Athens University of Economics and Business Department of Economics

Postgraduate Program - MSc in Economic Theory Course: Mathematical Economics (Mathematics II) Some Solutions to Exercises 3 Prof: Stelios Arvanitis TA: Dimitris Zaverdas

Semester: Spring 2018-2019

Exercise 2

Suppose that $X = \{f : [a, b] \to \mathbb{R} : \int_a^b f^2(x) dx < +\infty\}$, with a < b real numbers. Also consider the metric function $d(f, g) \coloneqq \left(\int_a^b (f(x) - g(x))^2 dx\right)^{\frac{1}{2}}$ on X. For $\mathbf{0} : [a, b] \to \mathbb{R}, \mathbf{0}(x) \coloneqq \mathbf{0} \ \forall x \in [a, b]$, consider $\mathcal{O}_d[\mathbf{0}, 1]$ and show that it is not d-totally bounded.

Solution

The *d*-closed ball centered at $\mathbf{0} \in X$ with radius 1 is a set such that

$$\mathcal{O}_{d}[\mathbf{0}, 1] = \{g \in X : d(\mathbf{0}, g) \le 1\}$$

= $\{g \in X : \left(\int_{a}^{b} \left(\mathbf{0}(x) - g(x)\right)^{2} dx\right)^{\frac{1}{2}} \le 1\}$
= $\{g \in X : \left(\int_{a}^{b} g^{2}(x) dx\right)^{\frac{1}{2}} \le 1\}$

 $\forall \varepsilon \geq 1, \ \mathcal{O}_d[\mathbf{0}, 1] \subseteq \mathcal{O}_d[\mathbf{0}, \varepsilon]$ and so the whole set can be covered by a collection of one closed ball $(\mathcal{O}_d[\mathbf{0}, \varepsilon]).$

For $\varepsilon < 1$ consider the following sequence of functions in $\mathcal{O}_d[\mathbf{0}, 1]$

$$(g_n)_{n \in \mathbb{N}} : g_n \in \mathcal{O}_d[\mathbf{0}, 1] \ \forall n \in \mathbb{N}, d(g_m, g_n) > \frac{1}{2} \ \forall m \neq n \in \mathbb{N}$$

Using a modified Riesz's Lemma^{*} for functional spaces, it can be shown that such a sequence exists. Observe that $G = \{f : [a, b] \to \mathbb{R} : f = g_n \forall n \in \mathbb{N}\}$ is a subset of $\mathcal{O}_d[\mathbf{0}, 1]$.

Suppose that G is a d-totally bounded subset of X. Then for $\varepsilon = \frac{1}{4}$ there should exist a finite number of d-closed balls in X with radius $\frac{1}{4}$ that collectively include all of the infinitely many functions in G and thus cover G. By the Pigeonhole Principle^{**} each such ball must include more than one element of G. But then, for some $m \neq n$ this would mean that $d(g_m, g_n) \leq \frac{1}{4} < \frac{1}{2}$. Contradiction! So G cannot be a d-totally bounded subset of X and since $G \subseteq \mathcal{O}_d[0, 1]$ we have that $\mathcal{O}_d[0, 1]$ is not a d-totally bounded subset of X.

(*) Riesz's Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), $(S, d|_{S \times S})$ non-dense linear subspace of (X, d), and $0 < \varepsilon < 1$, there exists $x \in X$ of unit norm (i.e. $d(\mathbf{0}, x) = ||x||_p = 1$) such that $d(x, s) \ge 1 - \varepsilon, \forall s \in S$.

(**) Pigeonhole Principle

For $n, m, k \in \mathbb{N}$ with n = km + 1, if we distribute n elements across m sets then at least one set will contain at least k + 1 elements.

<u>Remarks:</u>

- \exists an infinite number of $f \in X \setminus \mathcal{O}_d[0, 1]$. E.g. consider $f_n(x) = n \sqrt{\frac{1}{b-a}}, \forall x \in [a, b], \forall n \in \mathbb{N}$.
- \exists an infinite number of $f \in \mathcal{O}_d[\mathbf{0}, 1]$. E.g. consider $f_n(x) = \frac{1}{n} \sqrt{\frac{1}{b-a}}, \forall x \in [a, b], \forall n \in \mathbb{N}.$

Exercise 4

For (X, d) a general metric space, $x, y \in X$, and $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} : x_n, y_n \in X \quad \forall n \in \mathbb{N}$, with $x = d - \lim(x_n)$ and $y = d - \lim(y_n)$. Given that $d(x_n, y_y) \to d(x, y)$ w.r.t the usual metric on \mathbb{R}, d_u , show that, given $y, f = d(\cdot, y) : X \to \mathbb{R}$ is d_u/d -continuous. Conclude analogously for $g = d(y, \cdot)$.

Solution

 $f(x;y) = d(x,y), y \in X, \forall x \in X \text{ is } d_u/d\text{-continuous at } x \in X \text{ because, by the fact that}$ $d_u - \lim d(x_n, y_n) = d(x, y), \text{ for all sequences } (x_n)_{n \in \mathbb{N}} \text{ in } X \text{ with } d - \lim x_n = x \text{ the corresponding}$ sequence $(f(x_n; y))_{n \in \mathbb{N}}$ in \mathbb{R} has $d_u - \lim f(x_n; y) = d_u - \lim d(x_n, y_n) = d(x, y) = f(x; y).$ Since $x \in X$ is arbitrary, f is d_u/d -continuous in X.

By symmetry of $d, g = d(\cdot, x)$ is d_u/d -continuous, since $f = d(x, \cdot)$ is d_u/d -continuous.

Lemma: Total Boundness and Finite Products

Let (X_i, d_i) metric spaces $\forall i \in \mathcal{I}$ with \mathcal{I} a finite index set. For the cartesian product $X \coloneqq \prod_{i \in \mathcal{I}} X_i$ there can be defined the following structured sets $(X, d_{\Pi}), d_{\Pi} \in \{d_{\Pi_{max}}, d_{\Pi_I}, d_{\Pi_{||}}\}$ and d_{Π} are defined as

$$d_{\Pi_{max}} = \max_{i \in \mathcal{I}} d_i$$
$$d_{\Pi_I} = \left(\sum_{i \in \mathcal{I}} d_i^2\right)^{\frac{1}{2}}$$
$$d_{\Pi_{||}} = \sum_{i \in \mathcal{I}} d_i$$

and are appropriate metric functions on X. Let $A_i \subseteq X_i, \forall i \in \mathcal{I}$ and $A \coloneqq \prod_{i \in \mathcal{I}} A_i$, which implies that $A \subseteq X$. Then A is a $d_{\prod_{max}}(/d_{\prod_I}/d_{\prod_{||}})$ -totally bounded subset of X iff A_i are d_i -totally bounded subsets of $X_i \forall i \in \mathcal{I}$.

Proof

It suffices to show that

A is $d_{\prod_{max}}$ -totally bounded subset of $X \iff A_i$ is d_i -totally bounded subset of $X_i \forall i \in \mathcal{I}$

because

$$d_{\Pi_{max}} \le d_{\Pi_I} \le d_{\Pi_{||}} \le n d_{\Pi_{max}}$$

where $n \in \mathbb{N}^*$ is the number of elements in \mathcal{I} , and the total boundeness property for a specific set (say A) is inherited by d_{Π_I} and $d_{\Pi_{||}}$ from $d_{\Pi_{max}}$, and by $d_{\Pi_{max}}$ from the other two.

A compact illustration of the proof is the following (statements above the \iff sign describe how

to move forward, while statements below show the way back)

$$\forall i \in \mathcal{I}, A_i \text{ is } d_i \text{-totally bounded subset of } X_i \iff$$

$$\forall i \in \mathcal{I}, \forall \varepsilon_i > 0 \ \exists C_{A_i,\varepsilon_i} \coloneqq \{\mathcal{O}_{d_i}(x_{ij},\varepsilon_i), x_{ij} \in X_i, j \in \mathcal{I}_i \text{ finite}\} : A_i \subseteq \bigcup_{j \in \mathcal{I}_i} \mathcal{O}_{d_i}(x_{ij},\varepsilon_i) \iff$$

$$\forall i \in \mathcal{I}, \forall \varepsilon_i > 0 \ \exists x_{ij} \in X_i, j \in \mathcal{I}_i \text{ finite } : \forall y_i \in A_i, y_i \in \mathcal{O}_{d_i}(x_{ij},\varepsilon_i) \iff$$

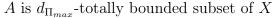
$$\forall i \in \mathcal{I}, \forall \varepsilon_i > 0 \ \exists x_{ij} \in X_i, j \in \mathcal{I}_i \text{ finite } : \forall y_i \in A_i, d_i(x_{ij}, y_i) < \varepsilon_i \bigoplus_{\substack{C \text{hoose } \varepsilon_i = \varepsilon}}$$

$$\forall i \in \mathcal{I}, \forall \varepsilon_i > 0 \ \exists x_{ij} \in X_i, j \in \mathcal{I}_i \text{ finite } : \forall y_i \in A_i, \max_{i \in \mathcal{I}} d_i(x_{ij}, y_i) < \max_{i \in \mathcal{I}} \varepsilon_i \stackrel{\varepsilon := \max_{i \in \mathcal{I}} \varepsilon_i, \overline{\mathcal{I}} = \bigcup_{i \in \mathcal{I}} \mathcal{I}_i \\ \text{Choose } \mathcal{I}_i = \overline{\mathcal{I}} \end{cases}$$

$$\forall \varepsilon > 0 \ \exists x_{ij} \in X, j \in \overline{\mathcal{I}} \text{ finite } : \forall y \in A, d_{\Pi_{max}}(x_j, y) < \varepsilon \iff$$

$$\forall \varepsilon > 0 \ \exists x_j \in X, j \in \overline{\mathcal{I}} \text{ finite } : \forall y \in A, y \in \mathcal{O}_{d_{\Pi_{max}}}(x_j, \varepsilon) \iff$$

$$\forall \varepsilon > 0 \ \exists C_{A,\varepsilon} \coloneqq \{\mathcal{O}_{d_{\Pi_{max}}}(x_j, \varepsilon), x_j \in \overline{\mathcal{I}} \text{ finite}\} : A \subseteq \bigcup_{j \in \overline{\mathcal{I}}} \mathcal{O}_{d_{\Pi_{max}}}(x_j, \varepsilon) \iff$$



More verbosely, if A_i are d_i -totally bounded subsets of X_i for all $i \in \mathcal{I}$, then there exist $\forall i$ finite d_i -open covers for any $\varepsilon_i > 0$ (we choose a different ε_i for each A_i).

That means that each element, y_i , of each A_i belongs to some d_i -open ball with radius ε_i and the number of these balls (as well as their centres, x_{ij}) is finite for all i.

We construct elements of X and A using the above x_{ij} and y_i . If we consider the $d_{\prod_{max}}$ metric on X, we can see that the distance of each $y = (y_n)_{n \in \mathcal{I}}$ in A from each $x_j = (x_{nj})_{n \in \mathcal{I}}$ in X, given by $d_{\prod_{max}}$, is equal to the greatest distance between their elements, given by the corresponding d_i , i.e. $\forall x_j, y$

$$d_{\Pi_{max}}(x_j, y) = \max_{i \in \mathcal{I}} d_i(x_{ij}, y_i)$$

So we can construct $d_{\prod_{max}}$ -open balls using the x_j -s as centres and setting $\varepsilon := \max_{i \in \mathcal{I}}$ as their radii and cover all of A with them. Their number is finite.

Thus, we have constructed a finite $d_{\prod_{max}}$ -open cover of A for all $\varepsilon > 0$ using the fact that A_i are d_i -totally bounded subsets of X_i for all $i \in \mathcal{I}$. So A is a $d_{\prod_{max}}$ -totally bounded subset of X.

Conversely, if A is a $d_{\prod_{max}}$ - totally bounded subset of X, then for all $\varepsilon > 0$ there exists a finite cover of $d_{\prod_{max}}$ -open balls with radius ε , such that $\forall y \in A, y$ belongs to one of these (finitely many) balls. By definition of $d_{\prod_{max}}$, the above means that each element of y, y_i , will belong to a d_i -open ball of radius ε . For all i the union of these balls covers each A_i and their number is the same as the number of balls used to cover A, which is finite. Thus we have constructed finite d_i -open covers of A_i and A_i are d_i -totally bounded subsets of X_i for all i.

<u>A few remarks:</u>

- For a subset in a metric space to be totally bounded, a finite cover must exist **for all radii**. Make sure you see that this is the case here.
- Pay attention to the possibility that the index sets of each cover for the various i may not include the same indices. Thus, when constructing the index set for the cartesian product, we use their union (*I* = ∪_{i∈I} *I*_i). This means that we may need to use some *x_{ij}* that are not necessary to cover *A_i*, but are needed to construct the *x_j* that define the balls that cover *A*.
 E.g. *I* = {1,2} and for some ε₁, ε₂ > 0 the index sets of the finite covers of *A*₁ and *A*₂

are $\mathcal{I}_1 = \{1, 2\}$ and $\mathcal{I}_2 = \{1, 2, 3\}$. Then we need $\overline{\mathcal{I}} = \{1, 2, 3\}$ to construct the cover of $A = A_1 \times A_2$ of radius $\varepsilon = \max\{\varepsilon_1, \varepsilon_2\}$.

• The minimum effective size of a finite cover's index set depends on the size of the radius (and will typically converge to infinity as a radius approaches zero). But for all strictly positive radii, these index sets are finite.

Lemma: Continuity via Open Sets (Open Balls and Neighbourhoods)

A function, $f : X \to Y$, with (X, d_X) and (Y, d_Y) metric spaces, is d_Y/d_X -continuous at a point $x \in X$ iff the following equivalent conditions hold:

- $\forall \delta > 0, \exists \varepsilon_{\delta} : f(\mathcal{O}_{d_X}(x, \varepsilon_{\delta})) \subseteq \mathcal{O}_{d_Y}(f(x), \delta)$
- If $A \in \tau_{d_Y}(f(x))$ then $\exists B \in \tau_{d_X}(x) : B \subseteq f^{-1}(A)$

Proof

First, we show that the first point is a *necessary* and *sufficient* condition for d_Y/d_X -continuity of f at x.

Assume that $\forall \delta > 0, \exists \varepsilon_{\delta} : f(\mathcal{O}_{d_X}(x, \varepsilon_{\delta})) \subseteq \mathcal{O}_{d_Y}(f(x), \delta).$

For $(x_n)_{n\in\mathbb{N}}$ such that $x_n \to x$ and $x_n, x \in X$ consider $(f(x_n))_{n\in\mathbb{N}}$. Then for some $\delta > 0$, choose a ε_{δ} that satisfies our assumption. Because $x_n \to x$

$$\forall n \ge n^*(\varepsilon_{\delta}), x_n \in \mathcal{O}_{d_X}(x, \varepsilon_{\delta}) \Rightarrow$$
$$\forall n \ge n^*(\varepsilon_{\delta}), f(x_n) \in f\left(\mathcal{O}_{d_X}(x, \varepsilon_{\delta})\right)$$

and because we assumed that $f(\mathcal{O}_{d_X}(x,\varepsilon_{\delta})) \subseteq \mathcal{O}_{d_Y}(f(x),\delta)$

$$\forall n \ge n^*(\varepsilon_\delta), \ f(x_n) \in \mathcal{O}_{d_Y}(f(x), \delta)$$

and since δ is arbitrary $f(x_n) \to f(x)$. Because $(x_n)_{n \in \mathbb{N}}$ is arbitrary f is d_Y/d_X -continuous at $x \in X$.

So the first point is a sufficient condition for d_Y/d_X -continuity of f at x.

Now, suppose that f is d_Y/d_X -continuous at $x \in X$, but for some $\delta > 0$ no ε_{δ} exists that satisfies the property we want to prove and $\forall \varepsilon > 0, f(\mathcal{O}_{d_X}(x,\varepsilon)) \not\subseteq \mathcal{O}_{d_Y}(f(x),\delta)$. This can be equivalently expressed as

$$\exists \delta > 0 : \forall \varepsilon > 0, f(\mathcal{O}_{d_X}(x,\varepsilon)) \bigcap \mathcal{O}'_{d_Y}(f(x),\delta) \neq \emptyset$$

This implies that

$$\exists \delta > 0 : \forall n \in \mathbb{N}, f(\mathcal{O}_{d_X}(x, \frac{1}{n+1})) \bigcap \mathcal{O}'_{d_Y}(f(x), \delta) \neq \emptyset$$

(since all $n \in \mathbb{N}$ give suitable ε). Consider the images of these sets through f^{-1} (which are also

non-empty)

$$f^{-1}\left(f\left(\mathcal{O}_{d_X}\left(x,\frac{1}{n+1}\right)\right)\bigcap\mathcal{O}_{d_Y}'\left(f(x),\delta\right)\right) = \mathcal{O}_{d_X}\left(x,\frac{1}{n+1}\right)\bigcap f^{-1}(\mathcal{O}_{d_Y}'(f(x),\delta)) \neq \emptyset, \forall n \in \mathbb{N}$$

and a sequence, $(x_n)_{n\in\mathbb{N}}$, such that the *n*-th element of the sequence belongs to the *n*-th such set

$$x_n \in \mathcal{O}_{d_X}\left(x, \frac{1}{n+1}\right) \bigcap f^{-1}(\mathcal{O}'_{d_Y}(f(x), \delta)) \Rightarrow$$
$$x_n \in \mathcal{O}_{d_X}\left(x, \frac{1}{n+1}\right)$$

which can be shown to imply a convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ to x. Thus, $x = d_X - \lim(x_n)$. By the assumed d_Y/d_X -continuity of f at x, we get $f(x) = d_Y - \lim(f(x_n))$, but

$$x_n \in \mathcal{O}_{d_X}\left(x, \frac{1}{n+1}\right) \bigcap f^{-1}(\mathcal{O}'_{d_Y}(f(x), \delta)) \Rightarrow$$
$$x_n \in f^{-1}(\mathcal{O}'_{d_Y}(f(x), \delta)) \iff$$
$$f(x_n) \in f(f^{-1}(\mathcal{O}'_{d_Y}(f(x), \delta))) = \mathcal{O}'_{d_Y}(f(x), \delta) \iff$$
$$f(x_n) \notin \mathcal{O}_{d_Y}(f(x), \delta)$$

which can be shown to make convergence of $(f(x_n))_{n \in \mathbb{N}}$ at $f(x) \in Y$ impossible. Hence we have a contradiction.

So the first point is a *necessary* condition for d_Y/d_X -continuity of f at x.

Now, we show that both points imply one another.

Let the second point hold.

For $\delta > 0$ choose $A = \mathcal{O}_{d_Y}(f(x), \delta)$. By our assumption $\exists B$ in the neighbourhood system $\tau_{d_X}(x)$ such that $B \subseteq f^{-1}(A)$. Since $B \in \tau_{d_X}(x)$ there always exists a $\varepsilon > 0$ such that B is a subset of a d_X -open ball with center x and radius ε . All this implies that

$$\mathcal{O}_{d_X}(x,\varepsilon) \subseteq B \subseteq f^{-1}(A) \Rightarrow$$
$$\mathcal{O}_{d_X}(x,\varepsilon) \subseteq f^{-1}(\mathcal{O}_{d_Y}(f(x),\delta)) \Rightarrow$$
$$f(\mathcal{O}_{d_X}(x,\varepsilon)) \subseteq f(f^{-1}(\mathcal{O}_{d_Y}(f(x),\delta))) \Rightarrow$$
$$f(\mathcal{O}_{d_X}(x,\varepsilon)) \subseteq \mathcal{O}_{d_Y}(f(x),\delta)$$

So the second point implies the first one.

Now, let the first point hold.

Suppose that $\exists A \in \tau_{d_Y}(f(x))$ such that $\forall B \in \tau_{d_X}(x)$, B is not a subset of $f^{-1}(A)$, i.e.

$$B \bigcap (f^{-1}(A))' \neq \emptyset \qquad \forall B \in \tau_{d_X}(x)$$

Because all d_X -open balls with center x belong to $\tau_{d_X}(x)$

$$\mathcal{O}_{d_X}(x,\varepsilon) \bigcap \left(f^{-1}(A)\right)' \neq \emptyset \qquad \forall \varepsilon > 0 \Rightarrow$$

$$\mathcal{O}_{d_X}(x,\varepsilon) \bigcap f^{-1}(A') \neq \emptyset \qquad \forall \varepsilon > 0 \Rightarrow$$

$$f\left(\mathcal{O}_{d_X}(x,\varepsilon) \bigcap f^{-1}(A')\right) \neq \emptyset \qquad \forall \varepsilon > 0 \Rightarrow$$

$$f\left(\mathcal{O}_{d_X}(x,\varepsilon)\right) \bigcap f\left(f^{-1}(A')\right) \neq \emptyset \qquad \forall \varepsilon > 0 \Rightarrow$$

$$f\left(\mathcal{O}_{d_X}(x,\varepsilon)\right) \bigcap f\left(f^{-1}(A')\right) \neq \emptyset \qquad \forall \varepsilon > 0 \Rightarrow$$

$$f\left(\mathcal{O}_{d_X}(x,\varepsilon)\right) \bigcap A' \neq \emptyset \qquad \forall \varepsilon > 0$$

But $A \in \tau_{d_Y}(f(x))$ so there always exists $\delta > 0$: $\mathcal{O}_{d_Y}(f(x), \delta) \subseteq A$. This implies that $(\mathcal{O}_{d_Y}(f(x), \delta))' \supseteq A'$ and thus

$$f(\mathcal{O}_{d_X}(x,\varepsilon)) \bigcap (\mathcal{O}_{d_Y}(f(x),\delta))' \neq \emptyset \qquad \forall \varepsilon > 0$$

which is equivalent to $f(\mathcal{O}_{d_X}(x,\varepsilon)) \not\subseteq \mathcal{O}_{d_Y}(f(x),\delta)$ and contradicts our assumption. So the first point implies the second.