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Chapter 1

Linear Algebra

1.1 Introduction

A matrix is an n X m array of numbers. So

a1y a2 ... QAim
A _ ao1 A92 ... A9m
Apn1 Ap2 ... Apm

where a;; are scalar numbers and are called the elements of the matrix. A
column vector is a matrix with one column and a row vector is a matrix
with one row. By convention a vector is a column vector unless otherwise
specified. Usually matrices are denoted by upper case letters and vectors by
bold (usually lowercase) letters’. Note also the following notation:

Zai:al—i—ag—l—ag—i—...—i—an
=1

and
n

Hai:alxagxagx...xan
i=1

1.2 Basic Matrix Operations

There are two basic matrix operations: Addition and multiplication

IThere are some exceptions to this convention
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1.2.1 Addition

Addition is straightforward. Matrices are added elementwise and matrices
can only be added if they have the same number of rows and columns. So
for

ay;pr a1 ... QAim bll 612 Ce blm
A _ 21 A29 ... QA9m B— b21 622 ce bgm
ap1 Gp2 ... Gpm bnl bn2 s bnm
a1 Q12 ... Gim bin bz ... by
A+ B= Q21 Q22 ... Q2m + bar baa ... bapy _
Ap1 Ap2 ... Opm bnl bng e bnm
ai; +by1 ap+biz ... Ay + by
a1 + o1 aga + by ... agm + bay
an1 + bnl A2 + bn2 B ) + bnm

1.2.2 Multiplication

Two matrices A and B can be multipied and their product is denoted by AB
if the number of columns of A is equal to the number of rows of B. Note that
AB # BA. So that AB may be defined but BA may not. AB is defined as

follows

11 A2 ... Qim bit bz ... bik
Q21 Q22 ... Q2m bor  bay ... by
Anxm = Bmxk =
ap1 Gp2 ... Gpm bml bm2 <. bmk
Then
m m m
dimr b il anibie . D00 anjby
m m m
ap = | Zimabin 2lyagbp oo D5 azbi
m m m
D ier Angbjn D5 angbja oo 0T angby

For example, two 2 X 2 matrices we have

ailr Q19 bll b12
A == B = =
2 ( Q21 G22 ) 22 < bo1 b2 >
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a21011 4 agebar  ag1bia + ageba

AB = ( a11bi1 + a12bar - ai1biz + aibao )

Another example with actual numbers gives

2 4 1 3

AB — a11b11+a12b21 a11b12+a12b22 . 2x14+4x5 2x34+4x7 . 22 34
T\ aaibit + axba ambia +amby )\ 6x148x5 6x3+8x7 ) \ 46 T4

1.3 Some Operations on Individual matrices

1.3.1 Transpose of a matrix

a1 a1 ... Qip
. 921 oo ... QA9 .
The transpose of a m X n matrix A = " is
Am1 Am2 .. Qmp
aijpr a21 ... Ami
Al — 12 G2 ... Gm2
A1y, A2y ... Amn
1.3.2 Diagonal of a Matrix
a1 a1 ... Qp
921 Ao29 ... QA9p

A diagonal of an m x m matrix A = consists of all

m1 Am2 ... Gmp
elements a;; for which 7 — j is a given integer. The main diagonal consists of

all the elements a;; for which i — j = 0.

Example 1
3 21 6 42
6 —15 12 =30
-2 —-14 8 56
-4 10 16 —40

The diagonals of this matriz are (3 — 15 8 —40), (21 12 56), (6 30), 42,
(6 —14 16), (=2 10), —4. The main diagonal is (3 — 158 — 40).

A:
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A m x m matrix, say A = [a;;], for which a;; = 0 for i # j is called a
diagonal matrix.

Example 2
3 0 0 O
0 —-15 0 O
A= 0 0 8 0
0 0 0 —40

A is a diagonal matrizx.

1.4 Some Special Matrices

e An m x m matrix, A, is idempotent if AA = A.

11 a2 ... Qip
. 21 Ao ... QA2 .
e An m X m matrix, I = " |, with a;; = 1 and
Am1 Am2 ... Qmp

a;j = 0, for 7 # j, is called an identity matrix. Note that for all m x m
matrices A, A° = 1.

e An m x m matrix A is symmetric if A’ = A.

aiq A1 ... Qip
. a1 Aoy ... QA2 .
e An m X m matrix, A = "ol s
Am1 Am2 ... Gmp

— lower triangular if a;; = 0 for i < j
— upper triangular if a;; = 0 for i > j
e An m x m matrix A~ is the inverse of the m x m matrix A if A=A =

AAT =T

1.5 Sums of Values

Some useful relationships
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[ ]
T
./ T
in:x1+x2+...—|—aﬁn:1x:(11...1)
i=1 .

e The arithmetic mean
n
T = 1/anZ = 1/ni'x
i=1

e sums of squares and cross products

X1
n
X2
E v} =x'x= (1179 .. 7,)
—
Tn
n
n
/ Y2
g Ty =Xy = ($1$2~.$n)
—
Yn

n

!/ /

C =X} Xnxk = E X;X;
i=1

where x; is the i-th column of X. This matrix looks like

D TH Y Talip o Yo TaT
Do TiaTy Y T . D TipTik
Z?zl Tindi1 Z?Zl TinZiz .- Z?Zl TinZik

1.6 Idempotent Matrix M =1 — 1/nii’

This matrix yields dedviations from the mean when applied. To see this note:

ISR

T=1/nix=iz = = 1/nii'x

%2\
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Define the column vector of deviations from the mean:

l’l—lf'
270 S x— 7] = [x — 1/nii’x] = [I— 1/nii]x = Mx
Ty — X

Properties of M

Mi=0=i'M=0

M/

[
<

M? =MM =M

e We can write

n

Z(l’i—f):(xl—ri)+(x2—:i)+...+(xn_§;):

T, —T
... 77 | =iMx=0
T, — T
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n

Z(ﬂfi—f)(yi—g) = (21—2) (1 —Y) +(22—7) (Y2—Y)+. . .+ (20 —2)(Yn—Y) =

Y1—yY

(21— ) (22 —7) ...(zn—2)] y%j Y 1 =xM'My = xMy

<

Yn —

1.7 The Determinant

The determinant of an m x m matrix A = [a;;], denoted by |A| is defined as

Al = Z sgn UHaia(i)
o i=1

where the summation runs over all m! permutations o of the m items {1, ..., m}
and the sign of a permutation o, sgn ¢ is +1 or —1 according to whether
the minimum number of transpositions, or pair-wise interchanges, necessary
to achieve it starting from {1,...,m} is even or odd.

The above definition may look complex. Fortunately, there is another
method, called the Laplace Expansion, of obtaining determinants. This is
a recursive method. This means that in order to get the determinant of a,
say, 4 X 4 matrix we must use lower order determinants of submatrices of our
matrix.

This recursive method arises from the second definition of a determinant.
Let A;; denote the m —1 x m — 1 submatrix of the m x m matrix A obtained
by deleting row 7 and column j of A. The determinant of A is given by

Al =3 (-1 gl Ayl = 3 (<1 a4,
j=1 i=1

This is the Laplace expansion of a determinant.

Example 3
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3 2 6
-1 1 2 6 2 6
R S Rk e R I B I B

3(—8+ 1) — 6(16 + 6) — 2(2 + 6) = —169

1.8 Partitioned Matrices
All A12
A= ( Ay Ag, )

e Addition and multiplication is as usual

A;; is a submatrix of A.

e Determinants:

A 0

O |l
A A | ~1
A = Ml Awagi A

e Partitioned inverse

Ay Ap \ 7 ALl A2 AI11<I+A12F2Af1AI11) — A ApF,
( Ay Ay ) - ( A%l A2 ) - —FyAnAp Fy

where F, = (A22 — A21A1_11A12)_1. This can be shown by verifying that
Ay Ap \ [ A" A2N\ (1 0
Asy Ay A2t A2 ) N0 I
1.9 Kronecker Products
CLHB CllgB e alkB

CL21B CLQQB e CLQkB
Cnlka =A®B=

am B apB ... auB
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1.9.1 Some useful results for square matrices A, ., and
Bme

A matrix is square if the number of columns equals the number of rows.

(A® B)(C ® D) = AC ® BD

(A B =A@ B

[A® Bl = [A]*|B|™

(A B '=A"1'® B!

trace(A ® B) = trace(A)trace(B)

where the trace of a matrix is the sum of its diagonal elements

Exercise 1 Prove that

(AeB)'=A"1® B!

1.10 The trace of a matrix

The trace of a matrix is the sum of its diagonal elements

1.10.1 Properties of the trace

tr(cA) = ctr(A) c is scalar

tr(A") = tr(A)

tr(A+ B) =tr(A) +tr(B)
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tr(AB) = tr(BA)

tr(A® B) = tr(A)tr(B)

1.11 The Rank of a matrix

The rank of a matrix is the number of linearly independent columns of a
matrix. Equivalently it is the number of linearly independent rows of a

matrix. A set of vectors xy, . ..,X,, is a linearly independent set if there exists
no set of numbers aq, ..., a,, with some a; # 0, such that a1x;+...+a,Xx, =
0.

Example 4

(41
(1)-(1)-

there is ony one linearly independent column and so the rank of A is 1.

Since

1.12 Characteristic Roots and Vectors
Consider the square matrix A with
Ac = )Xc (1.1)

The pairs of solutions to this equation are the characteristic vectors ¢ and
the characteristic roots A Note that since

Ac = )Xc = Akc = kXc
¢ can be normalised so that ¢/c = 1. To solve (1.1), see that
Ac=Xc=(A-A)c=0

So ¢ has a nonzero solution only if (A—AT) is singular i.e. only if |[A—AI| = 0.
This equation is called the characteristic equation
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5 1
-(31)
()22

‘5—)\ 1

Example 5

0 4 ':(5—)\)(4—>\)—2:)\2—9/\+18

which is zero for A = 6,3. To find the characteristic vectors

aomeeo (5 1) () ()
For A=6
(A—)\I)c:0:>(_21 ;)(2):(8>:>01202

So we have one solution which justifies that (A — AI) is singular. For A =3

(A—)\I)c:():>(§ })(2):(8);»012—1/2@

To identify (c1,ce) we use the normalisation (c'c = 1 which gives, for A =6,

¢, =cy = +1/V/2 and for A =3, ¢; = £1/V/5 and c; = +(—2//5).

1.12.1 Useful applications of the characteristic roots
and vectors

Note that
ACZ' = /\ici

gives a matrix equation of the form

A(cy,...,cp)=(cp,..cn) | oo oo ..o ... | =AC=CA
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Theorem 1 If A is symmetric, cjc; = 1 and c/jc; =00 # j, then C' = C™!

Proof 1
cicy cles ... cic,
chep Chey ... CoCy
Cc'C= =71
ccy cc cc
n 1 n 2 et n-n
Thus

cCc=I1=C=cC"!
e Diagonalisation of a symmetric matrix

C'AC=C'CA=TA=A

e Spectral Decomposition of a matrix

AC=CA = ACC!'=CAC'= A =CAC

e Rank of a matrix

If A is symmetric
rank(A) = rank(A)

To see this note
rank(C'AC) = rank(A)

But
rank(C'AC) = rank(C'A)

where we use the result rank(AB) < min(rank(A),rank(B)) when B
is square and A is an m x n matrix But

rank(C'A) = rank(A’C) = rank(A’) = rank(A)
If A is not symmetric we use
rank(A) = rank(A’A) = rank(A’A)

and
rank(A’A) = rank(A)

where A contains the characteristic roots of the symmetric matrix A’A.
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e Power of a matrix
For any symmetric matrix
A? = AA = CAC'CAC = CA?C/
This generalises to A¥ = CAFC' for any real k.

e Factoring a matrix
We want to find P such that

A" =PP
(1)
A'=CA'C'=CAVPATPC =P'P

where P = A~1/2C' (ii)
A=LU

where L is a lower triangular matrix and U is an upper triangular
matrix.

AT =L"'U"!
e Trace of a matrix
tr(C'AC) = tr(ACC') = tr(A) = tr(A)
e Determinant of a matrix

[C'AC| = [C'|A[|C| = [C'][C||A| = |C'Cl|A] = |A]

1.13 Quadratic Forms

Quadratic forms enable us to characterise a matrix as positive or negative
definite. Consider the quadratic form

qg=xAx

e.g.

2

2
a1 Q12 x 2 2 2 :2 :
q = (9311’2) < = CL11151+&21£E1I2+a12$1$2—|—a221'2 = inibjaij

a a i
21 22 2 =1 j=1
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If
x'Ax > (<)0 = A is positive (negative) definite
if
x'Ax > (<)0 = A is nonnegative (nonpositive) definite

Theorem 2 A symmetric matriz A is positive (negative) definite if all the
characteristic roots of A are positive (negative). If some of the roots are zero
then the matriz is nonnegative (nonpositive)

Proof 2 Consider X’ Ax. We know that a symmetric matriz can be written

as
C'AC=A= A =CAC
Thus
k
xX'Ax = xX'CAC'x = y'Ay = Z iyl
i1
Q.E.D.

Theorem 3 If A is nonegative then |A| > 0

Proof 3 If A is nonegative this means that
x'Ax > 0
But
k
x'Ax = Z Ny
i=1

Therefore for all i A\; > 0 Then

|A|:|A|:H)\i20

i=1

Q.E.D.
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1.14 Calculus and Matrix Algebra

Consider a scalar valued function of a vector x = (x1,...2,)

y=f(z,...,2,) = f(X)
The vector of partial derivatives known as the gradient vector is

_0f(x) _[9fx) Of(x)  Of(x)

i ox' | Oxy ' Oz 7 0wy,

- [fl’f%-”’fn]

Generalising to vector functions we have a vector function of a vector

y = f(x)

where x = (21,...,2,), ¥y = (y1,...,Ym)’. In general, the matrix of partial
derivatives is known as the Jacobian matrix is given by

of (x) of (x) of (x)
oety et A
PR ICO N B el R o
= Toxl
Ofpn(x)  Ofim(x) Of (%)
o1 0z to OTn

Note that sometimes the transpose of the Jacobian matrix is presented, so
that for a scalar function the Jacobian is a column vector rather than a row
vector. So

of1(x)  0fa(x) Ofm (x)
hG) R0 et
1(x x m (X
J/ — w 0o 0x2 T 0o
f ox o cee e
of1(x)  0fa(x) Ofm (x)
Ozn, Oxn to Ozn,

The second derivative matrix (known as Hessian matrix) for scalar func-
tions is defined as:

Py Py 9%y

0x10T1 Oxr10xs " 0x10Tn

oy oy o2y, | EL L

Hp = Op, v Oz ] = dx20x1  Ox2dza T Ox20zn
oy 0xs o,

0%y 0%y 92y

O0xn0x1 0xnOrs " OxnOrn
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Extending this to vector functions of vectors we have

where f; is the i-th argument of f.

1.14.1 Some Examples

e Derivative of a linear function

y=ao'x=ax+...+ a1z, =X«

da'x [80/}{ da'x 80/}{] ,
= o =«
ox’ Oxy Oxy ' 7 Oz,
e Derivative of a set of linear functions
y = Ax
U1 a;1xr1+ ...+ a2,
Y2 _ anri+ ...+ asx,
Ym Am1T1 + ...+ AmnTn
So
a1 a12 PN A1n
J _ a921 929 e Qon _ A
m1 Am2 ... Gmp
e Derivative of a quadratic form
g =xAx
If A is symmetric
Jq
— =2x'A’
ox/
0
94 _ 2Ax

ox
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If A is not symmetric

1.15 Transformations and Jacobian

Consider y = f(z) then if f is a monotonic function

z=f"y)

Denote the slope fl—z = J, e.g. For a linear function
y=a+br=ux=—-a/b+(1/b)y
and p
J=""c1
dy
Consider that now y is a column vector of functions, y = f(x) then

Oz1 9m O

> > e D
o | R

J — — ayl 3y2 e 6ym
ay’ cee .

Oxy,  On Ozn

Oyr  Oy2 T Oym

The absolute value of |J| is the Jacobian So e.g.
y=Ax=x=A"'y=Cy
assuming that A is nonsingular Then
J=A""1

and
abs(|J[) = abs(|A7"[) = abs(1/|A]) = 1/abs(|A)

19
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1.16 Exercises
Exercise 2 FEzxercise 3 of Chapter 2 of Greene, pp. 58
Exercise 3 Show that X'MX = X'X — nzx
Exercise 4 FExercise 13 of Chapter 2 of Greene, pp. 59
Exercise 5 FExercise 23 of Chapter 2 of Greene, pp. 60
Exercise 6 FExercise 21 of Chapter 2 of Greene, pp. 60
Exercise 7 Consider the matrix
A:( n Z?:lxi):<i’i i’X)
Do i D T X1 x'x

Show that the lower right-hand side element of A=' is

1

£ = M = >im (@ — 2)?

where I — 1/ni'i
Exercise 8 Solve the Least Squares problem
y =Xb+u

i.e. minimise w'u with respect to b where X isn x k matriz andy isn x 1
vector.



Chapter 2

Random Variables and
Probability Distributions

2.1 Introduction

e Consider the random variable X with probability distribution density func-
tion f(z)
TWO AXIOMS OF PROBABILITY
(i) Discrete random variable X

[
0 < Prob(X =x) <1, wherez: a value of X

« T fl) =1
(ii) Continuous random variable X

T2
0 < Prob(x; < X <zy3)<1 or / f(x)dx =1
T

o [% fa)dr =1

21
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e Cumulative distribution function (CDF): F(x) = Prob(X < z) (i)
Distrete random variable

F(z) = Prob(X <z) =Y f(X)
(i) Continuous random variable

F(x) :/ f(z)dx
Properties of F(z):

e 0< F(x)<1

e Foo)=1

2.2 Specific Distributions

2.2.1 Normal Distribution

1 (@=p)*
2 - 2
T, 0%) = e 22 x~N(uo
f(@; p, 0%) oo (1,0%)

Properties:
e Mean (expectation): E(x) = [* af(x;p,0?) = p
e Variance: Var(z) = E(x — p?) = [T (& — p)f(z; p,0%) = 02

e Skewness: sk = E(z — p)® = [* (z — p)*f(z;p,0%) = 0 Skewness
coefficient: E(i—_gu)?’ =0

o Kyrtosis: E(z—p)* = [7_(x—p)*f(z; p, 0?) = 30 Kyrtosis coefficient:
E(sz)A‘ _ 301 _ 3

o ot
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Standard Normal Distribution

.2
Consider z = =F = z ~ N(0,1) with f(z) = \/%767, which implies that
E(z) = 0 and Var(z) = 1. The functional form of the standard normal
distribution can be obtained from the normal distribution using the change

in variable technique. This says that if
x ~ fx(x):2’s pdf

then y = g(x) is distributed as

: _ dy '
y's pdf: fy(y) = fx(g(v)) o
T
To see this consider that
1 _(e—p)? 9
r~ fx(x)= e 22 :x~ N(u,o°)
o\ 2T

and that z = *># (which implies that x = 0z = ). Then by applying the
change in variables technique we get:

dy_1
dx

1 (eztu—w?
= ———¢ 202

oV 2T

171
o

fz(z) = fx(97' ()

2.3 Other Distributions

e Chi-squared y?
One Degree of freedom: x%(1) = 2%, where z ~ N(0, 1)
n-degrees of freedom: x*(n) = > z;, where z; ...z, are independent
N(0,1) distributions.

e [-Distribution: F,, .,

F . Xz(nl)/nl
ny,n2 T o
X (”2)/"2

where x?(n;) and x?(ny) are independent x? distributions with n; and
no degrees of freedom respectively.
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e {-distribution

=

where z ~ N(0,1) and x?(n) is x? with n degrees of freedom.
e Log-normal distribution LN (u, 0?)

fla) = —om—e e
2rox

2

E(z) = ErT Var(z) = 62“+"2(e" - 1)

Properties of the log-normal:
(i) Find that if # ~ LN (u,0?) then y = Inz ~ N(u,0?) , x is positive.
Proof: By using the change in variables technique we have:

dy
_ -1 ay Tl
) = fxta™ )|
where y = g(x) = lnz or x = €Y .
-1
B Ll B I S A
2rox x 2rox
1 _L( _ )2 2
W Sy N, 0?)
2mo

(ii) If x ~ LN(u,0?), then Inz" ~ N(vu, oc*v?)
(iii) If Y, Y3 are independent lognormal variables with Y} ~ LN (uy,0%)
and Yy ~ LN (s, 03) then Y1Ys ~ LN (1 + po, 0% + 03).

2.4 Joint Probabilities

The joint probability distributions give the probabilities that two or more
events happen simultaneously. e.g. in the case of two variables: X: years of
being unemployed; Y: Criminal Records
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flzy) | X fr(y)
Y 0 1 2
0 |005 0.1 0.03 0.18
1 021 011 0.19 0.51
2 1008 0.15 0.08 0.21
fx(z) 1034 0.36 0.30 1.00

b pd
pdf : f(x,y):Prob(anSb,cgygd)://f(x,y)dydx

cdf - F(x,y) = Prob(X <uz,Y <y) = /_b /_d f(z,y)dydx

25

The marginal distribution is defined with respect to an individual variable

(2 or y)
fx(x) =

fr(y) =

Ezxpectations in a joint distribution

B(e) = [ afx(a)ds -

[ [ s e -
/m,/ya:f(g;, s)dsdx =

/ / xf(x,y)dydr for notational convenience y = s
zJy

In general

Elg(z,y)] I//g(:v,y)f(x,y)dydx

Exercise 9 Show that if two random variables are independent, i.e.

f(% 3/) = fX(ﬂU)fY(y)

then their covariance oxy s zero, i.e. oxy =0

f(z,s)ds

Y

f(s,y)ds

T
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2.4.1 Conditional Distributions

In the bivariate case, there is a conditional distribution of Y given a value of

X =1z, ie.
~ fly,z) o) = Flule) oz

In the case that Y and X are independent f(y|x) = fy(y).

2.4.2 Conditional Mean
E[Y|X] = / yF(ylz)dy
Y

This conditional mean of Y on X, E(Y|X), is called the regression of Y on
X. This happens since any random variable can be written as

Y — E[Y|X] - E[Y|X] +Y =
EY|X]+[Y - E[Y|X]] =
ElY|X]+e€

where € is an error term.

2.4.3 Conditional Variance
VarlY|X] = E[(Y — B(Y]X]))?|X] =
= EYIX)2 o)y -

Y

[+ B IX)? = 2B X)) f ol dy =

Y

/ v (ylr)dy + / (EIVIX) f(yle)dy — / 2 E[Y| X (y]2)dy =

E[Y?|X] + (E[Y X])? / f(yl)dy — / 2 E[Y| X (y]2)dy =

E[Y?|X] + (E[Y]X])* - 2E[Y|X]E[Y]X] =
E[Y?|X] - (E[Y]X])”
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2.4.4 Law of Iterated Expectations

Denote by Ex|[.] the expectation over the values of X, i.e. Ex[.] = [, [|fx(z)dz.
Then we can show that

Ex[E(Y[X)] = E(Y)
Proof
EX[E(Y X)) = [ B(YIX) fx(o)ds =

xT

/x(/yyf(ylx)dy) Fre(x)de =
/x /y yf(yla) fx(z)dyde = E(Y)

Example 6 (The bivariate normal distribution)

1 =1 [E2+E2—2pExEy]
— 1=p) X THY
f(x) y) 27‘[‘0‘Y0‘X ,—1 — p2€2 1=p
where . B
By =1 gAY
ox Oy

and p = UU;‘—UYY 1s the correlation coefficient between X and Y. The marginal
distributions are normal

1 — (z—px)?

x) = x,y)dy = 27X
e = [ ey = o
1 = (y—ny)?
fry) = /f(x,y)dm =% et
T Oy
Proof:
1 —1 2 2 _
fx(gj) = /f(l"y)dy = / \/ﬁez(l_pz)[Ex—i-Ey QExEY}dy _
y y 4TOy 0 -p
1 %(wux)Q/ 1 =L B2 4 E2 _2pExEy] 1/282
e2% e201-p2) "X Y 6/ Xdy =
V2mox y 2moyoxy/1 — p? Y
1 =Ll (p 2
2.7 (Thx) 1~ N(pix,0%)

e
\V2rox
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The conditional distributions are normal and have a linear mean in x

flylz) = N(a + Bz,03.(1 = p%))

Proof:
—L W[EgﬁEQ —2pEx Ey)
f(y|x) — f(y,ﬂj) _ 2moy ox 17p2 )
fX(x) ﬁ;e%(z—p,xy
eb'e
\/— 1\/762(1_1;)2)[E§(+E%/—2pEXEY]62;§{(1#X)QZ
27TO'Y 1 — p2
1 W[E +E2 —2pEx By —(1—p2)E ]
\/%ay\/l_i
! ot By —PEx]? _
\/%O'y\/l_i
2oy /1 — p?
! W[y (py + X TTEX)2 _
\/27T0'y\/1_7p2
! =3 [y—(a+pz))?

2(1 02 i

\/%O’y\/l —

where o = py — Bux and f = ";‘—Xy This is a normal distribution with mean
a + Bz and variance (1 — p*)oZ, i.e. f(ylz) ~ N(a+ Bx,02(1 — p?)).

2.4.5 The multivariate normal distribution

f(:cl,a;g, o ,;cn) = f(x) = (2@%/2(010—2 N .O-n)*1|R|71/2671/25’R—1

where € = (€1, €,...,€,) with elements ¢; = “-# and
R = par 1 ... pop

Pn1 Pn2 -+ Pnn
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is the correlation matrix.

TWO SPECIAL CASES:
(i) R=1,i.e. xy,9,...,x, are uncorrelated. Then

F(x) = 20) (0105 . .. 0,) LTV
since |R| = |I| = 1 and Je = I. Then
f(x) - (277)7n/2(0'10'2 e 0n>71671/2(6%+...€%) —

(277)7n/2(0102 .. .Un)*lefl/%%e*l/?e% L eml2d

1 —1/2€2 1 6—1/255 1 6—1/253

e -
o1V 21 ooV 21 OnV 27

n

fle) f(x2) . flan) =[] fla2)

i=1

(ii)) R=1, p=(0,0...,0) and o; = o Vi Then

f(X) _ (2/p,l~)fn/20_fn€x’x/202
Exercise 10 (Decomposition of Variance) Show that

Var(Y) = Ex[Var(Y|X)] + Varx[E(Y|X)]

29
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Chapter 3

Estimation and Statistical
Inference

3.1 Introduction

Denote the estimator of a parameter ¢ of the distribution (probability model)
of the population as #, then in econometrics we often look for the best linear
unbiased estimator (BLUE). The properties of this estimator are:

o Unbiased estimator

~

E@) =06

E.g. consider the sample mean estimator of a random sample

Z?:l Li

n

Tr =

drawn from z ~ N(u,0?), then

p(Thr) - ZhEe) T

E(z) = p

n n n
e Ffficient Unbiased Estimator
Var(0) < Var(6)

i.e. the variance of the estimator is smaller than the variance of any
other unbiased estimator.

31
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Theorem 4 The variance of an unbiased estimator of a parameter 6 will
always be at least as large as

o) = (- [%Dl ) (E {aln@—g@r) 71

Var(0) > (1(0))™

where L(0) is the likelihood function of 6 gien thet data at x = (x1,...x,),
ie. L(O) = f(x1,...,2,;0).

i.e.

Proof 4 For a proof see Appendix 1.
In MATRIX NOTATION we have
e Random sample (DATA): (x1,...,2,) = Xux1

e vector of parameters of the underlying probability model: (0y,...,6;) =
01.x1, .. @ = (11, 0?)" for the normal probability model.

e Variance of 6:

(61— 61)? (01— 6:1) (B2 — 62) ... (61— 61)(6 — O%)
E (03 — 65)(0; — 6,) 0y — 6,)* coo (O —09) () — Ok) _
(0 — 0,) (6, — 61) L L (0 — 0,,)?
Var(0,) Cov(0y,0,) ... Cov(y,8y)
Cov(by,601) Var(6) ... Cov(fs,6k)
C’ov(ék, él) o o Var(ék)

3.2 Efficient Estimation: Maximum Likelihood

Consider a random sample of (z1,...,x,) observations. These observations
are drawn independently from a probability density function (pdf) eith vector
of parameters @ = (61, ...,60;). This means that

L(O) = f(z1,...,2,:0) = f(21,;0) ... f(z0;0) = Hf(xi;f))
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The mazimum likelihood estimator requires to find the value 0 vz (ML esti-
mator) which

n

mgxln L(8) = lan(xi; 0) = 2111 f(z:;0)

=1

d1n L(6)

alaaﬁ(e) U
Oln L(0) = 0
FOC —~= 002 — =0
06 - . Fxl
d1n L(6) 0
90},
92InL(6) 0%InL(6) 8%1n L(6)
962 90,005 ' 96,00y
92InL(6) 92InL(P) 921n L(0)
0?In L(6 902001 9632 90,00,
soc TRAD_ | T
92InL(6) 82InL(H) 921n L(0)
00,001 001002 e 89%

H is the Hessian matrix which should be negative definite at 6. Consider
the random sample of x1,xs, ...z, observations drawn independently from
the normal distribution: N(u,c?). Then ML estimation proceeds as follows:

L(O) = f(21:0) .. flan;0) = e 5 L g L et
- 1 n - o oo \/%0_
Then
n n 2 — (; — p)*
InL(8) = 5 In(2m) = 5 n(o") ~1/23 57
Oln L(6) 91n L(6)
Fo.c. SR Tae ) o
90 ( dlg;(@)
anL(O) . - (l’z — [L) . . Z?:l x;
BETED S
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92InL(6) 02InL(6)

T 82 1n L(8)
_ | #mLe 82inLe) _ 7 T
S0C. H a5 o 9006’
. n;_g _0_1412?:%@1‘ — )
H= | —> (i~ 1) s — g5 2 (@i —p)°

The information matrix
0
n_

204

1(0)=—E {(9(;3—(%,‘9)} = —E[H] =

oY

Since
E(-n/c*) = —n/o?

E ((9312—;0(26)) = _1/U4E(;$i —p) = —1/04;E(xi) —u=0

82111[/(0) - 4 6 n , \ . 4

The ML estimator has the property that the variance of O equals the
Cramer-Rao lower bound. Thus

2

A o 0
Var(@y) =I0)] "' = o 2

For this reason we can treat ML estimation as efficient estimation. To confirm
that the ML is the most efficient estimator, consider the alternative sample
moment estimators of the mean and variance of a population.
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Note that Z is the same as the ML estimator. but s is not. s* = 2-63%,,. We
will show that the variance of 8" = (&, s2)" differs from Var(8y,) =
by a positive definite matrix. To show this we need to find the variance

covariance matrix of 8* = (z, s?)’, denoted by Var(6*). We use the results
Var(z) = 1/n2VaT(Z z;) = 1/n? ZV&T(L—) = 1/n? 202 =o?/n
i=1 i=1 i=1

Var(s*) = 20%/n — 1

Cov(z,5%) =0
Then |,
2 2 0 0
* 0 n o " o ot
Var(0*) —Var(@yr) = 0 3—_41 -1 o0 2n—4 =10 —n(i_l)

which is a positive semidefinite matrix. We need to prove the results
Var(s*) =20*/n — 1

Cov(z,5*) =0

To prove them we need to establish a number of useful results for quadratic
forms.

Theorem 5 If X1 ~ N(0,0%I) then C' X px1 ~ N(0,02I) where C'C = I

Proof 5 Define Y = CX. Since Y is a linear combination of X, Y s
normally distributed too. Then,

EY)=CE(X)=0
The vartance of Y 1is given by
Var(Y)=EY - EY)(Y —EY))=EYXYY')=E(CXX'C) =

C'E(XX")\C =CVar(X)C = C'0*IC = 0*C'C = o*I
Q.E.D.
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Theorem 6 If X ~ N(0,1) then the quadratic form q = X'MX ~ x*(n —
1)

Proof 6 Using the spectral decomposition of M we have
n J
¢=X'MX =X'CAC'X'=Y'AY = \yP=> o
i=1 i=1

where Y = C'X Note that Y, | \y? = Z;]:l y? because M is idempotent
with J unit and n — J zero eigenvalues. The above result implies that q is
the sum of squared random wvariables which are independent and normally
distrubted. with mean zero and variance unity since X ~ NM(0,1). Thus
q~ x*2(J). J is equal to the number of non-zero eigenvalues of M, which is
equal to the rank of M. Since M is idempotent

1-1/n —-1/n ... —=1/n
—1/n 1-1/n ... —1/n

rank(M) = tr(M) = tr =n(l-1/n) =n—1
—1/n  —=1/n ... 1—=1/n

Q.E.D.
Theorem 7 If X ~ N(0,1), then i X and ¢ = X'M X are independent
Proof 7 Write

= X'MX

as
XMMX =X, X,

where X1 = M X Denote the function i X as
C=1X=X"1
Note that
Cov(X,,C)=EiX(MX)]=E[{XX'M] =
VE(XX'YM=4¢IM =M = (Mz) =0

Thus q s made of normal vectors which are uncorrelated to the linear function

©' X . This means that q and the linear function i X are independent.
Q.E.D.
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Having established the results of the above Theorems we can now easily
prove

Var(s*) = 20%/n — 1
Cov(z,5*) =0
For Var(s*) = 20*/n — 1 we have for X ~ N(0,0%I),

1 1 1
2 _ — 2= ——X'MX =
s Z(m z) o p—

L0*(X' o) M(X /)

o’ Z'MZ = 1
n—1 n —

where Z ~ N(0,1), Z = X /o and q ~ x*(n — 1). Thus

102q (3.1)

1 1
2\ _ 2 _ 200 1) — 2
E(s)—n_laE(q)—n_la(n 1)=0
4 4 4
9 o o 20
= 2n—1) =
Var(s®) = 1)2Var(q) 1) (n—1) m——
For
Cov(z,5*) =0
we have:

Cov(z,s%) = Cov(i' X, 0% /n—1q) = 0?/n—1Cov(i' X, q) = 0*/n—1Cov(i’ X, X' MX) =0
Exercise 11 Show that the 63;; is a biased estimator of o
Exercise 12 Show that the variance of 63;; is less than the variance of s*.

Exercise 13 Show that the MSE of 63,; is less than the MSE of s*.

3.3 Efficient Estimation of a Multivariate Nor-
mal

Consider n independent m-dimensional random variables. Denote by X; the
1-th observation across the m variables, i.e.

Xi = (Xi1> o 7Xim)/
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For each observation the pdf can be written as

%

f(X;) = (QW)—mﬂ|Z|—1/26—1/2(Xi—u)’2’1(Xi—u)

Assume that X, ..., X, are independent with common variance o?. Then
1|72 = 62|I| and thus

f(XZ) = (277)_m/20'2|]’_1/2@_1/202()(1'—#)/()(1-—“)

Take the joint pdf across X, i.e.

F(X0, X)) = [(X0) . f(X) = [[@r) 720 1|7 2et2r (Xamm (Ko
i=1
Then the log-likelihood is
L(6) =In H(QW)*WWU?|[|*1/2671/202(&*#)’(&*#)
i=1

n
—nm nm 1

In(2m) — Tlna2 ~ 53 DX — ) (X — )

=1

To obtain the ML estimator we require

OL(6) _ Oz iy (Xi—p)(Xi—p)  —1 Z": O(Xi — p)(Xi — p)

FO.C. _ _
0.¢ on op 202 — on
LS X ) = (X =0 (3.2)
202 =1 Z M N 02 =1 Z “ N .
OL(O)  —mn 1 , B
o7 = gz T o1 2 (XK= m)(Xi =) =0 (3:3)

These conditions imply:
Y Xi—np)=0= fipy, =1/n> X,
i=1 i=1
ie.

[ v = 1/nzxi1
i1
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ﬂQ,ML = 1/”2 Xio
i=1

,&m,ML = 1/nZsz

i=1

(3.3) implies:

—mno? + Z<Xl —w)(X;—p)=0=0%= 1/an(XZ- — ) (X; —p)

i=1 =1

1/7’””'7/2 Xit — m)* + (Xig = p2)? + -+ (Xim — p1m)?] = 1/’””2 Z(Xij—ﬂj)Q

i=1 j=1

1/m21/n2 i~ )’ = Z

The information matrix is given by

9%?InL(6) 0%InL(H)

9% 1n L(6) QB Dudet
1(6) = —E(H) E( o ) QR aT

Given

o2

M 1 [3(22;1(33“))} = ! (=nl)

ouop' o? oy’

PMmLO) nm 1 )
oot = 254 - F Z(m—#’) (CL‘_p,)

0*1In L(0) _ 1 i(w )

opds® ol &

1(0) becomes

n/o*l 0
I(0)=—-E(H) = 0  nm/20* )
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Since

E(%Xn:(w u)) 0

=1

¢ (D am) o

and

Finally, we have

A o?/nl 0
Var(@y) ={1(0)} ' = ( 0 204/nm)
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Large Sample Distribution
Theory and Estimation

If we do not know the underlying probability model of an estimator (or
statistic) or we cannot derive its distribution we can derive approximate
results as the sample becomes large, (n — 00). To see how, we need first to
pressent some results on convergence of random variables.

4.1 Modes of convergence

4.1.1 Convergence in probability

x, converges in probability to ¢, denoted z,, 2 ¢ or plimy, oo, = c, if for
all e > 0,
lim Prob(|x, —c| >¢€) =0

n—oo

4.1.2 Convergence in mean square

. m.s. .
T, converges in mean square to ¢, denoted x,, — ¢, if

lim E(x, —c)>=0

n—oo

4.1.3 Almost Sure Convergence

z,, converges almost surely to ¢, denoted x,, = ¢ if, for all € > 0,

Prob(lim z, =c¢) <e

n—o0

41



42CHAPTER 4. LARGE SAMPLE DISTRIBUTION THEORY AND ESTIMATION

The difference between convergence in probability and convergence almost
surely is that convergence in probability deals with the probabilities of events
involving individual random variables whereas convergence almost surely
deals with probabilities of events involving infinite sequences of random vari-
ables Both almost sure convergence and convergence in mean square imply
convergence in probability. An estimator is consistent if

plimnﬁooé =40

Example 7 Show that the mean of a random variable from any population
is a consistent estimator of the population mean

We need to show that plim,, %, = . Convergence in mean square implies
convergence in probability and so we show convergence in mean square. This

requires
E(z,) — u
and
Var(z,) — 0
But

E(z,) = 1/nE(Z i) = p

Var(z,) =o0?/n — 0

This is an example of a Law of Large Numbers (LLN)

4.1.4 Rules of probability limits
Slutsky’s Theorem

Plimn00g(Tn) = g(PliMp s 00n)

g(.) is a continuous function which is not a function of n.
o If plim,_oox, = c and plim,_ oy, = d then

plimy, ooy = cd
plimy, soopn/yn = ¢/d d #0
plimy, oW, = Q0 = plimnﬁoown_l =01
Plimy, 00 X (kxk)Yn (kxk) = AB
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4.1.5 Convergence in Distribution

Let z,, be a sequence of random variables indexed by sample size and assume
that z, has cumulative density function (cdf) F,(z). Then if

lim |F,(z) — F(z)| =0

n—oo

where F(x) is the cdf of a random variable = we say that x,, converges in
distribution to a random variale with distribution F'(z). We denote this by

d
Ty — T

Rules of limiting distributions
o Let x, 4 2+ and plimy, ooy = ¢ then
d
Tplp — CT

xn—l—yni)x—i—c

xn/yn i}.ﬁb‘/c, C#: 0
e (Continuous mapping theorem) If x,, 2 then

g(x,) % g(x)

where ¢(.) is continuous.

o If 1, % 2 and plimy, ooy = x then y, Ao

4.2 Univariate Central Limit Theorem
If z; has mean p and finite variance o then
1/v/m Y xi— - N(0,0%)
=1

This implies that

Vi/n> x— % N(0,0%)
=1



44CHAPTER 4. LARGE SAMPLE DISTRIBUTION THEORY AND ESTIMATION

Vn ll/nz:xZ —u] KN N(0,0?)

Vi@, — ) % N(0,0?)

This justifies the use of the normal distribution (as a limiting distribution)
to test hypotheses about the sample mean. This can be regardless of the
form of the population distribution of x.

4.3 Multivariate Central Limit Theorem

Let k random variables x1, ...z, from a multivariate distribution with finite
mean vector p = (1, ..., p)" and finite covariance matrix ¥ then

Vn(@, — p) = N(0,%)

where &, = (Z1,...7,)".

4.4 Limiting normal distribution of a func-
tion

4.4.1 Linear case

Theorem 8 If
Vn(z, —p) = N(0,0?)

and y = cx is a continuous function of x, then
Vi(y, — cp) = N(0,a?)
Proof 8 First notice that by the continuous mapping theorem
yn = g(an) >y = g(x)
Since x is N(0,0?) by applying the change in variables technique we can show

y =g(z) ~ N(0,c°0?)
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4.4.2 Nonlinear case

Theorem 9 If
\/ﬁ('rn - :u) = N<Oa 02)

and y = g(z) is a continuous nonlinear function of x, then
V(yn — g()) = N(0,4'(1)*0?)
Proof 9 Approzimate g(x) around the mean value of x as
g(x) = g(p) + 9(w) (x — p) = g(u) = g'(Wp + ¢ (W)

So
Vn(g(@) — g(w) = ¢ ()v/n(z — ) ~ N(0, g'(1)*0?)

4.5 Limiting distribution of a a set of func-
tions

If x,, satisfies
Vi@, = ) 5 N(0,%)
and if ¢(x,,) is a set of J continuous functions of x,, then

Vale(@,) —c(p)) % N(0,Q(r)ZQ(u)')

where Q(p) is the Jacobian matrix of c.

4.6 Asymptotic Distribution

The asymptotic distribution is constructed from the known limiting distribu-
tion of a random variable and it is the distribution that is used to approximate
the finite sample distribution.

Example 8 If
(T, — 1) < N(0,07)

then x, 1s asymptotically distributed as

T 5 N(p, 0%/n)
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This result means that whatever the finite sample disrtibution of x,, the nor-
mal distribution provides an approximation to it in finite samples. The proof
of this is easy to establish

Vi@, — ) 3 N(0,0%) =
Vi, — Vap 2 N(0,0?) =
Vi, 5 N(vip,0%) =

EngN(,u,aQ/n)

4.7 Application of Large Sample Distribution
Theory

4.7.1 The Asymptotic Distribution of the ML Estima-
tor

Consider a pdf, f(z;60) The log-likelihood is

InL = Zlnf(xi;e)
i=1

The ML estimator is defined as the estimator for which
OlnL 900 " Inf(x;0))
0 — fd i=1 ’ —
900) = =54 90

n

8 (III f CC'Z, Z

T\ g =0
i=1

where ¢; = —a(lngg“m)

Also

is the gradient (or score) vector for each observation.

_ Il 0 |~ O(nf(@i;0)) | _
~ 9006 — 96 [Z 06 ] N

0* (In f(z;; 6
Z 0006’ Z Hi




4.7. APPLICATION OF LARGE SAMPLE DISTRIBUTION THEORY47

should be non-positive. To derive the limiting distribution of the ML esti-
mator (6,/7) take a first order Taylor expansion of the gradient around the
vector of the true parameter 0, i.e.

, 99(0) -

9(Omr) ~ g(0) + — = 90 (Oriz — 0) = g(0) + H(0)(0r1, — 6)

Solving out the above equation with respect to (9 v — 0) gives
Oz —0)=H(O)™ (g(éML) - 9(9)> =
—H(0) '9(6)

since g(8y1,) = 0. Scaling by /n gives

VB~ 6) = ~H(6) ' Viig(8) = ~H(6) Vi Y 9:(6) =

- |2 B 1/ﬁggi<e>

n

Notice that g;(0) is an i.i.d. random variable with mean 0 and variance which
can be obtained as

Varlgi(0)] = 1/nVar[g(0)] = 1/nE(g(0)g(0)") = 1/nE(ag;L 8;;[/) _

e e )

Then by a straightforward application of the central limit theorem we get
1/\/—291 5 N(0,~1/nE(H(6)))

Using this result and noticing that
plim[1/nH(0)] = 1/nE(H(0))

which is a constant matrix the limiting distribution of \/n(8, — 6) can be
derived by the limiting distribution of

[1/nE(H ()] 1/\/ﬁZgi(¢9)
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which is
N (0,[1/nE(H ()] [-1/nE(H(6))] [1/nE(H(0))] ") ~ N (0,-n[E(H())] ")

N (0,n[1(0)]7")

That is
Vi@ —0) 5 N (0,n[16)] )

which implies that the asymptotic distribution of 011 is

VO — /0 L N (0,n[1(6)]7")
\/ﬁéML 4N (\/ﬁea n [1(0)]71)

or

Orr 5 N (0,11(0)] ")

which implies that 0 1 satisifes the Cramer-Rao lower variance bound.

4.7.2 Asymptotically Equivalent Test Procedures

The Likelihood ratio, Wald and Lagrange multiplier test

Likelihood Ratio test

This test checks whether the likelihood is reduced siginificantly by imposing
the restreiction C'(@) = 0 The unrestricted and restricted likelihoods are
denoted by Ly and Lg respectively. Define

A T

Then
—2lnA = —2(InLg —InLy) ~ X}

where ¢ is the number of restrictions.
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Wald test

The Wald tests checks whether C (é wmr) is significantly different from zero.
The test statistic is

W =C(0y1) |Var(C(Ou1))|  C(OrL) ~ 22

Example 9 Consider a linear set of restrictions
Ryxn@ —71 =0

Then

-1

W = (RO — ) [var(RéML - 'r)] (ROrp —7) =
(RO — ) [RVar(@yo) R (ROy, —7) =
(Rrs — ) [RIO:2) ' R] (ROygs — 1)
Exercise 14 Derive the Wald statistic for the hypothesis that the mean of

two variables is distributed with the same variance o and independently are
the same

Lagrange Multiplier (LM) Test

The LM test tests whether the restricted estimator is close to the estimator
maximising the log-likelihood. This translates into the slope of the log-
likelihood at the restricted estimator being close to zero. So we test whether

8111.[/93 —6n =0
The test statistic is
~A A~
_8lnLBR ~ 1 8lnLOR_
LM =—54 [[( 7)) } 00

A

9r [1(93)]_1] Jr ~ X,
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Exercise 15 Find the variance of the LS estimator for the model
y=XB+u

where E(u?) =02, i=1,...,n.

Exercise 16 Find the distribution of the LS estimator for the model
y=XB+u

where E(u?) =02, i=1,...,n.
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Solutions to Exercises

Solution 1
(AB) A @B ) =AA"" @ BB = Iun @ Lusxm = Lnnxmn
Solution 2

al +al +...+a2,
aj; + a5 + ...+ a3,
A'A =
2 2 2
apy+ane+ ...+ ar,

So

tr(A'A) = a}y+adyt. . +af,+a+ady+. . Had, 4. taltaly . tal, =) 0> af
i=1 j=1

Solution 3

X'MX =X'"(I —1/ntt")X = X'X —n(1/nX"4)(1/ni' X)

But
1/nX't ==
Solution 4
CZHB algB c. &1kB
a21B a22B Ce CLQkB
A® B =
amB apB ... au.B

o1
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So
tT(A@B) = a11b11 +a11b22+. . .+a11bmm+a2b11 +a22b22+. . .—|—a22bmm+. .+

annbll + ananQ + ...+ annbmm =

(&11 + ag99 + ...+ ann)(bll + b22 + ...+ bnn) = tT’(A)t?"(B)

Solution 5
4 0
X'X=10 54
1/4 0
(X'X)"'=1 0 1/54
50 11 51 —13
11 35 15 47
X(X'X'X=1/108 51 15 45 -3 |=P
—13 47 =3 77
For X
P=XX'X)'X', M=(I-P)
For XQ

P = XQQ'X'XQ)T'Q'X' = XQIQ™'(X'X)"Q" QX' = X'(X'X) X’

Since P and M are idempotent ( PP = X'(X'X)'X'X'(X'X)"'X' =
X(X'X)' X', MM = (I-P)YI—P)=I1—-P—-P+P=1-P), their
characteristic roots are either 0 or 1. So the trace is equal to the number of
unit ergenvalues. Both M and P have 2 unit and 2 zero eigenvalues.

Solution 6 The solution is
2[x' Ax/x' Bx|[x' Ag/x’' Ax — ' Bg/x' Bx|
Solution 7 For a 2 X 2 matriz
a Z - g d —b
¢ " ad — be
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So , .
. 1 ZZZ"I Ty = Zi:l i
AT = — > n
nYy g wd = (3o w)? =
So
’i’/i / 1yl +/ +1—1
F, = = [’z — 2'ii'x /11

i’ — x'it'
=[2'(I —ii'/n)x] ' = [’ Mx]!
Now note that ¥ Mx = &’ MMx But £’ M = (1 — Z,...,x, — Z) So

[’ Mz =

Solution 8
vu=(y—bX)(y—bX)

Taking the deriwvative w.r.t b gives the first order condition
20X'X)b—-2X'y=0=b=(X'X) "Xy
Solution 9
oxy = Cov[X,Y] = E|[(X — px)(Y — py)] =
EXY] = puxE(Y) = py E(Y) + pxpy =
BIXY] — uxpy — pxpy + pixpty =

EXY] — pxpy =oxy

To show that oxy = 0, we need to to prove that
E[XY]=EX)E(Y) = pxpy

Then
oxy = pxpy — pxpy =0

EWHZAAMM%M@M=

Alwh@h@@w:
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/zx /y yfy (y)dyfx(zv)dr =
/xIE(Y)fX(x)dx —

B(Y) [ afx(ado =

E(Y)E(X) = pxpy
The above result can be generalised for any function of X and Y, ¢1(X),
g2(Y) i.e.
Elg1(X)g2(Y)] = Elg1(X)]E[g2(Y)]

if X and'Y are independent random variables.
Solution 10 From the definition of conditional variance Var(Y'|X) we have:
Var(Y|X) = E(Y?|X) — (E(Y|X))”
Take the Ex(.) of the above expression
Ex(Var(V]X)) = Ex(E(Y?X)) — Ex(B(Y|X))?) =
[ B X) o — Bx(E10F) =
([ 101 ) syt~ Ex((Bv1207) =
[ [ 921l s @uds = Bx((E10F) -

/ /Y V2 f (g, 2)dydz — Ex((E(Y|X))?) =

E(Y?) - Ex((BE(Y]X))*) =
E(Y?) = (E(Y))* + (BE(Y))* = Ex(BE(Y]X))?) =
VC”“(Y) (Ex((E (YlX))Q) (E(Y))?) =
Var(Y) — (Ex((BE(Y]X))?) — (Ex(E(Y|X)))?) =
Var(Y) = Varx(E(Y]X))
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Solution 11 From (3.1)
2.1 ‘
n—1
where q ~ x*(n —1). But E(q) =n — 1 from the properties of a x* variable
and therefore

E(s*) =o?
But ]
A2 n—15,
So .
n
E(631) = o # o’
n
Solution 12
~2 n—- 132
o =
ML "

Therefore
n—1

Var(63,,) = ( )ZVar(SQ) < Var(s?)

n
Solution 13
201 (2n —1)o?

R o . n—1\"
MSE(63,,) = (Bias(63,.))*+Var(63,,) = 04/n2+< - ) n_1 n2

_ 4 4 o - 4 2 4
MSE(6%4L)—MSE(82) _ <2n 1)0 20 . (2n 1)(71 1)0’ 2nco

n? n—1 n%(n—1) Cn2(n—1) B
(3n —1)o?
S n2(n—1) <0

Solution 14 The restrictions that we would like to test are

Thus

=t s (5 2] () (1))
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7U&U“‘“Jb‘“)(ggiz)=”UH[M1—M{UE—MV}~X?
Solution 15
B=(X'X)'X'y = B=(XX)'X(XB+u) =
(X'X)T'XXB+(X'X) ' Xu=p+ (X'X)"'X'u
The variance of,é 18
V(B) = E[B-B)B-8) -
E[(X'X)" X u((X'X)"'X'u)] =
E[(X'X) "' X'uu/X(X'X)™"] =
(X'X) ' X'E(uu) X (X'X) ™ =
(X' X)) ' X' IX(X'X)™
AX'X)TIX'X(X'X) =
(X' X)™!
This estimator obtains the lower Cramer-Rao bound
Solution 16
B=(X'X)"'Xy=pB=XX) "X (XB+u) =
(X'X)'X'XB+ (X'X) ' Xu=06+XX)"'"Xu=
B-B=(X'X)"Xu=_Cu

Then if
u~ N(0,0%I)
Cu ~ N(0,Co*IC")
or
Cu~ N0, (X'X) ' X' I((X'X) ' X))
or
Cu ~ N(0,0*(X'X)™)
Then

B—B~N0,0(X'X)™)



Appendix

Proof of Theorem 4
For simplicity denote the likelihood by L. Then

/---/Ld$1 dzs ... dx, =

Differentiate both sides w.r.t. # and interchange differentiation and integra-

tion to give
/ /—dwl dry...dx, =0

81nL 18L

Differentiate again to get

/ /[(Lag>_+[’% (E@)} dzy dzo . ..dx, =0
which is
10L 0*InL
/ /[(L@@) 002 ]Ld%dxz .dz, =0

Rearranging gives
VAN 0?In L
E( n ) __E(_w )_[(6)

If 0 is unbiased then
/.../éde1 "

57

or
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o oln L
~01n
//0 50 Ldxy ...dx,=1
But
<8ln L)
So

InL InL
(8n ) (an )_0
/ /0 0) alnLdel odw, =1

By the Cauchy-Schwartz inequality we get that

<[ foorran W /[alnqml...d%]

But the first term

/.../(é—0)2de1 odey = B ((0-0))

The second is the information matrix.

So

[/.../(é—e)%dxl.,, } [/ /[alnL]Ldm...dmn]l



