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Estimating an MA(1) process. 

(this document is to be studied together with 

"Tutorial 3: a GMM estimator in an MA(1) model.") 

 

We are given a data sample  0 ,..., Ty y  and we are told (in all honesty) that it comes 

from an MA(1)  process without drift, 

 

 2

0 1 0, WN 1 ,t t t ty                                      [1] 

 

We are also given that  4

4E    . We are asked to estimate the parameter 0 . 

Note that we do not exclude the possibility that 0 0  . 

 

I. An attempt at OLS estimation. 

Looking at [1], it has all the looks of a regression equation, except for one tiny 

detail: the "regressor" is 1t  , on which we do not have data. Still, being hooked on 

OLS estimation, we want to find a way to estimate 0  using OLS. Can we do that? 

Given [1], it also holds that  

 

1 0 2 1 1 1 0 2t t t t t ty y                               [2] 

 

https://eclass.aueb.gr/modules/document/file.php/OIK230/tutorial3%20-%20Corrected.pdf
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Inserting [2] into [1] we get  

 

  2

0 1 0 2 0 1 0 2,t t t t t t t t t ty y y y v v                               [3] 

 

Now it appears we can apply OLS estimation, and we get  

 

 

 

1 11 1

2 2

1 11 1

1
ˆ

1

T T

t t t tt t
OLS T T

t tt t

y y T y y

y T y


  

  

 
 

 
                 [4] 

 

We can certainly calculate this magnitude. To examine its properties, we proceed in 

the usual way, 

 

   2

1 0 1 1 0 21 1 11
02 2 2

1 1 11 1 1

ˆ

T TT

t t t t t tt t t tt
OLS T T T

t t tt t t

y y v yy y

y y y

   
 

     

    

 
   

 

  
 

 

 

 

 

 

1 1 2 21 1
0 02 2

1 11 1

1 1

1 1

T T

t t t tt t

T T

t tt t

T y T y

T y T y

 
 

   

  

  
 

 
 

 

Substituting for 1ty   in the 3d term, we have  

 

 

 

   
 

0 2 1 21 211
0 02 2

1 11 1

11
ˆ

1 1

TT

t t tt t tt
OLS T T

t tt t

TT y

T y T y

   
  

   

  


  



 
 

 

 

 

 

 

 

 

2

1 1 2 22 31 1 1
0 0 02 2 2

1 1 11 1 1

1 1 1
ˆ

1 1 1

T T T

t t t t tt t t
OLS T T T

t t tt t t

T y T T

T y T y T y

   
   

     

    

    
  

  
             [5] 

 

Under the assumptions made (see "Tutorial3..."), and the fact that the y-process is 

MA(1), we have the following convergence results  
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     

   

   

2 2 2

1 01

1 1 21 1

2

21

1 Var 1

1 0, 1 0

1 Var 1

T p

tt

T Tp p

t t t tt t

T p

tt

T y E y y

T y T

T



  

 



   



   

 

 



 



 

 

Therefore  

 

3

0 0
0 2 2

0 0

ˆ
1 1

p

OLS

 
 

 
  

 
                            [6] 

 

Clearly, ˆ
OLS  will be consistent only if  

0 0   i.e. only in the case where, in reality 

we have t ty  . In any other case, ˆ
OLS  will be inconsistent. Moreover this is also an 

example of what is called "attenuation bias": The OLS estimator will tend to underestimate 

the true value of the parameter, i.e. to give an etimate closer to zero in absolute terms than 

the true parameter (remember that the true parameter may be negative). In fact, the larger 

0 is in absolute terms, the smaller and closer to zero will the OLS estimator tend to be. In 

other words, either for  
0 0   or for 

0 , the OLS estimator will tend to give us 

estimates close to zero. Obviously, a very misleading estimator. 

 

Exercises related to the OLS estimation attempt. 

1. After equation [4], arrive at equation [6] by using the substitution 0 1t t ty      

instead of 0 1t t ty y v    that was used. 

 

2. Contemplate the following: equation [3] looks like an AR(1) process, but where we 

have not constrained the coefficient on the lagged dependent variable to lie in  1,1 . In 

general we know that if the parameter on the lag is outside this interval, the AR process is 

explosive. But we started by asserting that the process is an ergodic stationary MA(1) 

process, and [3] is just a different representation of [1] through a simple and 
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straightforward substitution. What happens here? (Hint: This is an example and a warning 

about "artificial" alternative representations of time series that appear to have contradicting 

properties). 

 

3. Using an Econometrics software of your choice, (the open source Gretl is a user-

friendly and quality choice if you are not already using something), generate 50,000 i.i.d 

observations from a  0,1t N  random variable, form the MA(1) processes 

    1) t t ta y     

    1) 3t t tb y     

    1) 3t t tc y      

and estimate them (separately) by OLS to verify the theoretical result in [6]. 

 

4. The transformation we applied to the MA(1) process led essentially (eq. [3]), to an 

ARMA model. Now check in e-class the document "An Example of an Inconsistent OLSE in 

the ARMA Context". There too, it is shown that the OLS estimator is inconsitent, for the 

parameter that functions as the autoregressive coefficient. But compare the two and 

understand why in our case, where the ARMA model was induced in order to be able to 

apply OLS, the estimator performs worse compared to the OLS in the case of an "original" 

ARMA model (Hint: deduce that in our case the OLS is bounded, irrespective of the value of the 

unknown parameter. Also, how many distinct parameters are there in the "original" ARMA used 

in the other document, and how many in our case?) 

 

5. Try to obtain the limiting distribution and variance of the OLS estimator, meaning 

a properly centered (and scaled) function of it so that the limiting distribution will exist and 

will have zero-mean. Determine which CLT applies here, if any (of those you know).  

 

  

https://eclass.aueb.gr/modules/document/file.php/OIK230/IncARMA.pdf
https://eclass.aueb.gr/modules/document/file.php/OIK230/IncARMA.pdf
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II. GMM estimation. 

To be accurate, we will be implementing an exactly identified GMM estimator, 

which then is nothing more than the "traditional" Method of Moments estimator. 

Method of Moments estimators are formed by finding "moment equations" that hold 

with respect to the theoretical/true values, and then invoke and apply the Analogy 

Principle, by considering their sample analogues. Moments are expected values, and with 

an ergodic stationary sample and finite moments, sample means are consistent estimators 

of the corresponding expected values. 

The model has a single unknown parameter, so we need just one moment condition. 

But it has to be a moment condition that allows us to "identify" the unknown parameter. In 

practice, this means that we need a moment condition where 0  appears "outside" the y-

variable as a stand-alone magnitude (and this is because we will need to use the y-variable 

as is, since it is the only available data we have). 

For example, the following is a valid moment equation for our MA(1) process, 

together with  its sample analogue: 

 

  Analogy Principle

0

1
0 0

1

T

t t

t

E y y
T 

  

                 [7] 

 

We could certainly use [7] to test whether some of the properties of an MA(1) process 

hold, but does it allow us to estimate 0 ? No. In order to bring 0  into the surface in [7] 

we would have to use 0 1t t ty     -but then we would not be able to use  the y-variable 

as is (i.e. our data) any more.  

 So where do the y's  (which are the available data) and the parameter 0  meet in a 

way that allows us to estimate 0 ? If first-order moment equations are not helpful, we try 

the second-order moments: The autocovariance function of the process. Since this is an 

MA(1) we have (for unitary variance of the white noise), 
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 
 
 

2

2 20

0

0

1 0

1 0
1

1

0 1

t

t t k

t t

k
E y

E y y k
E y y

k











  
   

   
 

                [8] 

In principle, we can use either moment condition (or even both and form a true over-

identified GMM estimator). Sticking to the exactly identified case, we prefer  1 0t tE y y    

because it is linear in the unknown parameter. 

In "Tutorial3... " you can find the (here, ceremonial) steps related to writing the 

estimation procedure in the GMM way. In practice it is directly before our eyes that our 

estimator will be  

 

11

1ˆ T

GMM t tt
y y

T
 

                     [9] 

 

and we know that it will be consistent (why?). We also have that it is unbiased since 

  

      

       

1 1 0 1 0 2 11 1 1

2 2

0 1 2 0 1 0 2 11

2 2

0 1 2 0 1 0 2 11

2

0 0 0

1 1 1ˆ

1

1

1
0 1 0 0

T T T

GMM t t t t t t t tt t t

T

t t t t t t tt

T

t t t t t t tt

t

E E y y E y y E
T T T

E
T

E E E E
T

T

      

         

         

  

      

    

    



 
       

 

     

    
 

        

  





0 01

1T
T

T
  

 

But note that unbiasedness rests crucially on the assumption that 

   2

1 Var 1tE     . 

Going through the tedious calculations (see "Tutorial3-Corrected") we also find that 

the finite sample variance of the estimator is 
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   
  2 4 2 2

4 0 0 0 02

1 21ˆVar 1 1GMM

T T

T T
     

 
          

 

    2 4 2

4 0 0 02

1 2ˆVar 1 1GMM

T

T T
    


                                  [10] 

 

It is evident that  ˆVar 0T

GMM  . This, together with unbiasedness, are 

sufficient conditions for the consistency of the estimator. 

At the same time  

      

   

2 4 2

0 4 0 0 02

2
2 4 2 2 4 2

4 0 0 0 4 0 0 02

1 2ˆ ˆVar Var 1 1

2
1 1 1 1

GMM GMM

T

T
T T T

T T

T T

T

      

       

 
         

 


         

 

 

     
2

2 4 2 2

4 0 0 0 4 0
ˆVar 1 2 1T

GMMT                         [11] 

 

Informally, we expect that [11] will be the variance of the limiting disgtribution of  

 0
ˆ
GMMT   . We say "informally", because the fact that the sequence 

  ˆVar GMMT  converges to a finite limit does not automatically guarantee that this limit 

will be the variance of the limiting distribution. Some additional condition is needed 

(Hayashi p. 91 Lemma 2.1 is relevant  but has unfortunately neglected to include this 

additional condition. See errata of the book, available on the book's website). See also 

https://stats.stackexchange.com/a/88519/28746  

 

Limiting Distribution of the GMM estimator. 

Consistency and the previous variance result does suggest that the properly 

centered and scaled function of the estimator that will have a limiting distribution is 

 0
ˆ
GMMT   . We need to determine which CLT applies here. First, and since the 

estimator is   

https://stats.stackexchange.com/a/88519/28746
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11

1ˆ T

GMM t tt
y y

T
 

    and consistent , we examine whether the process  1 0t ty y    

is a  Martingale Difference . We have  

 

    1 0 0 2 1 0 1 0

2 2

0 2 1 0 2 0 1 1 0

t t t t t t

t t t t t t t

y y        

          

   

    

       

    

 

 

Denote  1,, ...t i t i t if        the filtration containing the history of the white noise 

process. Note that we "went down" to the foundations of the  1 0t ty y    process, we 

didn't attempt to examine the martingale-difference property examining  1 0t ty y    as is 

and forming filtrations in terms of the y-variable (can you guess why?) 

Then, for  1 0t ty y    to be a Martingale Difference we examine whether 

 1 0 1t t tE y y f      is equal to zero for every t.  We have  

 

2 2

1 0 1 0 2 1 0 2 0 1 1 0 1

2 2

0 2 1 0 1 00 0 0

t t t t t t t t t t t

t t t

E y y f E f           

     

       

  

           

     

 

 

So the process is not a martingale difference, and we need some other CLT. 

 

We move on to Gordin's CLT. For it to be applicable we require 

1) A strictly stationary and ergodic process. We have it. 

2) Gordin's condition. 

 GC-1 : Second moment of the process is finite.  
2

1 0t tE y y       

  It holds (do the calculations). 

    

 GC-2 :   .

1 0 0,m s

t t t iE y y f i     

 We have from before 
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  2 2

1 0 0 2 1 0 2 0 1 1 0t t t i t t t t t t t t iE y y f E f                  
         

 

Then  

for     2 2

1 0 0 2 1 0 11 1t t t i t t ti E y y f                

for       2

1 0 0 1 01 1 1 1 0t t t i ti E y y f E     
        
 

 

 

So the condition    .

1 0 0,m s

t t t iE y y f i     is obviously satisfied. 

 

GC-3. We need to form the telescoping sum. We have  

 

 

   

1 0 0 1 , 1 1 0

, 1 0 1 0 1

... ,t t t t t j t t t j

t m t t t m t t t m

y y r r r E y y f

r E y y f E y y f

 

 

   

    

      

   

 

 

From immediately before, we have that  

 

 
1 0

2 2

, 0 2 1 0 1

0

1 1

0 1

t t

t m t t t

y y m

r m

m



    



  

 


   




 

 

We are asked to consider the infinite sum of  2

,t mE r  .  Squaring 
,t mr  and taking the 

expected value will give us no higher than its fourth moment, which has been assumed 

finite. Then, since the terms of the infinite sum are zero after a point, and the expected 

values up to that point are finite it follows that  

 

 
1/2

2

,

0

,t i

i

E r t




    
   holds. 
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So Gordin's condition is satisfied and we can apply Gordin's CLT that states 

 

   1 0 0 01
1

1 ˆ 0,V , V γ 2 γ
T d

t t GMM kt
k

T y y T N
T

  





 
      

 
   

 

where γk  is the autocovariance function of the process  1 0t ty y   . 

 

Exercises related to GMM estimation. 

1. Derive the autocovariance function of the process  1 0t ty y    and verify that the 

variance of the limiting distribution of the GMM estimator is equal to expression [11]. 

2. Compare the expressions for the OLS (eq. [4] and the GMM estimator (eq. [9]). 

Can you explain in some "intuitive" way, why OLS in this case "falls victim of its own 

success" in other cases? 

3. Use the other available moment condition, and calculate the limiting distribution 

and variance of the GMM estimator. Compare. 

4. Use both moment conditions to form a GMM estimator proper (i.e. over-

identified). Determine the optimal weighting matrix. 

5. Assume that   2Var t   . Namely, the model has now two unknown 

parameters.  

(i) Write out in detail the objective function that the (once again exactly 

identified) GMM estimator will minimize. Derive the first-order conditions. 

(ii) Calculate the covariance between the two estimators ̂  and 2ˆ
 . 

 

 -- 


