PROBLEM 1

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be an injective linear map and *A* a closed set in \mathbb{R}^n .

1.Show that T(A) is a closed set.

2.Provide an example of a linear map T and a closed set A such that T(A) is not closed

3.Generalize to injective affine maps

PROBLEM 2

Let *A* be the line in \mathbb{R}^n through the points [1,0,0], [0,1,0]. Derive an explicit formula for the nearest point map $\mathbb{R}^n \xrightarrow{\Pi} A$ onto *A*

PROBLEM 3

Let C be a convex set of dimension r in \mathbb{R}^n , *b* a vector in C. Show that there exists a simplex σ_r of dimension r such that

$$b \in \sigma_r \subseteq C \tag{1}$$

PROBLEM 4

Let *A* be a set in \mathbb{R}^n . Show that

$$cl(A^{c}) = \left(\operatorname{int}(A)\right)^{c}$$
⁽²⁾

PROBLEM 5

The perspective map $\mathbb{R}^n \times \mathbb{R}_{++} \xrightarrow{P} \mathbb{R}^n$ is defined by

$$P(x,t) = \frac{x}{t} \tag{3}$$

Show that

1.if *A* is a convex set in $\mathbb{R}^n \times \mathbb{R}_{_{++}}$, then *P*(*A*) is a convex set in \mathbb{R}^n

2.if *B* is a convex set in \mathbb{R}^n , then $P^{-1}(B)$ is a convex set in \mathbb{R}^{n+1}

PROBLEM 6

Let A, B be nonempty convex subsets of \mathbb{R}^n . Show that the following are equivalent:

1.A and B are strongly separated, i.e. there exist a nonzero vector $p \in \mathbb{R}^n$, a real number θ and a positive number ε such that

$$\sup_{\alpha \in A} (p\alpha) < \theta - \varepsilon < \theta + \varepsilon < \inf_{\beta \in B} (p\beta)$$

2.0 \notin closure(A - B)