Athens University of Economics and Business
Department of Economics
Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Some Solutions to Exercises 2
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas
Semester: Spring 2018-2019

Exercise 1

Let (X, d) be a "pseudometric space" (i.e d is a pseudometric on $X \neq \varnothing$). For $x \in X$ and $\varepsilon>0$ we can try and define d-open balls with center x and radius ε as

$$
\mathcal{O}_{d}(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}
$$

and d-closed balls with center x and radius ε as

$$
\mathcal{O}_{d}[x, \varepsilon]=\{y \in X: d(x, y) \leq \varepsilon\}
$$

To argue that $\mathcal{O}_{d}(x, \varepsilon)$ and $\mathcal{O}_{d}[x, \varepsilon]$ can be defined for pseudometric spaces, it suffices to show that they are non-empty sets for any x and ε. Consider the following, for d pseudometric on X

$$
\forall x \in X, \varepsilon>0 \exists y \in X: d(x, y)=0<\varepsilon
$$

So $\exists y \in X: y \in \mathcal{O}_{d}(x, \varepsilon)$, so $\mathcal{O}_{d}(x, \varepsilon) \neq \varnothing$. Analogously, $\mathcal{O}_{d}[x, \varepsilon] \neq \varnothing$. So open and closed balls can be defined for pseudometric spaces.

Exercise 2

$$
\begin{aligned}
d_{A}(x, y) & =\sqrt{(x-y)^{\prime} A(x-y)} \\
& =\sqrt{\left[\begin{array}{ll}
x_{1}-y_{1} & \left.x_{2}-y_{2}\right]
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2}
\end{array}\right]} \\
& \left.=\sqrt{\left[1 \cdot\left(x_{1}-y_{1}\right)+0 \cdot\left(x_{2}-y_{2}\right)\right.} 0 \cdot\left(x_{1}-y_{1}\right)+0 \cdot\left(x_{2}-y_{2}\right)\right]\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2}
\end{array}\right] \\
& =\sqrt{\left[\begin{array}{ll}
x_{1}-y_{1} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2}
\end{array}\right]} \\
& =\sqrt{\left(x_{1}-y_{1}\right)^{2}} \\
& =\left|x_{1}-y_{1}\right|
\end{aligned}
$$

It can be shown that d_{A} is a pseudometric on \mathbb{R}^{2} (but not a metric). So we can define open balls on $\left(\mathbb{R}^{2}, d_{A}\right)$.

$$
\begin{aligned}
\mathcal{O}_{d_{A}}(\overrightarrow{0}, 1) & =\left\{y \in \mathbb{R}^{2}: d_{A}(\overrightarrow{0}, y)<1\right\} \\
& =\left\{y \in \mathbb{R}^{2}:\left|0-y_{1}\right|<1\right\} \\
& =\left\{y \in \mathbb{R}^{2}:\left|y_{1}\right|<1\right\} \\
& =\left\{y \in \mathbb{R}^{2}:-1<y_{1}<1, y_{2} \in \mathbb{R}\right\} \\
& =(-1,1) \times \mathbb{R}
\end{aligned}
$$

And $\mathcal{O}_{d_{A}}(\overrightarrow{0}, 1)$ "looks like" the shaded area of the following graph excluding the boundaries. For $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ the horizontal axis corresponds to x_{1} and the vertical axis to x_{2}.

Exercise 4

Let $\varepsilon(x):=\min _{y \in X, x \neq y} d(x, y)$ and $\delta:=\max _{x, y \in X} d(x, y)$. If X has a finite number of elements, then $\varepsilon(x), \forall x \in X$ and δ are positive and bounded real numbers. For each center $x \in X$ choose $\varepsilon(x)$ to be the radius of a d-open ball. Then $\mathcal{O}_{d}(x, \varepsilon(x))=\{x\}$ for all $x \in X$. For some $x \in X$ choose δ as the radius of a d-open ball centred at x. Then $\mathcal{O}_{d}(x, \delta)=X$.

Exercise 6

Choose $x=1 \in X$ and $0<\varepsilon<1$. Then $\forall y \in X: y \neq x$ it holds that $d(x, y)>1>\varepsilon$, while $d(1,1)=0<\varepsilon$. So $\mathcal{O}_{d}(1, \varepsilon)=\{1\}$.

Exercise 7

$\mathcal{O}_{d^{*}}(x, \varepsilon)=\left\{y \in Y: d^{*}(x, y)<\varepsilon\right\}$
Although $d^{*}=\left.d\right|_{Y \times Y} \neq d$ (because d^{*} and d have different domains), it holds numerically that $d^{*}(x, y)=d(x, y), \forall x, y \in Y \subseteq X$. So, for all $y \in X$ that belong to $\mathcal{O}_{d^{*}}(x, \varepsilon)$

$$
\begin{aligned}
& y \in \mathcal{O}_{d^{*}}(x, \varepsilon) \Longleftrightarrow \\
& y \in\left\{y \in Y: d^{*}(x, y)<\varepsilon\right\} \Longleftrightarrow \\
& y \in Y \text { and } d^{*}(x, y)<\varepsilon \Longleftrightarrow \\
& y \in Y \text { and } d(x, y)<\varepsilon \Longleftrightarrow \\
& y \in Y \text { and } y \in \mathcal{O}_{d}(x, \varepsilon)
\end{aligned}
$$

so $\mathcal{O}_{d^{*}}(x, \varepsilon)=Y \cap \mathcal{O}_{d}(x, \varepsilon)$.
Similarly $\mathcal{O}_{d^{*}}[x, \varepsilon]=Y \cap \mathcal{O}_{d}[x, \varepsilon]$.

Exercise 10

(X, d) bounded space means that X is a d-bounded subset of itself, i.e. $\exists x \in X, \varepsilon>0: X \subseteq \mathcal{O}_{d}(x, \varepsilon)$, which means that for all $y \in X$ we have $d(x, y)<\varepsilon<+\infty$. So for all $f, g \in \mathcal{B}(Y, X)$

$$
\begin{aligned}
d_{\text {sup }}^{d}(f, g) & =\sup _{x \in Y} d(f(x), g(x)) \\
& <\sup _{x \in Y} \varepsilon \\
& =\varepsilon<+\infty
\end{aligned}
$$

So for any $f \in \mathcal{B}(Y, X)$ we have that $\forall g \in \mathcal{B}(Y, X) \Rightarrow d_{\text {sup }}^{d}(f, g)<\varepsilon$. By definition, this means that $\forall g \in \mathcal{B}(Y, X) \Rightarrow g \in \mathcal{O}_{d_{\text {sup }}^{d}}(f, \varepsilon)$ and thus $\mathcal{B}(Y, X) \subseteq \mathcal{O}_{d_{\text {sup }}^{d}}(f, \varepsilon)$. So $\mathcal{B}(Y, X)$ is $d_{\text {sup }}^{d}$-bounded and $\left(\mathcal{B}(Y, X), d_{\text {sup }}^{d}\right)$ is bounded.

