-empty sets for any x and ε. Notice the following, for d pseudo-metric on X

∀x ∈ X, ε > 0 ∃ y ∈ X : d(x, y) = 0 < ε

one of which is x itself, but there can also be other such y ∈ X with y 6= x.

So ∃ y ∈ X : y ∈ Od(x, ε), so Od(x, ε) 6= ∅. Analogously, Od[x, ε] 6= ∅. So open and closed balls can be defined for

pseudo-metric spaces.

Exercise 2

For the following (X, d) pairs, show that they constitute (pseudo-)metric spaces and define the unit open balls on

them and visualize them:

1. X = R and d : X ×X → R, such that

d(x, y) =

0, x = y

c, x 6= y

, ∀x, y ∈ X

with c > 0.

∗Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.
∗∗Some exercises were collected and compiled by Dr. Alexandros Papadopoulos.
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It can be easily shown that d is a metric on X (discrete metric). Now, the unit open ball in (X, d) is

Od(0, 1) = {x ∈ X : d(x, 0) < 1}

= {x ∈ X : d(x, 0) =

0, x = 0

c, x 6= 0

< 1}

and we need to examine cases for the values c may take.

If 0 < c < 1, then any element in X has a distance from 0 that is smaller then 1. So Od(0, 1) = R.

If c ≥ 1, then all elements in X except for 0 have a distance from 0 that is greater than or equal to 1. So

Od(0, 1) = {0}.

2. X = R2 and d : X ×X → R, such that

d(x, y) =
√

(x− y)′A(x− y), ∀x, y ∈ X

with A =

 1 0

0 0

.

It can be shown that properties i, iii, and iv hold for d on X. Observe that for any arbitrary x, y ∈ X

d(x, y) =
√

(x− y)′A(x− y)

=

√√√√√[ x1 − y1 x2 − y2

] 1 0

0 0

 x1 − y1

x2 − y2



=

√√√√√[ 1 · (x1 − y1) + 0 · (x2 − y2) 0 · (x1 − y1) + 0 · (x2 − y2)
] x1 − y1

x2 − y2



=

√√√√√[ x1 − y1 0
] x1 − y1

x2 − y2


=
√

(x1 − y1)2

= |x1 − y1|

which means that d(x, x) = 0 always, but also for x 6= y : x1 = y1 ⇒ d(x, y) = 0. So d is a pseudo-metric on X.

If
→
0 =

 0

0

, the unit open ball in this space is

Od(
→
0 , 1) = {y ∈ R2 : dA(

→
0 , y) < 1}

= {y ∈ R2 : |0− y1| < 1}

= {y ∈ R2 : |y1| < 1}

= {y ∈ R2 : −1 < y1 < 1, y2 ∈ R}

= (−1, 1)× R
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3. X = R3 and d : X ×X → R, such that

d(x, y) = max
{
|x1 − y1|,

√
(x2 − y2)2 + (x3 − y3)2

}
, ∀x, y ∈ X

It can be shown that d is a pseudo-metric on X (why?). Observe that for any arbitrary x, y ∈ X

d(x, y) = max
{
|x1 − y1|,

√
(x2 − y2)2 + (x3 − y3)2

}
=

|x1 − y1|, |x1 − y1| ≥
√

(x2 − y2)2 + (x3 − y3)2√
(x2 − y2)2 + (x3 − y3)2, |x1 − y1| <

√
(x2 − y2)2 + (x3 − y3)2

If
→
0 =


0

0

0

, the unit open ball in this space is

Od(
→
0 , 1) = {x ∈ R3 : d(x,

→
0 ) < 1}

= {x ∈ R3 : max
{
|x1 − 0|,

√
(x2 − 0)2 + (x3 − 0)2

}
< 1}

= {x ∈ R3 :

|x1|,
√
x2

2 + x2
3 ≤ |x1|√

x2
2 + x2

3, |x1| <
√
x2

2 + x2
3

< 1}

= {x ∈ R3 : |x1| < 1 and
√
x2

2 + x2
3 < 1}

= (−1, 1)× {(κ, λ) ∈ R2 : κ <
√

1− λ2}

Exercise 3

Let (X, d) be a metric space and for some x, y ∈ X and ε > 0 let y ∈ Od(x, ε). Show that ∃ δ > 0 : Od(y, δ) ⊆ Od(x, ε).

Because y ∈ Od(x, ε) ⇐⇒ d(x, y) < ε ⇐⇒ 0 < ε− d(x, y). Choose δ := ε− d(x, y) > 0.

Then Od(y, δ) = {z ∈ X : d(y, z) < δ}. So

z ∈ Od(y, δ)

d(y, z) < δ

d(x, y) + d(y, z) < δ + d(x, y)

d(x, z) ≤ d(x, y) + d(y, z) < δ + d(x, y) = ε

d(x, z) < ε

z ∈ Od(z, ε)

i.e. z ∈ Od(y, δ) ⇒ z ∈ Od(x, ε), which says that every element of Od(y, δ) also belongs to Od(x, ε), so Od(y, δ) ⊆

Od(x, ε) for this choice of δ.
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Exercise 4

Let (X, d) be a metric space and Y ⊆ X. Define d′ : Y × Y → R such that d′ = d|Y×Y . Then (Y, d′) is a metric

subspace of (X, d). Show that Od′(x, ε) = Od(x, ε) ∩ Y and Od′ [x, ε] = Od[x, ε] ∩ Y .

Observe that arithmetically d′(x, y) = d(x, y), ∀x, y ∈ Y and that

Y ⊆ X ⇐⇒ (z ∈ Y ⇒ z ∈ X)

Furthermore

z ∈ Od(x, ε) ⇐⇒ z ∈ X and d(z, x) < ε

Thus

z ∈ O′d(y, ε) ⇐⇒ z ∈ Y and d′(z, x) < ε

⇒ z ∈ X and d(z, x) < ε

⇐⇒ z ∈ Od(x, ε)

So z ∈ Od′(x, ε) ⇐⇒ (z ∈ Y and z ∈ Od(x, ε)) which means that Od′(x, ε) = Od(x, ε) ∩ Y .

Similarly, Od′ [x, ε] = Od[x, ε] ∩ Y .

Exercise 5

Is (0, 1) a bounded set?

Boundness is not a topological notion. A set can only be a bounded subset of some other set with respect to a

specified metric function. Furthermore, a set may be bounded or not bounded depending on the chosen metric.

Exercise 6

Let d : R++ × R++ → R such that d(x, y) = |ln(x)− ln(y)|, ∀x, y ∈ R++ be a metric on R++. Is (0, 1) a d-bounded

subset of R++?

A set is a bounded subset in a metric space (i.e. with respect to a specific metric) if there exists an open (closed)

ball in the space that can cover it.

Let x ∈ R++, y ∈ (0, 1), and ε > 0. Define the open ball Od(x, ε). Choose a y in (0, 1) such that

y < x ⇐⇒ ln(y) < ln(x) ⇐⇒ |ln(x)− ln(y)| = ln(x)− ln(y) ⇐⇒ d(x, y) = ln(x)− ln(y)

For y to belong to Od(x, ε) it must hold that

d(x, y) < ε
y<x⇐⇒ ln(x)− ln(y) < ε ⇐⇒ −ln(y) < ε− ln(x) ⇐⇒ ln(y) > ln(x)− ε ⇐⇒ y > eln(x)−ε > 0

Thus, for y to belong to Od(x, ε), it must be bounded strictly away from 0. So for any arbitrary d-open ball in R++,

Od(x, ε), there always exists a 0 < y′ < eln(x)−ε that does not belong to it. So (0, 1) cannot be a d-bounded subset

of R++.
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Exercise 7

Let (Y, d) be a metric space and X 6= ∅. For dsup : B(X,Y )× B(X,Y )→ R such that

dsup(f, g) = sup
x∈X

d(f(x), g(x)), ∀f, g ∈ B(X,Y )

show that:

1. (B(X,Y ), dsup) is a metric space.

For (B(X,Y ), dsup) to be a metric space, B(X,Y ) needs to be a non-empty set and dsup needs to satisfy

properties i-iv on B(X,Y ).

First, notice that X and Y are non-empty, so we can define some “constant” function fc : X → Y such that

fc(x) = yc, ∀x ∈ X for some yc ∈ Y . Furthermore, observe that fc(X) = {yc} ⊆ Y , i.e. the image of X

through fc is a subset of Y (naturally) and it is also a singleton set (it has only one element). Thus f(X) is

a bounded subset of Y . That is, we have found at least one example of a bounded function from X to Y . So

B(X,Y ) is non-empty.

Secondly, since (Y, d) is a metric space, the properties i-iv hold for d on Y . So

i) dsup(f, g) = supx∈X d(f(x), g(x)) ≥ 0, ∀f, g ∈ B(X,Y )

ii) d(x, y) = 0 ⇐⇒ x = y,∀x, y ∈ X, so for some arbitrary f, g ∈ B(X,Y )

d(f(x), g(x)) = 0 ⇐⇒ f(x) = g(x)

sup
x∈X

d(f(x), g(x)) = 0 ⇐⇒ f(x) = g(x), ∀x ∈ X

sup
x∈X

d(f(x), g(x)) = 0 ⇐⇒ f = g

dsup(f, g) = 0 ⇐⇒ f = g

And since f and g were chosen arbitrarily, dsup(f, g) = 0 ⇐⇒ f = g, ∀f, g ∈ B(X,Y ).

iii) dsup(f, g) = supx∈X d(f(x), g(x)) = supx∈X d(g(x), f(x)) = dsup(g, f), ∀f, g ∈ B(X,Y )

iv) dsup(f, g) = supx∈X d(f(x), g(x)) ≤ supx∈X

(
d(f(x), h(x)) + d(h(x), g(x))

)
≤ supx∈X d(f(x), h(x)) + supx∈X d(h(x), g(x)) = dsup(f, h) + dsup(h, g), ∀f, g, h ∈ B(X,Y )

So (B(X,Y ), dsup) is a metric space.

2. If (Y, d) is bounded, then (B(X,Y ), dsup) is also bounded.

(Y, d) being bounded means that there exist an x′ ∈ Y and an ε > 0 such that Y ⊆ Od(x′, ε), which by

definition means that d(x′, y) < ε, ∀y ∈ Y . Define the function fc ∈ B(X,Y ) such that fc(x) = x′,∀x ∈ X.

Also don’t forget that

f ∈ B(X,Y )⇒ f : X → Y ⇒ f(x) ∈ Y, ∀x ∈ X

So ∀f ∈ B(X,Y )

dsup(fc, f) = sup
x∈X

d(fc(x), f(x)) = sup
x∈X

d(x′, f(x)) ≤ sup
x∈X

ε = ε
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So dsup(fc, f) < ε, ∀f ∈ B(X,Y ) ⇐⇒ f ∈ Odsup(fc, ε), ∀f ∈ B(X,Y ) and B(X,Y ) ⊆ Odsup(fc, ε) so B(X,Y )

is dsup-bounded.

Exercise 8

Let X ⊆ RN with N ∈ N∗ and d : X ×X → R such that d(x, y) =
(∑N

i=1 |xi − yi|2
) 1

2

, ∀x, y ∈ X be the Euclidean

metric on X. Show that d-boundeness in X is sufficient for d-total boundeness in X.

(Hint: Consider a d-bounded set in X and show that the ball that covers it is d-totally bounded.)

For A to be d-totally bounded subset of X, there must exist for any ε > 0 a finite number of d-open (d-closed)

balls in X that collectively include every element of A. This is called a finite cover of A.

Let A be a d-bounded subset of X. Then ∃ x0 ∈ RN , δ > 0 : A ⊆ Od[x0, δ].

We will prove that Od[x0, δ] is d-totally bounded, thus A is also d-totally bounded as a subset of Od[x0, δ].

For all ε ≥ δ > 0 all of Od[x0, δ] can be covered by one d-closed ball, Od[x0, ε].

For any 0 < ε < δ. Notice that every dimension of Od[x0, δ] is a subset of [x0i − δ, x0i + δ], where x0i is the i-th

element of x0, i.e.

Od[x0, δ] ⊆ [x01 − δ, x01 + δ]× [x02 − δ, x02 + δ]× ...× [x0N − δ, x0N + δ]

Let m ∈ N∗ be such that m >
2Nδ

ε
, then each of those supersets can be divided into exactly m subintervals like so

[x0i − δ, x0i + δ] = {
[
x0i − δ, x0i − δ +

2δ

m

]
,[

x0i − δ +
2δ

m
, x0i − δ + 2

2δ

m

]
,

...,[
x0i + δ − 2

2δ

m
, x0i + δ − 2δ

m

]
[
x0i + δ − 2δ

m
, x0i + δ

]
}

for all i ∈ {1, 2, ..., N}.

By restricting each dimension to one of those subintervals we can construct up to mN distinct subsets of X (because

we have m choices for each of the N dimensions). Those constructs are analogous to N -dimensional cubes with

centers xj such that

xji =

(x0i + sji) +

(
x0i + sji +

2δ

m

)
2

= x0i + sji +
δ

m

with sji ∈
{
−δ,−δ +

2δ

m
, ..., δ − 2

2δ

m
, δ − 2δ

m

}
the appropriate step to give the selected interval for the i-th dimension

of xj .

It can be shown that between all elements of those such cubes their ”corner” elements have the maximum d-distance

from their centers xj and that is equal to
δ
√
N

m
(proof at the end of these notes). Furthermore, observe that

0 <
δ
√
N

m
≤ δN

m
≤ 2δN

m
< ε
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So each of those cube sets can be covered by a d-closed ball, Od[xj , ε]. Remember that there are exactly mN such

cube sets, i.e. there is a finite number of them and they all collectively cover Od[x0, δ]. Thus the finitely many balls

that cover the collection of the cube sets also cover Od[x0, δ]. Remember that ε > 0 was arbitrarily chosen, so there

exists a finite cover of Od[x0, δ] for all ε. So Od[x0, δ] is a d-totally bounded subset of X and because A ⊆ Od[x0, δ]

it is also d-totally bounded.

So d-boundness in X is sufficient for d-total boundness in X.

We can generalize this result and say that boundness in finite Euclidean spaces is equivalent to total boundness.

Exercise 9

Let X ⊆ {(xn)n∈N : xn ∈ R,
∑∞
i=1 x

2
i < +∞} (i.e. X is a subset of the square summable real sequences) and

d : X ×X → R such that d(x, y) =
(∑∞

i=1 |xi − yi|2
) 1

2 , ∀x, y ∈ X be a metric on X. Show that d-boundeness in X

is not sufficient for d-total boundeness in X.

(Hint: Let X be an infinite set such that it includes 0 = {0}n∈N∗ as an element. Consider the d-closed unit ball

centered at 0 and show that it is not d-totally bounded (it must also have an infinite number of elements (why?)).)

We can intuitively understand that in an infini-dimensional space (Hilbert space) there can be no finite cover of

any of its bounded subsets (and thus all of its subsets (why?)) by considering the number of balls we would need to

cover it when following the solution of exercise 8 for ε < δ.

lim
N→∞

mN = lim
N→∞

(
2Nδ

ε

)N
= lim
N→∞

e
N ·ln

2Nδ

ε


= lim
N→∞

eN ·ln(N)+N ·ln(2)+N ·(ln(δ)−ln(ε)) =∞

(because δ > ε). However, this is not a complete proof.

We will prove that d-boundness in X does not necessarily imply d-total boundness using a counter-example.

Let X be an infinite set (i.e. a set with an infinite number of elements) such that it includes 0 = {0}n∈N∗ as an

element. Furthermore, let the d-closed unit ball, Od[0, 1], also have an infinite number of elements. Since Od[0, 1] is

a d-closed ball, it is d-bounded (by itself).

For any ε ≥ 1 obviously Od[0, 1] can be covered by one d-closed ball, Od[0, ε].

For any 0 < ε < 1 consider the case of ε =
1

2
and the set

A =

{
xn ∈ Od[0, 1] : n ∈ N, d(xm, xn) >

1

2
∀m 6= n ∈ N

}

Notice that every element of A is a sequence in X. We can show that such a sequence exists and has all of its

elements in Od[0, 1] using Riesz’s lemma. An example of a set such as A is the following set of basis vectors for X

{bn : bni =

 0 i 6= n

1 i = n
, ∀n ∈ N∗}

Suppose that all other elements of Od[0, 1] are collectively covered by a finite number of balls. For Od[0, 1] to be

d-totally bounded, A must also be covered by a finite number of balls.

Let n be the number of elements in A and 0 < m < ∞ a finite number of balls of radius
1

2
with which we wish to

cover A. By the Pigeonhole Principle at least one ball must include at least k elements, where it holds for n, m, and
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k that

n = km+ 1 ⇐⇒ k =
n− 1

m

But because n =∞⇒ k =∞ > 1 (i.e. at least one ball must contain an infinte number of elements). However, all

elements of A are such that the d-distance between them is greater than
1

2
which is the radius of the balls we are

using. So no ball can cover more than one element. Contradiction!

Thus A is not d-totally bounded and Od[0, 1] is not d-totally bounded and d-boundeness in X is not sufficient for

d-total boundness in X.

Exercise 10

Suppose that X = {f : [a, b] → R :
∫ b
a
f2(x)dx < +∞}, with a < b real numbers. Also consider the metric function

d(f, g) :=
(∫ b

a
(f(x)− g(x))2dx

) 1
2

on X. If 0 : [a, b]→ R is a function in X such that 0(x) := 0 ∀x ∈ [a, b], consider

Od[0, 1] and show that it is not d-totally bounded.

Exercise 11

Let (Xi, di) be metric spaces ∀i ∈ I with I a finite index set. For the cartesian product X :=
∏
i∈I Xi there can be

defined the following structured sets (X, dΠ) with dΠ ∈ {dΠmax , dΠI , dΠ| |} and dΠ are defined as

dΠmax = max
i∈I

di

dΠI =

(∑
i∈I

d2
i

) 1
2

dΠ| | =
∑
i∈I

di

and are appropriate metric functions on X. Let Ai ⊆ Xi,∀i ∈ I and A :=
∏
i∈I Ai, which implies that A ⊆ X. Show

that A is a dΠ-totally bounded subset of X iff Ai are di-totally bounded subsets of Xi ∀i ∈ I, for each of the three

dΠ defined above.

Because dΠmax ≤ dΠI ≤ dΠ| | ≤ ndΠmax it suffices to show that

A is dΠmax -totally bounded subset of X ⇐⇒ Ai is di-totally bounded subset of Xi ∀i ∈ I

where n ∈ N∗ is the number of elements in I, and the total boundeness property for a specific set (say A) is inherited

by dΠI and dΠ| | from dΠmax , and by dΠmax from the other two.

A compact illustration of the proof is the following (statements above the ⇐⇒ sign describe how to move forward,
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while statements below show the way back)

∀i ∈ I, Ai is di-totally bounded subset of Xi ⇐⇒

∀i ∈ I,∀εi > 0 ∃CAi,εi := {Odi(xij , εi), xij ∈ Xi, j ∈ Ii finite} : Ai ⊆
⋃
j∈Ii

Odi(xij , εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, yi ∈ Odi(xij , εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, di(xij , yi) < εi ⇐⇒
Choose εi=ε

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai,max
i∈I

di(xij , yi) < max
i∈I

εi
ε:=maxi∈I εi,I=

⋃
i∈I Ii⇐⇒

Choose Ii=I

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, dΠmax(xj , y) < ε ⇐⇒

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, y ∈ OdΠmax
(xj , ε) ⇐⇒

∀ε > 0 ∃CA,ε := {OdΠmax
(xj , ε), xj ∈ X, j ∈ I finite} : A ⊆

⋃
j∈I

OdΠmax
(xj , ε) ⇐⇒

A is dΠmax -totally bounded subset of X

More verbosely, if Ai are di-totally bounded subsets of Xi for all i ∈ I, then there exist ∀i finite di-open covers for

any εi > 0 (we choose a different εi for each Ai).

That means that each element, yi, of each Ai belongs to some di-open ball with radius εi and the number of these

balls (as well as their centres, xij) is finite for all i.

We construct elements of X and A using the above xij and yi. If we consider the dΠmax metric on X, we can see

that the distance of each y = (yn)n∈I in A from each xj = (xnj)n∈I in X, given by dΠmax , is equal to the greatest

distance between their elements, given by the corresponding di, i.e. ∀xj , y

dΠmax(xj , y) = max
i∈I

di(xij , yi)

So we can construct dΠmax-open balls using the xj-s as centres and setting ε := maxi∈I as their radii and cover all

of A with them. Their number is finite.

Thus, we have constructed a finite dΠmax -open cover of A for all ε > 0 using the fact that Ai are di-totally bounded

subsets of Xi for all i ∈ I. So A is a dΠmax-totally bounded subset of X.

Conversely, if A is a dΠmax - totally bounded subset of X, then for all ε > 0 there exists a finite cover of dΠmax-open

balls with radius ε, such that ∀y ∈ A, y belongs to one of these (finitely many) balls.

By definition of dΠmax , the above means that each element of y, yi, will belong to a di-open ball of radius ε. For all

i the union of these balls covers each Ai and their number is the same as the number of balls used to cover A, which

is finite.

Thus we have constructed finite di-open covers of Ai and Ai are di-totally bounded subsets of Xi for all i.

A few remarks:

• For a subset in a metric space to be totally bounded, a finite cover must exist for all radii. Make sure you

see that this is the case here.
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• Pay attention to the possibility that the index sets of each cover for the various i may not include the same

indices. Thus, when constructing the index set for the cartesian product, we use their union (I =
⋃
i∈I Ii).

This means that we may need to use some xij that are not necessary to cover Ai, but are needed to construct

the xj that define the balls that cover A.

E.g. I = {1, 2} and for some ε1, ε2 > 0 the index sets of the finite covers of A1 and A2 are I1 = {1, 2} and

I2 = {1, 2, 3}. Then we need I = {1, 2, 3} to construct the cover of A = A1 ×A2 of radius ε = max{ε1, ε2}.

• The minimum effective size of a finite cover’s index set depends on the size of the radius (and will typically

converge to infinity as a radius approaches zero). But for all strictly positive radii, these index sets are finite.

Exercise 12

Let d1 and d2 be both metrics on a non empty set X such that d1 ≤ cd2 with c > 0. Show that:

1. for x ∈ X and 0 < ε then Od2(x, ε) ⊆ Od1(x, c · ε).

Let y ∈ Od2(x, ε), then

d2(x, y) < ε

c · d2(x, y) < c · ε

d1(x, y) ≤ c · d2(x, y) < c · ε

d1(x, y) < c · ε

which means that y ∈ Od1(x, c · ε). So Od2(x, ε) ⊆ Od1(x, c · ε).

2. if A ⊆ X is d2-bounded, then it is d1-bounded.

Since A is d2-bounded, ∃ x ∈ X, ε > 0 : A ⊆ Od2
(x, ε). Set δ := c · ε⇒ δ > 0. So

A ⊆ Od2
(x, ε)

A ⊆ Od2(x, ε) ⊆ Od1(x, c · ε)

A ⊆ Od1
(x, c · ε)

A ⊆ Od1(x, δ)

So there ∃ x ∈ X, δ > 0 : A ⊆ Od1
(x, δ) and A is d1-bounded.

3. if there exists c′ > 0 such that c′d2 ≤ d1 ≤ cd2, then A ⊆ X is d1-bounded iff it is d2-bounded.

Let A be d2-bounded. Since ∃ c > 0 : d1 ≤ c · d2, it follows that A is d1-bounded. For this reason, if A is not

d1-bounded, it cannot be d2-bounded.

Let A be d1-bounded. Since ∃ c′ > 0 : d2 ≤
1

c
· d2, it follows that A is d2-bounded. For this reason, if A is not

d2-bounded, it cannot be d1-bounded.

So if ∃ c > 0, c′ > 0 : c′d2 ≤ d1 ≤ cd2, A is d1-bounded iff it is d2-bounded.

4. if A ⊆ X is d2-totally bounded, then it is d1-totally bounded.
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Since A is d2-totally bounded, there must exist for any given radius a finite collection of d-open (d-closed) balls

in X that collectively cover A (i.e. include all of its elements). That is called a finite cover of A of said radius.

Let ε > 0 be an arbitrary positive real number, then

∃ CA, εc :=
{
Od2

(
xi,

ε

c

)
, xi ∈ X, i ∈ I finite

}
: A ⊆

⋃
i∈I
Od2

(
xi,

ε

c

)

where CA, εc is one such finite cover of A of radius
ε

c
(and it is not necessarily unique).

Since d1 ≤ c · d2 ⇒ Od2

(
xi,

ε

c

)
⊆ Od1

(xi, ε) , ∀i ∈ I. So this collection of d1-open balls of radius ε covers

the corresponding collection of d2-open balls of radius
ε

c
, which also covers A. Notice that we defined as many

d1-open balls as d2-open balls, which is as many xi are defined by I, which is finite. So for some ε > 0 there

exists a number of d1-open balls of radius ε that cover A. Since ε is arbitrary, this holds for any ε > 0. So A

is d1-totally bounded.

5. if there exists c′ > 0 such that c′d2 ≤ d1 ≤ cd2, then A ⊆ X is d1-totally bounded iff it is d2-totally bounded.

Let A be d2-totally bounded. Since ∃ c > 0 : d1 ≤ c · d2, it follows that A is d1-totally bounded. For this

reason, if A is not d1-totally bounded, it cannot be d2-totally bounded.

Let A be d1-totally bounded. Since ∃ c′ > 0 : d2 ≤
1

c
· d2, it follows that A is d2-totally bounded. For this

reason, if A is not d2-totally bounded, it cannot be d1-totally bounded.

So if ∃ c > 0, c′ > 0 : c′d2 ≤ d1 ≤ cd2, A is d1-totally bounded iff it is d2-totally bounded.
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Useful Theorems and Results

Diagonal of a Euclidean N-cube

Let C be a “cube” in a Euclidean space with side length α > 0. That is, if x ∈ RN is the “center” of C, then

C =
[
x1 −

α

2
, x1 +

α

2

]
×
[
x2 −

α

2
, x2 +

α

2

]
× ...×

[
xN −

α

2
, xN +

α

2

]
Then the maximum distance from this center x is equal to

max
y∈C

d(x, y) = max
y∈C

√√√√ N∑
i=1

|xi − yi|2

= max
{yi∈[xi−α2 ,xi+α

2 ]}N
i=1

√√√√ N∑
i=1

|xi − yi|2

=

√√√√ N∑
i=1

∣∣∣xi − xi ± α

2

∣∣∣2

=

√√√√ N∑
i=1

∣∣∣±α
2

∣∣∣2

=
α

2

√√√√ N∑
i=1

1

=
α

2

√
N

and corresponds to all the “corners” of this N -cube.

Riesz’s Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), (S, d|S×S) non-dense linear subspace of (X, d), and

0 < ε < 1, there exists x ∈ X of unit norm (i.e. d(0, x) = ||x||p = 1) such that d(x, s) ≥ 1− ε, ∀s ∈ S.

Pigeonhole Principle

For n,m, k ∈ N with n = km+ 1, if we distribute n elements across m sets then at least one set will contain at least

k + 1 elements.
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