An Example of a metric booed on Graph Structure Suppose that $\gamma \neq \phi$ (see of vertices) and finite
Definition. An unordered pair of elements of r is a set $\left\{x_{i}, x_{j}\right\}$ with $x_{i}, x_{y} \in V$. ($\left\{x_{i}, x_{j}\right\}$ is not actually a vector of elements of r, Since $\left\{x_{i}, x_{y}\right\}=\left\{x_{y}, x_{i}\right\}$, and this furtifies the terse "unordered")
Definition. An cenordered finite graph on V is a pair $\sigma=(V, \varepsilon)$ where ε is a colleceron of unordered pocirs of elements of V. [\mathcal{E} is the set of edges in the Graph]
E.g. $\quad V=\left\{x_{1}, x_{2}, x_{3}\right\} \quad \varepsilon=\left\{x_{1}, x_{2}\right]$,

- vertices 乞 $\left.\left\{x_{1}, x_{3}\right\}\right\}$
trivialpocirs $\left\{x_{i}, x_{i}\right\}$
- elements of ε
\rightarrow Con be considered as representing sigumeeric relations between the vertices
Rellark. Given the identification $\left\{x_{i}, x_{j}\right\}=\left\{x_{y}, x_{i}\right\}$, at lost one edge can exist between any pair of vertices. Such graphs are called simple. Since O is simple and
r is finite, ε must be also finite (why??). Such graphs (r finite and $\&$ finite) are called finite.
Definition. If $x, y \in Y$ and $\{x, y\} \in \varepsilon$ then x, y are called adjunct (connected by an edge Xayl. A path between $x, y\left(P_{x, y}\right)$ is a finite sequence in V L, essentially a vector why? $\left(x_{2}, x_{2}, \ldots, x_{i}, x_{i+1}, \ldots x_{n}\right)$, with $x_{4}=x, x_{n}=y$ and $x_{i a d y} x_{i+1}, f i=1, \ldots, n-1$.
Remarks. A porth is called a loop iff $x=y$. A loo g is called trivial iff it is a singleton loop why do trivial boos exist, by the above??
Definition. A graph 6 is called connected, iff $\forall x, y \in V$ there exists a poach. $\rho_{x, y}$ (every vertex is reachable by any vertex via some porth)

$$
\begin{aligned}
& \text { Ecg. } \quad r=\left\{x_{1}, x_{2}, x_{3}, x_{1}\right\} \quad \xi=\left\{\left\{x, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right. \\
& \left.\left\{x_{2}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& G=(v, \varepsilon) \text { connected } \\
& \text { (why?) } \\
& \varepsilon^{*}=\left\{x_{1}, x_{3}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\} \\
& \dot{x}_{1} \int_{x_{3}}^{x_{2}} \cdot x_{4} \\
& G^{x}=\left(v, \varepsilon^{x}\right) \\
& \text { not-lonnected why?) }
\end{aligned}
$$

- Some Algebra on Parths
- Transposition: if $P_{x_{1,}}=\left(x, x_{2}, \ldots, x_{i}, x_{t+1}, \ldots, x_{n c}, y\right)$ then $P_{x, y}^{\prime}=\left(y_{1}, x_{n-1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{2}, x\right)$
Exe: $P_{x, y}^{\prime}=P_{x, y}$ iff $P_{x, y}$ is a trivial loop.
- Concoctenation: if $P_{a, y}=\left\{x, x_{2}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n-1}, y\right\}$ and $P_{y, z}=\left\{y, y_{2}, \ldots, y_{g}, y_{d+2}, \ldots, y_{m-1}, z\right\}$ then

$$
P_{x y} \cdot P_{y, z}:=\left\{x, x_{21}, x_{i}, x_{i 1}, \ldots, x_{4 c}, y_{1}, y_{2}, \ldots, y_{3}, y_{p+1}, \ldots, y_{a+1}, z\right\}
$$

[Concoctenoction wouns oulg ou couformat parks, i.e. $P_{x, y}$ • $P_{w, z}$ is definable iff $\left.y=w\right]$

Exe: $\left(P_{x, y} \cdot P_{y, z}\right)^{\prime}=P_{y, z}^{\prime} \cdot P_{x, y}^{\prime}$.

- Lengeth of a pocth

Definition. If $P_{x, y}$ is a pocth Elen: length $\left(\rho_{x, y}\right)=\# S_{x, y}-1$
exe.

Deurn G livise then of cequence
Remark. 1. It G is finise then the funcion length assumes its volues on \mathbb{N} (why?
2. If 6 is finite and connected then the optivizaction $\ell_{x, y}:=\min \left\{\right.$ length $\left(P_{x, y}\right), P_{x, y}$ is a path frome x to y \}
is well defined (it aluaras produces a natural number)
since -6 competed \in collection of Paths foul $x, y \neq \phi, f \times x=E V$

- G finite $\Leftrightarrow \ggg$ invite $^{\prime} f(x, y c V$
(if r was "simply, finite then it could be possible that $\exists x, y \in Y: \quad \ell_{x, y}=+\infty-$ why? $)$
From now on 6 will be simple, finite, and connected:

3. $\forall x, y \in V, l_{x, y}=l_{y, x}$ (why? we transposition)
4. $\forall x, y, z \in V, \quad l_{x, y} \leqslant l_{x, 2}+l_{z, y}$ since

$$
l_{x, y} \leqslant l_{\text {length }}\left(P_{x, z} \cdot P_{z, y}\right)
$$

has by conssruccion byexe $=$ length $\left(P_{x}, z\right)+\operatorname{longth}(P, y)$ an optimal property
and the s ineopality above continuous to hold if $P_{x, z}$ and $P_{z, y}$ in the inequaling are chosen optiviolly.
5. $l_{x, y}=0$ iff $x=y$ cwhy?)

We are now ready to construct oc Metric on r (not on 6) bossed on G.
Metric via G. Let $V \neq \varnothing$, finite, and 6 a simple connected graph on V
$d_{G}: V \times V \rightarrow \mathbb{N}$, befined by $x, y \in V, \quad d_{G}(x, y):=l x, y$ is a well defined metric.

- d_{G} is a well-defined function with values on \mathbb{N} by Real.?.
$-d_{6}(x, y)=0 \Leftrightarrow x a y$ by Real 5.
- do is syunle eric by Rel 3.
- da satisfies the triangle ineomorlity by Rear 4.
Rework. If V represents econoalic actors, and G interconnections between theol w.S.f. optimal decisions, (egg. focal gores), d_{G} could reflect the 1 streetelic interdependence "between the actors x, y in testas of their optimal decision making.

