Athens University of Economics and Business *Department of Economics*

Postgraduate Program - Master's in Economic Theory *Course: Mathematical Analysis (Mathematics II)* Prof: Stelios Arvanitis TA: Alecos Papadopoulos

Semester: Spring 2016-2017

06-03-2017

EXERCISES 1

Metric Spaces and Distance Functions

- **1.** Suppose that (X, d_x) is a metric space. For a set $Z \neq \emptyset$ suppose that $f : Z \to X$ is an injection. Prove that (Z, d_f) is a metric space, where $d_f(x, y) = d_x(f(x), f(y)), \quad x, y \in Z$.
- **2.** For (X,d) a metric space, show that $|d(x,z)-d(z,y)| \le d(x,y) \quad \forall x, y, z \in X$

(*note*: Dual version of the triangle inequality).

3. Suppose that d is a metric on a set X. Prove that the inequality

$$\left|d(x,y)-d(z,w)\right| \leq d(x,z)+d(y,w) \text{ holds for all } x,y,z,w \in X.$$

(*hint*: try to arrive at and use the result proved in the previous exercise. This is like a triangle inequality using four points rather than three).

4. Suppose (X, d) is a metric space, and e(x, y) = d(x, y)/(1+d(x, y)) for each $x, y \in X$. Show that the function e is a metric on X.

- **5.** "The sum of two metrics is a metric": Assume a set *X* and two metrics on it, d(x, y), $e(x, y) x, y \in X$ and consider their sum, v(x, y) = d(x, y) + e(x, y). Prove that v(x, y) is a metric.
- 6. "The sum of one metric and one pseudo-metric is a metric": Consider a set *X*, a metric d(x, y) on it, and a pseudo-metric e(x, y) on it, $x, y \in X$. Prove that v(x, y) = d(x, y) + e(x, y) is a metric.
- 7. For (X,d) a metric space, suppose that X is also endowed with an additional operation, i.e. a function $+: X \times X \to X$. Given this, d is termed as *translation invariant* iff

$$\forall x, y, z \in Z \quad d(x, y) = d(x+z, y+z)$$

Deduce which of the examples examined in class concern translation invariant metrics.

8. For $X = \mathbb{R}^k$, $k, p \ge 1$, prove that d_p defined by $d_p(x, y) = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{1/p}$ $x, y \in \mathbb{R}^k$, is a metric.

(*hint*: use Jensen's Inequality, along with the fact that $x \rightarrow x^p$ is convex for $p \ge 1$).

9. Extend the previous to the set p - AS of real sequences where

$$p-AS = \left\{ \left(x_n \right)_{n \in \mathbb{N}} : \sum_{i=1}^{\infty} \left| x_i \right|^p < +\infty \right\}.$$

10. For $\alpha < \beta$, $p \ge 1$, consider $C([\alpha, \beta], \mathbb{R}) = \{f : [\alpha, \beta] \rightarrow \mathbb{R}, continuous\}$. For

$$X = C([\alpha, \beta], \mathbb{R}) \text{ consider } d_p^*(f, g) = \left(\int_{\alpha}^{\beta} |f(x) - g(x)|^p dx\right)^{1/p}. \text{ Prove that } d_p^* \text{ is a metric.}$$

- **11.** Prove the following version of the Cauchy-Schwarz inequality: for $x, z \in \mathbb{R}^k$, **A** a $k \times k$ symmetric positive definite matrix, $x'\mathbf{A}z \leq \sqrt{x'\mathbf{A}x}\sqrt{z'\mathbf{A}z}$
- **12.** Is the function $(x-y)' \mathbf{A}(x-y)$ a metric (squared Euclidean Distance) ?
- **13.** Suppose *I* is a finite index set $I = \{1, 2, ..., n\}$ and $\forall i \in I \ (X_i, d_i) = (B(Y_i, \mathbb{R}), d_{\sup})$ is a metric space. Consider the product space $\prod_{i \in I} X_i$ and examine whether

$$d_{\Pi, \text{ms}} = \max_{i} \sup_{x \in Y_i} |f_i(x) - g_i(x)|$$
 is a metric in the product space.

14. State conditions under which the following statement is true: "The sum of two pseudo-metrics is a metric". Construct an example.