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Bayesian Analysis of the Normal Linear Regression Model

Now see how general Bayesian theory of overview lecture works in
familiar regression model

In lecture, I will focus on multiple regression under classical
assumptions (independent errors, homoskedasticity, etc.)

Bayesian methods for freeing up classical assumptions exist (see
Chapter 6 of my textbook)
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The Regression Model

Assume k explanatory variables, xi1,..,xik for i = 1, ..,N and
regression model:

yi = β1 + β2xi2 + ...+ βkxik + ε i .

Note xi1 is implicitly set to 1 to allow for an intercept.

Matrix notation:

y =


y1
y2
.
.
yN


ε is N × 1 vector stacked in same way as y
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β is k × 1 vector

X is N × k matrix

X =


1 x12 . . x1k
1 x22 . . x2k
. . . . .
. . . . .
1 xN2 . . xNk


Regression model can be written as:

y = X β + ε.
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The Likelihood Function

Likelihood can be derived under the classical assumptions:

ε is N(0N , h
−1IN) where h = σ−2.

All elements of X are either fixed (i.e. not random variables).

Exercise 10.1, Bayesian Econometric Methods shows that likelihood
function can be written in terms of OLS quantities:

ν = N − k ,

β̂ =
(
X ′X

)−1
X ′y

s2 =

(
y − X β̂

)′ (
y − X β̂

)
ν

Likelihood function:

p(y |β, h) = 1

(2π)
N
2{

h
k
2 exp

[
− h

2

(
β − β̂

)′
X ′X

(
β − β̂

)]}{
h

ν
2 exp

[
− hν

2s−2

]}
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The Prior

Common starting point is natural conjugate Normal-Gamma prior

β conditional on h is now multivariate Normal:

β|h ∼ N(β, h−1V )

Prior for error precision h is Gamma

h ∼ G (s−2, ν)

β,V , s−2 and ν are prior hyperparameter values chosen by the
researcher

Notation: Normal-Gamma distribution

β, h ∼ NG
(

β,V , s−2, ν
)
.
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The Posterior

Multiply likelihood by prior and collecting terms (see Bayesian
Econometrics Methods Exercise 10.1).

Posterior is
β, h|y ∼ NG

(
β,V , s−2, ν

)
where

V =
(
V−1 + X ′X

)−1
,

β = V
(
V−1β + X ′X β̂

)
ν = ν +N

and s−2 is defined implicitly through

νs2 = νs2 + νs2 +
(

β̂ − β
)′ [

V +
(
X ′X

)−1
]−1 (

β̂ − β
)
.
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Marginal posterior for β: multivariate t distribution:

β|y ∼ t
(

β, s2V , ν
)
,

Useful results for estimation:

E (β|y) = β

var(β|y) = νs2

ν − 2
V .

Intuition: Posterior mean and variance are weighted average of
information in the prior and the data.
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What Does a Prior Do?

To show main ideas assume (for now) β is a scalar, h = 1 and its
prior mean is zero

Prior shrinkage: Posterior mean is pulled towards zero (”shrinkage”)

Commonly done to avoid over-fitting/over-parameterization problems

Strength of prior shrinkage controlled through prior variance:

If V is small, then strong prior information β is near 0.

E.g. If V = 0.0001 then Pr (−0.0196 ≤ β ≤ 0.0196) = 0.95

If V is big then prior becomes more non-informative

If V = 100 then Pr (−19.6 ≤ β ≤ 19.6) = 0.95

Note: exactly what “small” and “large” means depends on the
empirical application and units of measurement of data
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A Noninformative Prior

Noninformative prior sets ν = 0 and V is big (big prior variance
implies large prior uncertainty).
But there is not a unique way of doing the latter (see Exercise 10.4 in
Bayesian Econometric Methods).
A common way: V−1 = cIk where c is a scalar and let c go to zero.
This noninformative prior is improper and becomes:

p (β, h) ∝
1

h
.

With this choice we get OLS results.

β, h|y ∼ NG
(

β,V , s−2, ν
)

where
V =

(
X ′X

)−1

β = β̂

ν = N

νs2 = νs2.
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Model Comparison

Case 1: M1 imposes a linear restriction and M2 does not (nested).

Case 2: M1 : y = X1β(1) + ε1 and M2 : y = X2β(2) + ε2, where X1

and X2 contain different explanatory variables (non-nested).

Both cases can be handled by defining models as (for j = 1, 2):

Mj : yj = Xjβ(j) + εj

Non-nested model comparison involves y1 = y2.

Nested model comparison defines M2 as unrestricted regression. M1

imposes the restriction can involve a redefinition of explanatory and
dependent variable.
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Example: Nested Model Comparison

M2 is unrestricted model

y = β1 + β2x2 + β3x3 + ε

M1 restricts β3 = 1, can be written:

y − x3 = β1 + β2x2 + ε

M1 has dependent variable y − x3 and intercept and x2 are
explanatory variables
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Marginal likelihood is (for j = 1, 2):

p(yj |Mj ) = cj

(
|V j |
|V j |

) 1
2 (

νjs
2
j

)− νj
2

cj is constant depending on prior hyperparameters, etc.

PO12 =
c1
(
|V 1|
|V 1|

) 1
2 (

ν1s
2
1

)− ν1
2 p(M1)

c2
(
|V 2|
|V 2|

) 1
2 (

ν2s
2
2

)− ν2
2 p(M2)

Posterior odds ratio depends on the prior odds ratio and contains
rewards for model fit, coherency between prior and data information
and parsimony.
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Model Comparison with Noninformative Priors

Important rule: When comparing models using posterior odds ratios,
it is acceptable to use noninformative priors over parameters which
are common to all models. However, informative, proper priors should
be used over all other parameters.

If we set ν1 = ν2 = 0. Posterior odds ratio still has a sensible
interpretation.

Noninformative prior for h1 and h2 is fine (these parameters common
to both models)

But noninformative priors for β(j)’s cause problems which occur
largely when k1 ̸= k2. (Exercise 10.4 of Bayesian Econometric
Methods)

E.g. noninformative prior for β(j) based on V−1
j = cIkj and letting

c → 0. Since |V j | = 1

c
kj

terms involving kj do not cancel out.

If k1 < k2, PO12 becomes infinite, while if k1 > k2, PO12 goes to
zero.
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Prediction

Want to predict:
y ∗ = X ∗β + ε∗

Remember, prediction is based on:

p (y ∗|y) =
∫ ∫

p (y ∗|y , β, h) p(β, h|y)dβdh.

The resulting predictive:

y ∗|y ∼ t
(
X ∗β, s2

{
IT + X ∗VX ∗′} , ν

)
Model comparison, prediction and posterior inference about β can all
be done analytically.

So no need for posterior simulation in this model.

However, let us illustrate Monte Carlo integration in this model.
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Monte Carlo Integration

Remember the basic LLN we used for Monte Carlo integration

Let β(s) for s = 1, ..,S be a random sample from p(β|y) and g (.) be
any function and define

ĝS =
1

S

S

∑
r=1

g
(

β(s)
)

then ĝS converges to E [g(β)|y ] as S goes to infinity.

How would you write a computer program which did this?
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Step 1: Take a random draw, β(s) from the posterior for β using a
random number generator for the multivariate t distribution.

Step 2: Calculate g
(

β(s)
)
and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g
(

β(1)
)
, ..., g

(
β(S)

)
.

These steps will yield an estimate of E [g(β)|y ] for any function of
interest.

Remember: Monte Carlo integration yields only an approximation for
E [g(β)|y ] (since you cannot set S = ∞).

By choosing S , can control the degree of approximation error.

Using a CLT we can obtain 95% confidence interval for E [g(β)|y ]
Or a numerical standard error can be reported.
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Empirical Illustration

Data set on N = 546 houses sold in Windsor, Canada in 1987.

yi = sales price of the i th house measured in Canadian dollars,

xi2 = the lot size of the i th house measured in square feet,

xi3 = the number of bedrooms in the i th house,

xi4 = the number of bathrooms in the i th house,

xi5 = the number of storeys in the i th house.
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Example uses informative and noninformative priors.

Textbook discusses how you might elicit a prior.

Our prior implies statements of the form ”if we compare two houses
which are identical except the first house has one bedroom more than
the second, then we expect the first house to be worth $5, 000 more
than the second”. This yields prior mean, then choose large prior
variance to indicate prior uncertainty.

The following tables present some empirical results (textbook has lots
of discussion of how you would interpret them).

95% HPDI = highest posterior density interval

Shortest interval [a, b] such that:

p (a ≤ βj ≤ b|y) = 0.95.
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Prior and Posterior Means for β
(standard deviations in parentheses)

Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

β1
0

(10, 000)
−4, 009.55
(3, 593.16)

−4, 035.05
(3, 530.16)

β2
10
(5)

5.43
(0.37)

5.43
(0.37)

β3
5, 000
(2, 500)

2, 824.61
(1, 211.45)

2, 886.81
(1, 184.93)

β4
10, 000
(5, 000)

17, 105.17
(1, 729.65)

16, 965.24
(1, 708.02)

β5
10, 000
(5, 000)

7, 634.90
(1, 005.19)

7, 641.23
(997.02)
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Model Comparison involving β

Informative Prior

p (βj > 0|y) 95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−10, 957, 2, 887] 4.14

β2 1.00 [4.71, 6.15] 2.25× 10−39

β3 0.99 [563.5, 5, 210.1] 0.39

β4 1.00 [13, 616, 20, 314] 1.72× 10−19

β5 1.00 [5, 686, 9, 596] 1.22× 10−11

Noninformative Prior

p (βj > 0|y) 95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−11, 055, 3, 036] —

β2 1.00 [4.71, 6.15] —

β3 0.99 [449.3, 5, 200] —

β4 1.00 [13, 714, 20, 497] —

β5 1.00 [5, 664, 9, 606] —
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Posterior Results for β2 Calculated Various Ways

Mean
Standard
Deviation

Numerical St.
Error

Analytical 5.4316 0.3662 —

Number
of Reps

S = 10 5.3234 0.2889 0.0913

S = 100 5.4877 0.4011 0.0401

S = 1, 000 5.4209 0.3727 0.0118

S = 10, 000 5.4330 0.3677 0.0037

S = 100, 000 5.4323 0.3664 0.0012
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Summary

So far we have worked with Normal linear regression model using
natural conjugate prior

This meant posterior, marginal likelihood and predictive distributions
had analytical forms

But with other priors and more complicated models do not get
analytical results.

Next we will present some popular extensions of the regression model
to introduce another tool for posterior computation: the Gibbs
sampler.

The Gibbs sampler is a special type of Markov Chain Monte Carlo
(MCMC) algorithm.
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Normal Linear Regression Model with Independent
Normal-Gamma Prior

Keep the Normal linear regression model (under the classical
assumptions) as before.

Likelihood function presented above

Parameters of model are β and h.
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The Prior

Before we had conjugate prior where p (β|h) was Normal density and
p (h) Gamma density.

Now use similar prior, but assume prior independence between β and
h.

p (β, h) = p (β) p (h) with p (β) being Normal and p (h) being
Gamma:

β ∼ N
(

β,V
)

and
h ∼ G (s−2, ν)

Key difference: now V is now the prior covariance matrix of β, with
conjugate prior we had var(β|h) = h−1V .
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The Posterior

The posterior is proportional to prior times the likelihood.

The joint posterior density for β and h does not take form of any
well-known and understood density – cannot be directly used for
posterior inference.

However, conditional posterior for β (i.e. conditional on h) takes a
simple form:

β|y , h ∼ N
(

β,V
)

where
V =

(
V−1 + hX ′X

)−1

β = V
(
V−1β + hX ′y

)
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Conditional posterior for h takes simple form:

h|y , β ∼ G (s−2, ν)

where
ν = N + ν

and

s2 =
(y − X β)′ (y − X β) + νs2

ν

Econometrician is interested in p (β, h|y) (or p (β|y)), NOT the
posterior conditionals, p (β|y , h) and p (h|y , β).

Since p (β, h|y) ̸= p (β|y , h) p (h|y , β), the conditional posteriors do
not directly tell us about p (β, h|y).
But, there is a posterior simulator, called the Gibbs sampler, which
uses conditional posteriors to produce random draws, β(s) and h(s) for
s = 1, ..,S , which can be averaged to produce estimates of posterior
properties just as with Monte Carlo integration.
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Summary

This lecture shows how Bayesian ideas work in familiar context
(regression model)

Occasionally analytical results are available (no need for posterior
simulation)

Usually posterior simulation is required.

Monte Carlo integration is simplest, but rarely possible to use it.

Gibbs sampling (and related MCMC) methods can be used for
estimation and prediction for a wide variety of models

Metropolis-Hastings algorithms popular and can be combined with
Gibbs sampling (Metropolis-within-Gibbs)

Note: There are methods for calculating marginal likelihoods using
Gibbs sampler output

Bayesian Methods for Regression 28 / 28


