EXAM 20-05-2024 page 1 of 8

Problem 1

Consider a firm that produces goods A and B using good X as an input, with technology described by the production set

$$Y = \{ [A, B, -X] \in \mathbb{R}^3 : A \ge 0, B \ge 0, X \ge A^2 + AB + B^2 \}$$
 (1)

Let $p = [\alpha, \beta, 1] \in \mathbb{R}^3_+$ be a price vector, where

 $\alpha = \text{price of good A}, \beta = \text{price of good B}, 1 = \text{price of good X}$. The profit function of this firm is

$$\Pi = \alpha A + \beta B - X \tag{2}$$

The vector y = [A, B, -X] is the net supply vector of the firm.

1.derive the firm's net supply curves.

2.using your answer to question 1, derive the firm's net supply vectors y^1 , y^2 at the price vectors $p^1 = [1,4,1]$, $p^2 = [2,6,1]$

3. derive the largest production set YO consistent with the dataset $D = \{[p^t, y^t], t = 1, 2\}$

4.derive the net supply of the firm Y at prices p = [4,6,1] ,using your answer to question 1

5.derive the net supply of the firm $\it YO$ at prices $\it p=[4,6,1]$,using your answer to question 4

6. Compare your answers to questions 4 and 5

Answers to problem 1

1.solve the following maximization problem

Objective function $\Pi = \alpha A + \beta B - X$

Constraints $A \ge 0, B \ge 0, X \ge A^2 + AB + B^2$

variables A, B, X

parameters α, β

conditions on parameters $\alpha > 0, \beta > 0$

net supply curves of
$$Y$$

$$\begin{bmatrix}
0, \frac{\beta}{2}, \frac{\beta^{2}}{4} \end{bmatrix} \qquad \alpha \leq \frac{\beta}{2}$$

$$[A, B, \Pi] = \begin{cases}
[\frac{2\alpha - \beta}{3}, \frac{2\beta - \alpha}{3}, \frac{1}{3}\alpha^{2} - \frac{1}{3}\alpha\beta + \frac{1}{3}\beta^{2} \end{bmatrix} \qquad \frac{\beta}{2} \leq \alpha \leq 2\beta$$

$$[\frac{\alpha}{2}, 0, \frac{\alpha^{2}}{4}] \qquad \alpha \geq 2\beta$$

$$X = A^{2} + AB + B^{2}$$
(3)

2.Use (3)

$$p^{1} = [1,4,1], y^{1} = [0,2,-4]$$

$$p^{2} = [2,6,1], y^{2} = [0,3,-9]$$
(4)

3.

$$YO = \{ [A, B, -X] \in \mathbb{R}^3 : A \ge 0, B \ge 0, X \ge 0, X \ge A + 4B - 4, X \ge 2A + 6B - 9 \}$$
 (5)

4.use (3)

$$y_{Y}([4,6,1]) = \left[\frac{2}{3}, \frac{8}{3}, -\frac{28}{3}\right]$$
 (6)

5. solve the following maximization problem

Objective function $\Pi = 4A + 6B - X$

Constraints $A \ge 0, B \ge 0, X \ge 0, X \ge A + 4B - 4, X \ge 2A + 6B - 9$

variables A, B, X

The problem has no global maximum, because the points $Q_A = [A, B=0, X=2A-9]$ are feasible for all $A \ge 5$ and $\Pi(Q_A) = 2A+9 \to +\infty$ as $A \to +\infty$. Hence

$$y_{VO}([4,6,1]) = NONE$$
 (7)

6.Compare (7) to (6)

Problem 2

Consider an economy with one consumer, one firm, and three goods.

• Goods: 1,2,3

Preferences

$$u(x) = -\frac{1}{2}x_1^2 - \frac{17}{2}x_2^2 + x_1 + 2x_2 + x_3 - 4x_1x_2$$
 (8)

1.2.3

- Endowment e = [0,0,1]
- Consumption set \mathbb{R}^3_+
- The consumer owns the firm.
- The firm produces goods 1 and 2 using good 3 as an input, with a technology described by the production set

$$Y = \left\{ [y_1, y_2, -y_3] \in \mathbb{R}^3 : y_1 \ge 0, y_2 \ge 0, y_3 \ge y_1^2 + y_1 y_2 + y_2^2 \right\}$$
 (9)

- The firm pays a tax δ per unit of <u>revenue</u> from good 1. Assume that $0 \le \delta < \frac{9}{11}$
- The consumer receives the tax proceeds as a lump-sum transfer.
- 1. Using good 3 as a numeraire, compute all competitive equilibria <u>only</u> for those values of the parameters that generate <u>STRICTLY POSITIVE</u> demand and supply functions for all goods.
- 2. Plot the equilibrium prices of goods 1 and 2 as functions of the tax rate δ
- 3.Plot equilibrium GDP as functions of the tax rate δ
- 4.Plot equilibrium utility as a function of the tax rate δ

Answers to problem 2

1. NAME the price of each good p_i = price of good i.Normalize p_3 = 1

2.DEFINE consumer income

$$M = 1 + \Pi + T \tag{10}$$

2. SOLVE the optimization problem of the firm

Objective function $\Pi = p_1(1-\delta)y_1 + p_2y_2 - y_3$

Constraints $y_1 \ge 0, y_2 \ge 0, y_3 \ge y_1^2 + y_1y_2 + y_2^2$

variables y_1, y_2, y_3

parameters p_1, p_2, δ

conditions on parameters $p_1 > 0, p_2 > 0, 0 \le \delta < \frac{9}{11}$

By (3) we obtain

net supply curves of
$$Y$$
 when $\frac{p_2}{2(1-\delta)} \le p_1 \le \frac{2p_2}{(1-\delta)}$

$$y_1 = \frac{2(1-\delta)p_1 - p_2}{3}$$

$$y_2 = \frac{2p_2 - (1-\delta)p_1}{3}$$

$$y_3 = y_1^2 + y_1y_2 + y_2^2$$

$$\Pi = \frac{1}{3}(1-\delta)^2 p_1^2 - \frac{1}{3}(1-\delta)p_1p_2 + \frac{1}{3}p_2^2$$
(11)

3. SOLVE the optimization problem of the consumer

Objective function
$$u = -\frac{1}{2}x_1^2 - \frac{17}{2}x_2^2 + x_1 + 2x_2 + x_3 - 4x_1x_2$$

Constraints
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, p_1 x_1 + p_2 x_2 + x_3 \le M$$

variables x_1, x_2, x_3

parameters p_1, p_2, M

conditions on parameters $p_1 > 0, p_2 > 0, M > 0$

demand curves when
$$\frac{p_2}{4} + \frac{1}{2} \le p_1 \le \frac{9}{17} + \frac{4p_2}{17}, p_2 < 2$$

$$\frac{-17p_1^2 + 8p_1p_2 - p_2^2 + 9p_1 - 2p_2 < M}{x_1 = -17p_1 + 4p_2 + 9}$$

$$x_2 = 4p_1 - p_2 - 2$$

$$x_3 = 17p_1^2 - 8p_1p_2 + p_2^2 + M - 9p_1 + 2p_2$$
(12)

5. SOLVE the equilibrium conditions

$$x_1 = y_1, x_2 = y_2, x_3 + y_3 = 1$$
 (13)

$$\frac{\text{equilibria}}{p_{1}} = \frac{19}{\delta + 32}, p_{2} = \frac{11 - 5\delta}{\delta + 32}$$

$$x_{1} = y_{1} = \frac{9 - 11\delta}{\delta + 32}, x_{2} = y_{2} = \frac{3\delta + 1}{\delta + 32},$$

$$x_{3} = \frac{-96\delta^{2} + 240\delta + 933}{(\delta + 32)^{2}}, y_{3} = \frac{97\delta^{2} - 176\delta + 91}{(\delta + 32)^{2}}$$

$$\Pi = \frac{97\delta^{2} - 176\delta + 91}{(\delta + 32)^{2}}, M = \frac{-111\delta^{2} + 59\delta + 1115}{(\delta + 32)^{2}}$$

$$T = \frac{171\delta - 209\delta^{2}}{(\delta + 32)^{2}}, GDP = \frac{182 - 15\delta^{2} - 181\delta}{(\delta + 32)^{2}}$$

In this example, GDP is a correct index of welfare. Prices are not.