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Why Bayesian econometrics?

» What does an econometrician do? i) Estimate parameters in a
model (e.g. regression coefficients), ii) Compare different
models (e.g. hypothesis testing), iii) Prediction

» Bayesian econometrics do all these based on a few simple
rules of probability.
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Bayesian Statistics

Key idea of Bayesian approach: The only satisfactory
representation of uncertainty is through probability theory.

> The Bayesian receipt: Whatever is unknown and you want
to estimate call it 6, whatever is known call it y. Then use
probability theory to calculate p(f|y).

» Main difference with classical statistics (econometrics): 6
is a random quantity/variable and not just a number as in the
classical approach.

» Bayesian estimation relies on f(6|y) the distribution of € given
the observed data, whereas in the classical approach we rely
on f(y|6).

» Before we compute f(6|y) we need to define f(6) which is
called the prior distribution.
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Prior distribution

The prior distribution is the core of Bayesian statistics and is
considered as the main advantage of those they prefer Bayesian
estimation or the main disadvantage for the others.

>

>

When we wish to estimate ¢ almost always we have some
knowledge or belief for its possible values.

Assume for example one looks outside from the window and
sees a wooden object with green leaves.

There are two possible assumptions: the object is a tree or the
object is a postman.

We all think that it is a tree but let's see how this is
translated in terms of probabilities: Let A the event that we
see the wooden object, By we consider as a tree and B, we
consider as a post man.

We choose B; because intrinsically we calculate
f(A|B1) > f(A|B2). We need thus to include these intrinsic
calculations in our estimation procedure.



Prior distribution

More intuition: In the following examples we are interested in
estimating the probability of success.

1. We ask 10 times a woman from England to guess if there is
milk in her tea and she gives 10 correct answers.

2. An experiences musician claims that he can classify a melody
if is from Mozart or Vivaldi and he gives 10 correct answers.

3. A drunk man claims that he can guess between toss or coin
and gives 10 correct answers.

In all the three cases the data suggest to estimate p = 1 but do we
“trust” the data in all the three cases?



The Bayes theorem

The main ingredient of Bayesian estimation is the Bayes theorem

_ P(B|A)P(A)
P(AIB) = = oy
Or more generally:
P(B|C)P(C;
pGig)~ _PEIGPC)
> j—1 P(BIG)P(G)
where C1, Gy, ..., Cj events that form a partition of a sample

space 2.



The Bayes theorem: Example

You
>

are a financial analyst at an investment bank knowing that
60% of the publicly-traded companies increased their share
price by more than 5% in the last 3 years replaced their CEO.

For companies that didn't replace their CEO the proportion is
35%.

Knowing that the probability that the stock prices grow by
more than 5% is 4%, find the probability that the shares of a
company that fires its CEO will increase by more than 5%.

P(A|B) = 0.60 x 0.04 = 0.067 or 6.67%
(AlB) = 560 % 0,04 + 035 x (1 = 0.04) _ 067 0r6:67%

Figure: Probability that the shares of a company that replaces its CEO
will grow by more than 5%.



Advanced Bayesian estimation

Basic steps to estimate the unknown 6 based on data y:

1.

2
3.
4

4.

Choose a likelihood model f(y|0)

. Choose a prior distribution

From Bayes theorem find the posterior distribution f(6|y)

. Make statistical inference. For example

> Set 0 to be the mean of f(Aly).
> Set the 2.5% and 97.5% to form a credible (analogous to
confidence) interval of o = 5%.

F(0)f(v10)
(Oly) = m

6 can be either continuous or discrete and f(0) is pdf or pmf
respectively.



Bayesian estimation: The denominator

The denominator of Bayes theorem is an integral wrt 6 and thus
for a given dataset y it does not depend on 6. Therefore, the
Bayes theorem is also useful in the for

F(Oly) o £(0)F(¥10),

which are the only quantities in the posterior that depend on 6.



Choosing the prior distribution

Remark: f(6) doesn’t depend on data.
@ Prior information is controversial aspect since it sounds unscientific.

e Bayesian answers (to be elaborated on later):

@ i) Often we do have prior information and, if so, we should include it
(more information is good)

@ ii) Can work with “noninformative” priors

@ iii) Can use hierarchical priors which treat prior hyperparameters as
parameters and estimates them

@ iv) Training sample priors
e v) Bayesian estimators often have better frequentist properties than

frequentist estimators (e.g. results due to Stein show MLE is
inadmissible — but Bayes estimators are admissible)

@ vi) Prior sensitivity analysis



Bayesian predictions

@ Prediction based on the predictive density p(y*|y)

@ Since a marginal density can be obtained from a joint density through
integration:

p(y*ly) = [P(y*, 0]y)de.

@ Term inside integral can be rewritten as:

p(y*ly) = fp(y*ly. 8)p(8|y)do.

e Prediction involves the posterior and p(y*|y, #) (more description
provided later)



Bayesian Model Comparison

Models denoted by M; for i =1, .., m. M; depends on parameters 0'.

(]

Posterior model probability is p(M;|y).

©

Using Bayes rule with B = M; and A = y we obtain:

a(hy) = ELM0

p(M;) is referred to as the prior model probability.
p(y|M;) is called the marginal likelihood.

[



Bayesian Model Comparison

@ How is marginal likelihood calculated?
@ Posterior can be written as:
16", M;)p(6'| M;)

i N p(
i s ey

o Integrate both sides with respect to 8', use fact that
fp((;‘f\y, M;)d8" =1 and rearrange:

pUYIM) = [ (16, M)p(6|M;)db.

@ Note: marginal likelihood depends only on the prior and likelihood.



Bayesian Model Comparison

@ Posterior odds ratio compares two models:

po. — PMily) _ plyIMi)p (M;)
Y p(Mily)  p(yIM)p(M;)

e Note: p(y) is common to both models, no need to calculate.




Bayesian Model Comparison

o Can use fact that p(Mi|y) + p(M2]y) + ... + p(Mm|y) = 1 and POj;

to calculate the posterior model probabilities.

e E.g. suppose m = 2 models and you know:
P(Mily) + p(Mly) =1

p(Mily)
p(Maly)

PO12 =

@ imply -
M . 12
p(Mily) 11 POL,

p(Maly) =1—p(Mily).

o The Bayes Factor is:
BF; — P{J/|Mi)_
p(y|M;)




Advanced Bayesian Estimation: Example

Background:
Experiment repeated T times

Each time the outcome can be “success” or “failure”

vy for t =1, .., T are random variables for each repetition of
experiment

Realization of y; can be 1 or 0

Probability of success is 8 (hence probability of failure is 1 — 6)

The goal is to estimate 6

[



Example: The likelihood model

o Notation for things above is: y, € {0,1},0<68 <1 and

0 if vy, =1
p{mg)_{ ey

o Let m be the number of successes in T repetitions of experiment

@ Likelihood function is:

T

p(y|6) = T]p(vel6)

t=1
— gm{l - 9) T—m



Example: The prior

View this likelihood in terms of 8: proportional to p.d.f. of a Beta
distribution

See definition in textbook Appendix B or Wikipedia

Most common distribution for random variables bounded to lie in the
interval [0, 1]

e Commonly used for parameters which are probabilities (like 8)
@ Bayesians need prior

@ Let us also Beta distribution for prior

°

Prior beliefs concerning 6 are represented by

p(0) o 0% 1(1—0)2!



Example: Prior Elicitation

@ The researcher chooses prior hyperparameters & > 0 and § > 0 to
reflect beliefs

[}

Called prior elicitation

@ Properties of Beta distribution imply prior mean is
%
E(0)=—
(9) P

Suppose you believe, a priori, that success and failure are equally likely
E () — % obtained by setting & = &

If I look on Wikipedia | see &« = & = 2 has mean at E (0) = % but
spreads probability widely over interval [0, 1]

-]

So | might be “relatively noninformative” and choose this for my prior



Example: Prior Elicitation - Non-Informative

Or | might set « = & = 1 and be completely noninformative
Note: &« = & = 1 implies p(0) < 1

Uniform distribution over interval [0, 1]

Every value for 8 receives same probability (equally likely) =
noninformative prior



Example: The posterior

@ Posterior same Beta form as prior (terminology = conjugate)

@ Posterior has arguments & and & instead of a and &

o Arguments have been updated:

@ Begin with prior belief (a or §) update with data information (m and
T—m)

Posterior combines prior and data information

(]

"Bayesian learning” = learn about 6 by combining prior and data
information



Example: The posterior

@ To get posterior multiply prior times likelihood

p(Bly) « e l(1—0)Y2tgm(1—g)T ™

—_ 9&—1(1 e 9)3—1
@ where
o® a-+m
§ = 64+T—m



Bayesian Computation

@ How do you present results from a Bayesian empirical analysis?

@ p(fly) is a p.d.f. Especially if 8 is a vector of many parameters
cannot present a graph of it.

@ Want features analogous to frequentist point estimates and
confidence intervals.

@ A common point estimate is the mean of the posterior density (or
posterior mean).

@ Let 6 be a vector with k elements, 8 = (64, .., Gk)’. The posterior
mean of any element of 8 is:

E(oily) = [ oiplely)do.



Bayesian Computation

Let g () be a function, then the expected value of g (X), denoted
E [g (X)], is defined by:

N
Elg (X)) =) g (x)p(x)
i=1
e if X is discrete random variable with sample space {x1,x2, x3, .., Xy }
Elg (0] = [ _gpx)d

if X is a continuous random variable (provided E [g (X)] < o).



Bayesian Computation

@ Common measure of dispersion is the posterior standard deviation
(square root of posterior variance)

@ Posterior variance:
var(8i]y) = E(67ly) — {E(6ily)}?,
@ This requires calculating another expected value:
E@3ly) = [ e2p(oly)de.

@ Many other possible features of interest. E.g. what is probability that
a coefficient is positive?

p(o; > 0ly) = [ p(oily)do,



Bayesian Computation

All of these posterior features have the form:

Elg(0)|y] = fg(f?)P(Gly)dG,

where g(0) is a function of interest.

@ All these features have integrals in them. Marginal likelihood and
predictive density also involved integrals.

@ Apart from a few simple cases, it is not possible to evaluate these
integrals analytically, and we must turn to the computer.



Bayesian Computation

@ The integrals involved in Bayesian analysis are usually evaluated using
simulation methods.

@ Will use several methods later on. Here we provide some intuition.

e Frequentist asymptotic theory uses Laws of Large Numbers (LLN)
and a Central Limit Theorems (CLT).

@ A typical LLN: “consider a random sample, Y7,..Yy, as N goes to
infinity, the average converges to its expectation” (e.g. Y — 1)

@ Bayesians use LLN: “consider a random sample from the posterior,
81 .8(3) as S goes to infinity, the average of these converges to
Ef6ly]"

o Note: Bayesians use asymptotic theory, but asymptotic in S (under
control of researcher) not N



