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Generalized Method of Moments (GMM) - why use it? 

This document is to be studied after, and as a complement to, 

"Tutorial 5: A Linear Model with Instrumental Variables in a Time Series Framework." 

where one will find the proper technical treatment of GMM. 

Consult also Hayashi (2000), ch. 4 and 6. 

 

Why use the GMM estimator? What is its fundamental value-added that justifies its 

existence and application? The issue matters because among other things the GMM 

estimator is considered one of the most important novel contributions of Econometrics to 

the science of Statistics (and it is what essentially got an Economics Nobel to its creator, 

Lars Peter Hansen). 

We will show that the unique contribution of the GMM estimator is ... the weighting 

matrix: the proof that the weighting matrix is not the identity matrix, and the 

determination of an estimable optimal weighting matrix. It is in this aspect that GMM 

surpasses the traditional Method of Moments (MM) estimator: efficiency and lower 

variance. 

 

A. Estimating an overidentified model using Method-of-Moments 

A usual framework in which GMM is introduced is a model with regressor 

endogeneity and more instrumental variables than regressors. This educational approach 

ended up being misleading, because we are left with the impression that "when the system 

is overidentified, we have to use GMM". This is not correct, and we will show it by first 

https://eclass.aueb.gr/modules/document/file.php/OIK230/tutorial5.pdf
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obtaining the "traditional" Method-of-Moments estimator for an over-identified model. In 

matrix notation, assume that the model is  

 

   y Xβ u , u , X uE E    0 0   

 

where X  is an n L  matrix, and assume that the Instruments matrix is Z  of 

dimension ,n K K L  , including any deterministic and exogenous stochastic 

regressors, as well as the instruments for the endogenous regressors. The additional 

assumption here is  Z uE   0 . 

In traditional Method of Moments fashion, let's use these orthogonality conditions to 

obtain an estimator. Applying the Analogy principle, we have  

 

 Z u Z y Xβ Z Xβ Z y        0 0  

 

The matrix Z X  is not square, and cannot be inverted. Writing 

S X Z, S Z X, S SXZ ZX ZX XZ
     we have 

 

 
1ˆS β Z y S S β S Z y β S S S Z yZX XZ ZX XZ MM XZ ZX XZ


        

 

This is the MM estimator that uses all the available instruments and does not discard 

information embodied in the orthogonality conditions. By analyzing  y  we get  

 

 
1

β̂ β S S S Z uMM XZ ZX XZ


   

 

and under usual regularity assumptions together with   Z uE   0  we get 

consistency of β̂MM . 

Turning to the limiting distribution of the MM estimator we look at 

 

      
1

1 1 1 1β̂ β S S S Z uMM XZ ZX XZn n n n
n


   
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Under the assumption  Z uE   0  the finite-sample variance of the above statistic is 

by construction, 

 

        
1 1

1 1 1 1 1 1 1ˆVar β β S S S Z uu Z S S SMM XZ ZX XZ ZX XZ ZXn n n n n n n
n E

      
  

 

 

Under regularity conditions  

 

   1 1S , Sp p

XZ t t XZ ZX t t ZXn n
E E    x z z x  

 

Assuming that  t tuz is a vector martingale difference process, we can get our CLT. 

As n  we have  

 

         
1 11β̂ β 0,AV , AV plim Z uu Zd

MM MM MM XZ ZX XZ ZX XZ ZXn
n N

 
           

 

We still need to obtain an estimable expression for  1plim Z uu Z
n
  . It is tedious, but 

instructive, to carry out the matrix multiplications here, to see what kind of additional 

assumptions, if any, we need to impose. Write Z  as a vector-bloc matrix,  

1

Z =

K

 
 
 
  

z

z

    where each row-vector contains the whole series of the realizations of a 

regressor. Then  

 

1 1 1 2 1

1

2 1 2 2 2

1

1 1

uu uu uu

uu uu uu
Z uu Z uu

uu uu uu

K

K

K

K

K K K K K

      
              

   
           

z z z z z z
z

z z z z z z
z z

z
z z z z z z

 

 

Let's analyze a main-diagonal element:  
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   

2

1 1 2 1

112

2 1 2 2

1 1 11 1

12

1 2 1

1,1 : uu

n

n

n

n

n n n n n

u u u u u
z

u u u u u
z z

z
u u u u u u u

 
  
    
  
    

  

z z  

 

11

1 1 1 2 11 1 1

1

n n n

t t t t t t nt t t

n

z

z u u z u u z u u

z
  

 
  
  
  

    

 

1 1 11 1 1 12 1 2 1 11 1 1
uu ...

n n n

t t t t n t t nt t t
z z u u z z u u z z u u

  
       z z  

 

2 2

11 1 11 12 2 1 11 1 1

2 2

12 11 1 2 12 2 12 1 2

2 2

1 11 1 1 12 2 1 2

...

...

...

...

n n

n n

n n n n n

z u z z u u z z u u

z z u u z u z z u u

z z u u z z u u z u

   

   



   

 

 

2 2

1 1 1 1 1

1

uu
n n

t t t t

t t

z u z z u u
 

    z z  

 

The double sum contains ( 1)n n  terms. All elements of the matrix are divided by n, 

so  

 
 

2 2 2 2

1 1 1 1 1 1 1 1

1 1

1 1 1 1 1
uu 1

1

n n n n

t t t t t t t t

t t t t

z u z z u u z u n z z u u
n n n n n n   

      


   z z

 

With an ergodic-stationary sample, letting n  go to infinity we will get  

 

     2 2

1 1 1 1 1

1
plim uu lim 1t t t t tE z u n E z z u u

n


    z z  

 

Keep that, and let's turn to a typical off-diagonal element, 
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   

2

1 1 2 1

212

2 1 2 2

1 2 11 1

22

1 2 1

1,2 : uu

n

n

n

n

n n n n n

u u u u u
z

u u u u u
z z

z
u u u u u u u

 
  
    
  
    

  

z z  

 

21

1 1 1 2 11 1 1

2

n n n

t t t t t t nt t t

n

z

z u u z u u z u u

z
  

 
  
  
  

    

 

1 2 21 1 1 22 1 2 2 11 1 1
uu ...

n n n

t t t t n t t nt t t
z z u u z z u u z z u u

  
       z z  

2

21 11 1 21 12 2 1 21 1 1

2

22 11 1 2 22 12 2 22 1 2

2

2 11 1 2 12 2 2 1 2

...

...

...

...

n n

n n

n n n n n n

z z u z z u u z z u u

z z u u z z u z z u u

z z u u z z u u z z u

   

   



   

 

 

2

1 2 2 1 2 1

1

uu
n n

t t t t t

t t

z z u z z u u
 

    z z  

 

Proceeding as before,  

 

 
 

2 2

1 2 2 1 2 1 2 1 2 1

1 1

1 1 1 1 1
uu 1

1

n n n n

t t t t t t t t t t

t t t t

z z u z z u u z z u n z z u u
n n n n n n   

      


   z z

 

     2

1 2 2 1 2 1

1
plim uu lim 1t t t t t tE z z u n E z z u u

n


    z z  

 

So the matrix 1plim Z uu Z
n
   will contain elements of the form 

 

     2 2

1 1 1 1 1

1
plim uu lim 1t t t t tE z u n E z z u u

n


    z z  in the main diagonal 

     2

1 2 2 1 2 1

1
plim uu lim 1t t t t t tE z z u n E z z u u

n


    z z  off diagonal 
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The martingale difference property of the product process  ut tz   says that  

 

   1 1 2 2, ,... u ; 1,2,... 0t t t t t t t t t iE u u u E f i      z z z z  

 

Applying the law of iterated expectations  

 

     1 1 1 1 1 1

1

, ; 1,2,... ; 1,2,...

0 0

t t t t t i t t t it E z z u u E E z z u u f i E z u E z u f i

E z u

 
       
   

    

 

 

     1 1 1 1 1 1

1

, u u ; 1,2,... ; 1,2,...

0 0

t t t t i t t i

t t

t E z z E E z z u u f i E z u E z u f i

E z u

 
       
   

    

 

 

... and analogously for  2 1t tE z z u u .  So under the m.d. property, these terms 

vanish and we are left with  

 

   2 2 2

1 1 1 1 2 2 1

1 1
plim uu , plim uut t t t tE z u E z z u

n n
    z z z z  

 

We see that we need to make an assumption about the above products and their 

expected values. We make the simplest one, that of Conditional homoskedasticity: 

 

 2 2

t tE u z  

 

which implies by application of the LIE,  

 

       2 2 2 2 2 2

1 1 1 1 1 2 2 1 2 1

1 1
plim uu , plim uut t t t t t t tE z u E z E z z u E z z

n n
       z z z z  

 

Given these results, and going back to the full matrix, we obtain  
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   2 21plim Z uu Z t tn
E E     z z  

 

So 

 

       
1 12β̂ β 0,AV , AVd

MM MM MM XZ ZX XZ ZX XZ ZXn N 
 

          

 

To recapitulate, we obtained the above using: 

 Τhe Instruments orthogonality condition  Z uE   0  

 The martingale-difference property   ; 1,2,... 0t t t iE u f i  z  

 The Conditional Homoskedasticity property  2 2

t tE u z  

 

We see that there is no need to assume the stronger condition of mean-

indepedence,  uE Z  0  to obtain the asymptotic normality result and the estimable 

form of the asymptotic variance.  

 

So this is the MM estimator of an overidentified system. We have used all the 

instruments and have not wasted any information. The question is "can we do better in 

terms of asymptotic efficiency?". The answer is yes. 

 

B. Estimating an overidentified model using GMM 

We can obtain the GMM estimator by going back to the roots: think "minimize a sum 

of squares", as we do in OLS. But here, minimizing the sum of squared residuals won't do, 

since we will get nothing else than OLS itself, since in the end, the residuals will be 

determined by ˆû y Xβ  , whatever estimator we use. 

So we think "minimize the sum of squares of the orthogonality conditions, u ZZ u  "... 

Well, if we do that we will obtain the MM estimator:  the same relation between MM and 

OLS, holds also in the overidentified case. 
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Then, the idea: why not insert a (square and p.d.) matrix of "weights", W , currently 

unspecified, and see where it leads us? So let's 

 

β
min u ZWZ u   

 

If we do that and apply matrix operations including differentiation by a vector, we 

will get the GMM estimator (called here a "weighted minimum distance estimator") 

 

 
1

β̂ S WS S WZ yGMM XZ ZX XZ


   or       

1
β̂ β S WS S WZ uGMM XZ ZX XZ


   

 

and 

 

       
1 12β̂ β 0,AV , AV W W W Wd

GMM GMM GMM XZ ZX XZ ZX XZ ZXn N 
 

         

 

 

Comparing this expression with the one obtained for the MM estimator we see now 

in what sense the GMM estimator "generalizes" the MM estimator: it does not generalize it 

in the sense of estimating an overidentified model because supposedly the MM estimator 

can be applied only to the estimation of an exactly identified system, since we have seen 

that this is not true. The MM estimator is defined as the estimator arising directly from the 

"moment equations/orthogonality restrictions" of the model and the application of the 

Analogy principle, it is nowhere said that we have to have an exactly overidentfied system 

(although it is true from a historical perspective that Karl Pearson introduced and 

developed the MM estimator using the rule "for each unknown parameter one moment 

equation"). 

But the GMM does generalize the MM estimator, in the sense that the latter is a 

special case of the GMM where we have set the weighting matrix W  equal to the 

Identity matrix. 

This is what really new does GMM bring into the picture: the matrix W . The 

question now becomes "why should we select W  to be anything else than the Identity 
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matrix?" And the answer is that there are other matrices for which the asymptotic variance 

of the GMM estimator becomes not larger than the MM estimator, and so better in 

efficiency terms. 

One, and estimable, such matrix is 1W   . Inserting this into VGMM  a lot of 

things simplify and we get  

 

 
1

2 1VGMM XZ ZX


       

 

In order to prove the optimality of this and the superiority of GMM we have to 

prove that the difference 

 

     
11 12 2 1V V W W W WGMM GMM XZ ZX XZ ZX XZ ZX XZ ZX 
                 0  

 

i.e that it is a positive semidefinite matrix, for any W, and so also for W I which is 

what holds for the MM estimator. 

The proof of this is a good example of the power of matrix algebra. 

 

Matrix Algebra Fact 1: if matrices A and B are p.d. then A-B is p.s.d. if and only if 

1 1B A   is p.s.d. This is useful because it allows us to reduce the number of matrix 

inverses we have to work with. Ignoring the common scaling term 2 , in order to prove  

 

V VGMM GMM

  0  

 

we can therefore equivalently prove  

 

 
11 W W W WXZ ZX XZ ZX XZ ZX XZ ZXQ
             0  

 

Matrix Algebra Fact 2: Since Σ is p.d. there exist an invertible matrix C  such that  
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 
11 1C C , C C
        

 

Inserting this, we examine 

 

  
1

11C C W WC C W WXZ ZX XZ ZX XZ ZX XZ ZXQ


            

 

Using also the fact that ZX XZ
    we get 

 

  
1

11C C W WC C W WXZ XZ XZ XZ XZ XZ XZ XZQ


                

 

Take common factor from the left CXZ
  and from the right 1C XZ

  : 

 

    
1

1 11 1C C W WC C W WC CXZ XZ XZ XZ XZ XZQ I


               
  

 

 

Define for clarity H C H CXZ XZ
      , and also  

     
1 1 1 1G C W G W C W C WCXZ XZ XZ XZ

   
                  

 

 

With these we obtain  

 

 
1

H G G G G HQ I
    

 
 

 

The middle matrix is a projection matrix, idempotent and symmetric  

 

 
1

G G G G =M, M M, MM MI


     . Then 

 

 H MH = H MMH = H M MH = MH MHQ      
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But this is the Gram matrix of the matrix product MH , and a Gram matrix is always 

positive semi-definite. 

We have proved that V VGMM GMM

   0 , and so that we optimize efficiency 

(minimize variance) if 

a) We use GMM instead of MM 

b) We set the weighting matrix equal to 1W   . 

  

C. GMM with autocorrelation 

The martingale-difference assumption does not allow for the existence of 

autocorrelation in the  ut tz  process. But in a time-series setting this is difficult to defend 

in many cases. 

If we want to allow for autocorrelation, we need to assume that the process  ut tz  

satisfies Gordin's condition, and so that the related CLT is applicable. In such a case, we 

obtain that  

     21
0 0

1

Z u 0, , 2 , ,d

j t t t j t t t j t jn
j

N E u E u u


 



             z z z z  

while the expressions for the distribution of the estimator remains unchanged, with 

the only difference being the expression for  . 

 

A special case. 

Assume that autocorrelation exists only in  tu .  

Assume conditional homoskedasticity as before. 

Assume that the Instruments are centered on their mean (implying that there is no 

constant term in the regression) 

Assume that the sample, as regards the Instruments, is i.i.d. 

Then you should be able to show that     00 0, Varj t tj u E       z z  

with the only difference from the non-autocorrelation case being that, here,  Var u  

is expected to be larger than before, due to the autocorrelation. 

-- 


