
0.1 Natural monopolies
An industry is a natural monopoly if one �rm is viable but not two or
more, i.e., �(1) � 0 > �(2). Below, we present three market structures
that give rise to a natural monopoly.

0.1.1 Contestable markets

A market structure that describes the behavior of incumbent �rms con-
stantly faced by threats of entry. Entry does not require any sunk cost.
Firms are subject to a hit-and-run entry. Therefore, if incumbent �rms
have no cost advantage over entrants, a contestable market equilibrium
will result in having an incumbent �rm making zero pro�ts. Homoge-
neous product industry. All �rms have the same costs, Ci = F + cqi and
the inverse demand function is p = a�Q.
De�nition (see also �gure ??).

1. An industry con�guration is the incumbent�s pair
�
pI ; qI

�
.

2. An industry con�guration is said to be feasible if,

(a) At the incumbent�s price pI , the quantity demanded equals
the incumbent�s quantity supplied, pI = a� qI .

(b) The incumbent makes nonnegative pro�t, pIqI � F + cqI .

3. An industry con�guration is said to be sustainable if no potential
entrant can make a pro�t by undercutting the incumbent�s price.

4. A feasible industry con�guration is said to be a contestable markets
equilibrium if it is sustainable.

The price pI in a contestable market is above marginal cost, because
the �rm has to cover its �xed costs.

0.1.2 War of attrition

Another popular approach to natural monopoly is the war of attrition.
Time is continuous from 0 to +1. The rate of interest is r. Two �rms
with identical cost structures C (q) = f + cq, if q > 0 and C (0) = 0,
per unit of time. Price adjustments are instantaneous. If the two �rms
are in the market at time t, price equals marginal cost c and each �rm
looses f per-unit of time. If only one �rm is in the market, the price
is equal to the monopoly price pm and the �rm makes instantaneous
pro�t �m � f > 0. The other �rm makes zero pro�t. Both �rms are in
the market at date 0. At each time each �rm decides whether to exit
(conditional on the other �rm still being in the market). Exit is costless
and once a �rm exits it never returns.
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We will construct a symmetric stationary equilibrium in which, at
any instant, each �rm is indi¤erent between dropping out and staying.1

The equilibrium will be in mixed strategies.
Let G (t) denote the probability that one �rm drops at or before t.

The marginal bene�t of waiting is that the rival will drop out, in which
case the �rm remains a monopoly forever. The probability that the rival
will drop out in the next instant of time conditional that it has not
dropped up until t is dG= (1�G). The bene�t is (�m � f) =r.2 Hence,
the expected marginal bene�t is (�m � f) dG=r (1�G). The marginal
cost of waiting is f . The marginal cost should equal the marginal bene�t

dG

1�G = x � rf

�m � f .

Note that the probability a �rms drops out in t + dt, given that it
has not dropped out till time t (hazard function) is given by dG=(1�G)
and it does not depend on t (stationarity). This suggests that G (t) is
the exponential distribution G (t) = 1� e�xt.3
To check that it is indeed an equilibrium, note that if G (t) denotes

player 2�s probability that drops at or before t, then �rm 1�s expected
payo¤ is zero at any t (hence, no incentive to deviate). Suppose we are
at time t and both �rms are in the market. If player 1 drops out its
payo¤ is zero. If it does not drop, then its expected payo¤ is calculated
as follows. The bene�t for player 1 is that player 2 will drop out in
the next instant of time with probablity rf=(�m� f) in which case �rm
1�s discounted pro�t is (�m � f) =r, but the cost is f , which yields zero
expected pro�ts.
The industry outcome is stochastic. Each �rm drops out according

to a Poisson process with parameter x.4

Figure ?? illustrates the di¤erence in price dynamics in the contesta-
bility and war of attrition theories. In a contestable market, the price pc

(same as pI in �gure ??) is above marginal cost. The monopoly pro�t
in a contestable market is zero. No expenditure is made to obtain it.
In contrast, in the war of attrition, the monopoly pro�t is the regular

1Stationary means that the strategy does not depend on time t.
2The present value of monopoly pro�ts is,Z 1

0

e�rt�mdt = �m
�
� e�rt

r

����1
0

�
=
�m

r
.

3See also Fudenberg and Tirole (1991, pp.119-121).
4For a Poisson process the waiting time until the �rst arrival has an exponential

distribution e��t. Hence, in our context, e�xt is the probability that a �rm has not
dropped out by time t conditional on the other �rm has not dropped out.
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one. The expenditure corresponds to the duopoly losses incurred prior
to giving up or getting the monopoly situation.5

0.1.3 Short-term capital accumulation

There is room for only one �rm in the market, and in equilibrium there
will be only one �rm. The �rm makes a pro�t and deters entry through
capital accumulation. Capital is sunk only in the short-run and must
be renewed periodically. The length of time over which capital is sunk
determines the period of commitment.
Eaton and Lipsey (Bell, 1980).
Time is continuous and the horizon is in�nite. One unit of capital is

necessary for production and gives access to constant marginal cost c.
A second unit of capital is useless. One unit of capital costs f per unit
of time and has deterministic duration H. The �xed cost of production,

F �
Z H

0

fe�rtdt

is paid up-front when the unit is installed. Therefore, with equipment
of age � < H the �rm never has an incentive to leave the market even if
another �rm enters. The monopoly pro�t is �m. An entrant can enter
at any point between [0; H].
How can a �rm secure the market for itself? When the incumbent

faces the threat of entry he renews the plant at H � �. If there is no
threat, then � = 0.
Assumption: f < �m < 2f (natural monopoly).
The �rms�sole decision is when to build units of capital. One �rm

invests at time 0. The strategies are otherwise symmetric. They are
also Markovian in that they depend on the current payo¤-relevant state
(�rms�capital structures). The incumbent �rm always purchases a sec-
ond unit of capital � years before its current unit depreciates. The other
�rm invests in a unit of capital if the incumbent has only one unit and
this unit is more than H � � years old. In equilibrium, the length �
is chosen such that when the incumbent�s unit of capital is H �� old,
the entrant is indi¤erent between entering and not entering. If he does
not enter, the incumbent remains a monopoly forever. If he enters he
makes a pro�t of �f for � years and enjoys monopoly pro�t forever af-
ter. Along the equilibrium path the incumbent always renews his capital
before it depreciates and the entrant never enters.

5There are war of attrition games that are non-stationary. For example, two
�rms are engaged in a patent race and until discovery both �rms are losing money.
Only the �rm that makes the discovery �rst claims the prize. However, the R&D
productivity increases over time (see Fudenberg and Tirole (1991, p.123)), making
the equilibrium strategies non-stationary.
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Let�s compute�. In equilibrium, the incumbent�s present discounted
pro�t from date 0 on is,

V =

Z 1

0

�me�rtdt�
�Z H

0

fe�rtdt

��
1 + e�r(H��) + e�r2(H��) + � � �

�
.

The �rst term represents the �ow of monopoly pro�ts forever. The
second term is the cost of one unit of capital repeated at dates 0, H��,
2 (H ��) and so on. Then,

V =
�m

r
� f
r

�
1� e�rH

1� e�r(H��)

�
.

If the entrant enters, he will do so just before the incumbent renews
his capital, i.e., at H � �. If the entrant enters the incumbent sticks
around for � units of time before exiting the market. The entrant�s
pro�t from the entry date on is thus equal to,

V �
Z �

0

�me�rtdt = V � �m1� e
�r�

r
.

This is because the only di¤erence between the incumbent�s pro�t
and the entrant�s pro�t is the duopoly situation for � units of time and
the foregone monopoly pro�ts during that time. The incumbent will
choose � so that entry is deterred,

V � �m1� e
�r�

r
= 0, (*)

or substituting V ,
�m

f
=

1� e�rH
e�r� � e�rH .

So, � > 0. Moreover, � < H=2, which implies that the incumbent
never has more than two units of capital.6

6This can be seen as follows. Under our assumptions, the highest value of �m=f
is 2. Also,

1� e�rH
e�r� � e�rH

is increasing in � which means that the highest � is when �m=f is the highest. So,
the � that solves

2 =
1� e�rH

e�r� � e�rH
is,

� = �
ln
�
e�rH

2 + 1
2

�
r
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What happens when commitments are very short? Let H (and thus
�) go to zero. From (*) we see that V ! 0. Thus, even though there is
only one �rm in the market, this �rm makes no pro�ts. The monopoly
rent is entirely dissipated by the accumulation of the second unit of
capital (when commitment is short).

0.2 Dynamic competition with incomplete informa-
tion. Applications of signaling

Overview: a) Can limit price be rationalized as an equilibrium behav-
ior (signal) to deter entry? Is it socially ine¢ cient? b) Investment in
misinformation. Signal jamming

0.2.1 Limit pricing

Milgrom and Roberts (Econometrica, 1982).
An incumbent can charge a low price to signal to a potential entrant

that its cost is low and if the entrant enters its pro�ts will be low. For
this to work we need information to be incomplete. With complete
information a low price, charged by the incumbent, will have no real
e¤ects in the subgame that will be played if the entrant enters.
The incumbent moves �rst in period 1 and makes pro�t. Firm 2

observes the price and in period 2 decides whether to enter or not. The
marginal cost of the incumbent, which is private information, is,

c1 =

�
cL1 , with probability x
cH1 , with probability 1� x.

Let ptm be the monopoly price of �rm 1, t = L;H, with p
L
m < p

H
m. Let

M t
1 (p1) be the incumbent�s pro�t function and let M

L
1 and M

H
1 denote

the incumbent�s maximum short-run pro�t depending on its type. We
assume that the pro�t function is concave in price. Firm 2 learns the
type of the incumbent immediately upon entry. The duopoly pro�ts, net
of �xed cost of entry, are, Dt

1, D
t
2. We assume that,

DH
2 > 0 > D

L
2 .

In other words, the entrant wants to enter only when the incumbent�s
cost is high. The discount factor is �. We will look for a separating
perfect Bayesian equilibrium, where the two types choose di¤erent prices.

which is less than H=2. This can be seen as follows. When H = 0, the above � is
zero. The derivative of � with respect to H is

e�rH

e�rH + 1

which is less than 1=2, the derivative of H=2.
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Since the high type will face entry his optimal strategy is to set
the monopoly price. Now let�s look at pL1 . The incentive compatibility
constraint for the high type is,

MH
1 + �D

H
1 �MH

1

�
pL1
�
+ �MH

1 )
MH
1 �MH

1

�
pL1
�| {z }

SR loss

� �
�
MH
1 �DH

1

�| {z }
Discounted LR gain

:

The IC constraint for the high type is satis�ed when pL1 is in [A;B][
[C;1), see �gure ??. Similarly the IC constraint for the low type can
be written as follows,

�
�
ML
1 �DL

1

�| {z } �
Discounted LR gain

ML
1 �ML

1

�
pL1
�| {z }

SR loss

.

When pL1 2 [D;E] the IC constraint for the low type is satis�ed, see
�gure ??.
Assumptions

1. Single-crossing. (It is more costly for the high type to charge a low
price).7

2. ML
1 �DL

1 > M
H
1 �DH

1 . (Lower cost �rm has a bigger advantage
of being a monopolist).

Both of the above conditions must be satis�ed in order for the in-
tersection [A;B] \ [D;E] to be non-empty. There is a continuum of
separating equilibria, but the reasonable one is the least-costly one, i.e.,
the one that involves a price pL1 that is closest to p

L
m. If p

L
1 < p

L
m, then

we have a limit price. The incumbent, by setting a price that is lower
than the monopoly price, credibly signals to the entrant that he is of
a low type and therefore entry will not be pro�table. Some pro�ts are
sacri�ced.

7In other words,
@
�
MH
1

�
pL1
�
�ML

1

�
pL1
��

@pL1
> 0.

This condition is satis�ed because,

@2 [(p1 � c1)Dm
1 (p1)]

@p1@c1
= �dD

m
1

dp1
> 0.
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0.2.2 Signal jamming

Two �rms 1 and 2 and two periods A and B. Costs are zero and products
are di¤erentiated. Each �rm only observes its own price and quantity,
so rivals can secretly cut prices. The demand is,

qi = a� pi + pj,
where a is a random variable with mean ae. The realization of demand
stays the same in both periods. Let�s assume �rst that there is no second
period. The expected pro�t is,

�i = pi (a
e � pi + pj) .

The static equilibrium is,

p1 = p2 = a
e.

Now let�s assume that there is a second period. If p in period A is �
then �rm i learns a perfectly by observing its �rst period demand, i.e.,
qA = a. Now �rm 1 deviates from � in period A. Firm 1 knows pA1 and
pA2 = �. So, �rm 1 knows the intercept, but �rm 2 does not. Firm 2
thinks that qA2 = a� �+ pA1 and in the second period pB2 = a� �+ pA1 .
The pro�t function of �rm 1 in period B is,

�B1 = p
B
1

�
a� pB1 + pB2

�
= pB1

�
a� pB1 + a� �+ pA1

�
.

Then,
@�B1
@pA1

= pB1 .

Also, the optimal price for �rm 1 in periodB, using �B1 = p
B
1

�
a� pB1 + a� �+ pA1

�
from above, is,

pB1 =
2a� �+ pA1

2
.

The expected pro�t function of �rm 1 in period A is,

�A1 = p
A
1

�
ae � pA1 + pA2

�
= pA1

�
ae � pA1 + �

�
.

@�A1
@pA1

= ae � 2pA1 + �.

@�A1
@pA1

+ �
@�B1
@pA1

����
pA1 =�

=0)

ae + �� 2pA1 + �
2ae � �+ pA1

2

����
pA1 =�

=0)

�= ae (1 + �) > ae.
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Each �rm charges a higher price to make its rival think that demand
is high.
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1 COLLUSION

Overview: a) Ability to sustain higher pro�t than under static compe-
tition, using punishment strategies. b) Deriving conditions on primitive
(e.g., frequency of interaction) under which this can be done. c) Illustrat-
ing what can be achieved under di¤erent modes of competition�Bertrand
versus Cournot. d) Price wars during booms/recessions.

1.1 Bertrand model
Consider the Bertrand game of price competition, where �rms interact
in each period t, with t = 0; 1; 2; :::;1. There is a discount factor � < 1
and each �rm i attempts to maximize the discounted value of its pro�ts,P1

t=0 �
t�it, where �it is �rm i�s pro�t in period t. In this repeated

Bertrand game, �rm i�s strategy speci�es what price pit it will charge
in each period t as a function of the history of all past price choices
by the two �rms, Ht�1 = fp1� ; p2�gt�1�=0. These strategies allow �rms to
tacitly collude, i.e., to sustain a price that is higher than the Nash-price,
without entering into an �explicit� agreement. To see this denote by
pm the monopoly price and consider the following strategies for �rms
i = 1; 2,

pit (Ht�1) =

8<:
pm, if all elements of Ht�1 equal (pm; pm) or t = 0

c, otherwise.
(*)

This strategy calls for each �rm to start the game by charging the
monopoly price. Then in each period �rms should continue to charge
the monopoly price, if in every previous period both �rms have charged
the monopoly price and otherwise to charge the static Nash equilibrium
price, which is equal to marginal cost c. This is called a grim trigger
strategy. Both �rms cooperate until one �rm deviates. This deviation
triggers a permanent retaliation in which �rms revert to Nash equilib-
rium.
Proposition. The strategies described in (*) constitute a SPNE of

the in�nitely repeated Bertrand duopoly game if and only if � � 1
2
.

Proof. Recall that a set of strategies is a SPNE of an in�nite horizon
game if and only if it speci�es Nash equilibrium play in every subgame.
First, note that all subgames have an identical structure: each is an
in�nitely repeated Bertrand duopoly game, exactly like the game as a
whole. Thus, we need to show that after any previous history of play,
the strategies speci�ed for the remainder of the game constitute a Nash
equilibrium of an in�nitely repeated Bertrand game. Moreover, given
the form of strategies speci�ed by (*) we need to be concerned with only
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two types of previous histories: those in which there has been a previous
deviation and those in which there has been no deviation.
Consider �rst a subgame arising after a deviation has occurred. The

strategies call for each �rm to play c. This is a Nash equilibrium since
no �rm can earn more than zero pro�ts by deviating.
Now consider a subgame starting in period t where no deviation had

occurred in a previous period. Each �rm knows that its rival strategy
calls for it to charge pm until a deviation takes place. Is it in �rm i�s
interest to unilaterally deviate from this strategy? Suppose that �rm i
deviates in period � � t. From period t through period � , �rm i earns
(pm�c)x(pm)

2
in each period, exactly as it does if it never deviates. In period

� �rm i optimally deviates by charging pm�", where " > 0 is arbitrarily
small. Firm i�s pro�t in period � is, (pm � c� ")x (pm). Since " is
negligible, �rm i�s pro�t after deviation in period � is arbitrarily close to
(pm � c)x (pm). From period �+1 onward �rm i will earn in each period
a pro�t equal to 0. If �rm i does not deviate in period � its discounted
sum of pro�ts is,

1X
t=0

�t
(pm � c)x (pm)

2
=
(pm � c)x (pm)
2 (1� �) .

Hence, deviation is pro�table if and only if,

(pm � c)x (pm) > (pm � c)x (pm)
2 (1� �) ) � <

1

2
.

Thus, the strategies in (*) constitute a SPNE if and only if, � � 1
2
.

�
If �rms meet frequently, then � is close to one, if not, then it is close

to zero. Another way to interpret � is to write it as � = e�r� , where � is
continuous time.
More generally, if there are n �rms collusion is sustainable if and only

if � � 1� 1=n.
The monopoly price is sustainable if and only if the present value

of losses that a �rm incurs if it deviates is large enough relative to the
short-run gains from deviation. This happens when the discount factor
is high.

1.2 Imperfect monitoring
With perfect monitoring, �price wars�or punishment phases are never
observed in equilibrium. In practice, however, �rms cannot monitor
perfectly the actions of rivals and price wars may be observed.
Demand and prices are not publicly observed. The probability of low

demand is �. Prices are conditioned on quantities. If in each period both
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�rms sell positive quantities, then they continue to charge monopoly
prices. If at least one �rm did not sell anything, then �rms enter into a
punishment phase for T periods. Thus, there are two states:

� Good state: Last period both �rms sold positive quantities. The
value function is V +.

� Bad state: Last period at least one �rm sold zero for the �rst time.
The value function is V �.

If there is no deviation the expected discounted pro�ts are,

(1� �)
�
�m

2
+ �V +

�
+ ��V �.

If a �rm deviates its expected discounted pro�ts are,

(1� �)
�
�m + �V �

�
+ �

�
0 + �V �

�
.

Collusion is sustainable if and only if,

�
�
V + � V �

�
� �m

2
.

Also, the following must hold,

V � = �TV +

(1� �)
�
�m

2
+ �V +

�
+ ��V � = V +.

Solve the last two equalities for V + and V � and then plug them into
the IC constraint. It turns out that,

V + =
(1� �) �m

2

1� ��T+1 � (1� �) �
and V � = �TV +.

Collusion is sustainable if and only if,

� � 1� 2� + �T+1

2�T+1 � 2�
.

For collusion to be sustainable we need low � and high �. For ex-
ample, if recession is imminent (i.e., high �) then it is more di¢ cult to
sustain collusion.
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1.3 Collusion under Cournot competition
Two �rms, zero costs. Inverse demand is p = 1 � X. Grim-trigger
strategy. The monopoly quantity is,

x1 = x2 =
1

4
.

The present value of pro�ts along the collusive path is,

V =
1

1� �
�m

2
.

The one-time deviation pro�ts are,

�d = max
x2
x2

�
1�

�
1

4
+ x2

��
=
9

64
.

The Cournot pro�ts are,

�C =
1

9
.

The incentive compatibility constraint is,

1

1� �
1

8
� 9

64
+

�

1� �
1

9
, � � 9

17
.

Now suppose that � < 9=17. The �rms can sustain x > 1=4.

�� = 2x� (1� 2x�) .

1

1� �
��

2
� �d + �

1� �
1

9
,

where,
�d = max

x2
x2 [1� (x� + x2)] .

1.3.1 More severe punishments

Abreu (JET, 1986).
If there is no deviation, each �rm produces,

xm

2
.

In the period after deviation they produce (x; x) for 1 period. Then
they go back to �m=2. The net present value from collusion starting at
x is,

V (x) = x (1� 2x) + �

1� �
�m

2
.
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1

1� �
�m

2
� �d + �V (x) ; (IC Cooperation).

Before, we had only one IC constraint because the punishment was
repetition of Nash, which is self-enforcing (static equilibrium). Now we
need one more constraint,

V (x) � �dp + �V (x)) V (x) �
�dp
1� � , (IC Punishment),

where �dp = �2 (x; y) with y = BR2 (x). It turns out that,

�dp =
(1� x)2

4
.

If �rms do not play (x; x) in one period, then they play again (x; x)
in the next period. Solve the ICC and the ICP with respect to x.
For example, it turns out that when x 2

�
3
8
; 1
2

�
monopoly pro�ts are

sustainable with � = 1=2. Thus, even when � < 9=17 monopoly pro�ts
can be sustained with punishments that are more severe than Nash.

1.3.2 Collusion with �uctuating demand

Rotemberg and Saloner (AER, 1986).
There are two states of the world: a low demand state 1 and a

high demand state 2. Each state occurs with probability 1
2
. There are

two �rms that produce homogeneous products and compete in prices
(Bertrand). Hence, the demand functions are given by,

Q =

8<:
D1 (p) , with probability 1

2

D2 (p) , with probability 1
2
.

Both �rms have the same marginal cost c > 0. The �rms interact
in an in�nitely repeated setting where in each stage they choose prices.
Collusion is sustained via the grim-trigger strategy. Firms begin by
charging the collusive prices. If in a previous period no �rm deviated
from the collusive path, then they continue charging the collusive prices,
otherwise they revert to the one-shot Nash equilibrium forever (punish-
ment phase). The �rms have a common discount factor � 2 (0; 1).
Case 1: Firms sustain monopoly pro�ts. First, we assume that

�rms try to sustain monopoly pro�ts. Denote the monopoly prices and
pro�ts in each state of the world by, pm1 , p

m
2 , �

m
1 and �

m
2 (recall 1 and 2

denote the states not the �rms). We assume that �rms divide equally the
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collusive pro�ts. The ex-ante present value of the pro�ts from collusion
for each �rm is given by,

V =
1

1� �

�
�m1
4
+
�m2
4

�
.

In each period a �rm observes the realized state and then chooses
whether to deviate from the implicit agreement or not. If it deviates
its pro�ts are �m1 or �

m
2 , depending on the state of the world. This is

because competition is à la Bertrand and a very small undercut of the
rival�s price is enough to steal all the demand. Collusion is sustainable
as a subgame perfect equilibrium in the in�nitely repeated game if and
only if the following two incentive compatibility constraints are satis�ed,

�V|{z}
Long-run loss

� �m1
2|{z}

Short-run gain

and �V|{z}
Long-run loss

� �m2
2|{z}

Short-run gain

.

The punishment pro�ts are zero (due to the Bertrand assumption).
That is why the long-run loss is �V . For a �rm not to deviate it must
be that the short-run gain from deviation is less than the long-run loss
due to the break-down of collusion. Since �m2 � �m1 , only the second
constraint is binding. In other words, collusion is more di¢ cult in the
high demand state. Therefore, for collusion to be sustainable in both
states the following must be satis�ed,

�V � �m2
2
, � � �o �

2�m2
3�m2 + �

m
1

>
1

2
.

When demand is not �uctuating (i.e., �m2 = �m1 ), then collusion is
sustainable if and only if � � 1

2
. With �uctuating demand collusion is

more di¢ cult, i.e., a higher discount factor is needed.
To summarize, if � � �o, then monopoly pro�ts are sustainable in

both states. The price in the high demand state is not lower than the
price in the low demand state. If � 2

�
� � 2�m1

3�m1 +�
m
2
; �o

�
, then collusion

can be sustained in the low demand state, but we have a price war
(collusion breaks down) in the high demand state. In the price war case
prices fall. If � < � < 1

2
, then no collusion can be sustained.

Case 2: Firms sustain less monopoly pro�ts. Now let�s assume that
� 2 (�; �o), but �rms try to sustain less than the monopoly pro�ts. We
denote the collusive prices by, p1 and p2. The incentive compatibility
(IC) constraints now become,

IC1 : �V (p1; p2)| {z }
Long-run loss

� �1 (p1)

2| {z }
Short-run gain

and IC2 : �V (p1; p2)| {z }
Long-run loss

� �2 (p2)

2| {z }
Short-run gain

,
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where V (p1; p2) = 1
1��

h
�1(p1)
4

+ �2(p2)
4

i
. The �rms now solve the follow-

ing maximization problem,

max
(p1;p2)

V (p1; p2)

s.t. IC1 and IC2.

Ignore for the moment IC1. We will solve the relaxed problem and
then check whether the ignored constraint is satis�ed. If it is then we
are done. IC2 is equivalent to (using V (p1; p2) = 1

1��

h
�1(p1)
4

+ �2(p2)
4

i
),

�2 (p2) �
�

2� 3��1 (p1) .

Increase �1 (p1) till �m1 . This increases the maximum value of the
objective function because of the following two reasons. First, the con-
straint is relaxed and second the objective function itself increases. Then
it follows that collusive pro�ts are maximized if the inequality in IC2
becomes equality,

�2 (p2) =
�

2� 3��
m
1 .

Now we check whether IC1 is satis�ed.

IC1 , �1 (p1) �
�

2� 3��2 (p2), �m1 �
�2

(2� 3�)2
�m1 , � � 1

2
.

IC1 is satis�ed if and only if � � 1
2
. Some collusion can be sustained

in both states even when � < �o, provided that � � 1
2
.

The pro�ts in the high demand state are less than the monopoly prof-
its, i.e., �2 (p2) < �m2 . In the low demand state �rms sustain monopoly
pro�ts.
How about the prices? Assume that D2 = �D1, where � > 1 (i.e.,

inverse demand rotates). In this case, pm1 = p
m
2 . Thus, p2 < p

m
1 = p

m
2 .

In the good state prices fall. Margins also fall.8

Therefore, prices may fall during a period of high demand either
because a price war breaks out (e.g. case 1), or because �rms have to
accept lower than monopoly pro�ts in order to sustain some collusion
(e.g. case 2).

8However, if the demand shifts out (instead of a rotation), then prices may increase
during high demand.
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