Athens University of Economics and Business
Department of Economics
Postgraduate Program - Master's in Economic Theory
Course: Mathematical Analysis (Mathematics II)
Prof: Stelios Arvanitis
TA: Alecos Papadopoulos
Semester: Spring 2016-2017

> 06-03-2017

EXERCISES 1

Metric Spaces and Distance Functions

1. Suppose that $\left(X, d_{x}\right)$ is a metric space. For a set $Z \neq \varnothing$ suppose that $f: Z \rightarrow X$ is an injection. Prove that $\left(Z, d_{f}\right)$ is a metric space, where

$$
d_{f}(x, y)=d_{x}(f(x), f(y)), \quad x, y \in Z .
$$

2. For (X, d) a metric space, show that $|d(x, z)-d(z, y)| \leq d(x, y) \quad \forall x, y, z \in X$ (note: Dual version of the triangle inequality).
3. Suppose that d is a metric on a set X. Prove that the inequality

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w) \text { holds for all } x, y, z, w \in X .
$$

(hint: try to arrive at and use the result proved in the previous exercise. This is like a triangle inequality using four points rather than three).
4. Suppose (X, d) is a metric space, and $e(x, y)=d(x, y) /(1+d(x, y))$ for each $x, y \in X$. Show that the function e is a metric on X.
5. "The sum of two metrics is a metric": Assume a set X and two metrics on it , $d(x, y), e(x, y) x, y \in X$ and consider their sum, $v(x, y)=d(x, y)+e(x, y)$. Prove that $v(x, y)$ is a metric.
6. "The sum of one metric and one pseudo-metric is a metric": Consider a set X, a metric $d(x, y)$ on it, and a pseudo-metric $e(x, y)$ on it, $x, y \in X$. Prove that $v(x, y)=d(x, y)+e(x, y)$ is a metric.
7. For (X, d) a metric space, suppose that X is also endowed with an additional operation, i.e. a function $+: X \times X \rightarrow X$. Given this, d is termed as translation invariant iff

$$
\forall x, y, z \in Z \quad d(x, y)=d(x+z, y+z)
$$

Deduce which of the examples examined in class concern translation invariant metrics.
8. For $X=\mathbb{R}^{k}, k, p \geq 1$, prove that d_{p} defined by $d_{p}(x, y)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$ $x, y \in \mathbb{R}^{k}$, is a metric.
(hint: use Jensen's Inequality, along with the fact that $x \rightarrow x^{p}$ is convex for $p \geq 1$).
9. Extend the previous to the set $p-A S$ of real sequences where

$$
p-A S=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<+\infty\right\} .
$$

10. For $\alpha<\beta, p \geq 1$, consider $C([\alpha, \beta], \mathbb{R})=\{f:[\alpha, \beta] \rightarrow \mathbb{R}$, continuous $\}$. For
$X=C([\alpha, \beta], \mathbb{R})$ consider $d_{p}^{*}(f, g)=\left(\int_{\alpha}^{\beta}|f(x)-g(x)|^{p} d x\right)^{1 / p}$. Prove that d_{p}^{*} is a metric.
11. Prove the following version of the Cauchy-Schwarz inequality: for $x, z \in \mathbb{R}^{k}, \mathbf{A}$ a $k \times k$ symmetric positive definite matrix, $x^{\prime} \mathbf{A} z \leq \sqrt{x^{\prime} \mathbf{A} x} \sqrt{z^{\prime} \mathbf{A} z}$
12. Is the function $(x-y)^{\prime} \mathbf{A}(x-y)$ a metric (squared Euclidean Distance) ?
13. Suppose I is a finite index set $I=\{1,2, \ldots, n\}$ and $\forall i \in I \quad\left(X_{i}, d_{i}\right)=\left(B\left(Y_{i}, \mathbb{R}\right), d_{\text {sup }}\right)$ is a metric space. Consider the product space $\prod_{i \in I} X_{i}$ and examine whether $d_{\Pi, \mathrm{ms}}=\max _{i} \sup _{x \in Y_{i}}\left|f_{i}(x)-g_{i}(x)\right|$ is a metric in the product space.
14. State conditions under which the following statement is true: "The sum of two pseudo-metrics is a metric". Construct an example.
