
Generalised Least Squares

Generalised Linear Regression Model
We extend the linear regression model by allowing a more
general form for the variance/covariance matrix of the error
term. Specifically, we consider the (data generating) model

y = Xβ + u, Σ ≡ E [uu′|X ] = σ2V (X ) 6= σ2In;

where V (X ) is a symmetric and positive definite matrix and a
function of X , i.e. non-spherical errors. We write V for
convenience.



Example:
Under heteroskedasticity with no autocorrelation,

V =


h1 0 · · · 0
0 h2 · · · 0
... . . . ...
0 0 ... hn

 6= In.

Under autocorrelation with homoskedasticity,

V =


1 ρ1 ρ2 · · · ρn−1
ρ1 1 ρ1 · · · ρn−2
... ... . . . ...

ρn−1 · · · ρ2 ρ1 1

 6= In.



Estimation: GLS Estimator
Consequences for Least Squares estimator: Not BLUE
Under strict exogeneity E [u|X ] = 0, the LS estimator
b = (X ′X )−1 X ′y is unbiased and consistent.
The (conditional) variance/covariance matrix of the LS
estimator b is

Var [b|X ] = E
[
(b − E [b|X ]) (b − E [b|X ])′ |X

]
= E

[
(b − β) (b − β)′ |X

]
= E

[(
(X ′X )−1 X ′u

) (
(X ′X )−1 X ′u

)′
|X
]

= E
[
(X ′X )−1 X ′uu′X (X ′X )−1 |X

]
= (X ′X )−1 X ′E [uu′|X ]X (X ′X )−1

=⇒ Var [b|X ] = σ2 (X ′X )−1 X ′VX (X ′X )−1
.



Notice that if V = In =⇒ Var [b|X ] = σ2 (X ′X )−1. But in
general this is not the case. Therefore, using
se (bk) =

√
s2
[
(X ′X )−1

]
kk

is not valid; the ‘usual’ se is biased
and inconsistent. Similarly, using the ‘usual’ se implies that
the t-statistic does not, under normality, follow t-distribution
or does not converge to the normal distribution asymptotically.
The same result holds for the F-statistic and Wald-statistic.

LS is Not BLUE:
Since V 6= In violates the GM theorem premises; Hence, b it’s
not BLUE.



Efficient Estimation: GLS Estimator

One of the requirements of the GM theorem is that of
spherical errors. So, to obtain the BLUE, we transform the
model to one with spherical errors.
Fact: If V is a symmetric and positive definite matrix, then
there exists a matrix Cn×n such that V−1 = C ′C (note: C is
not unique).
Note: In fact, since V is a positive definite matrix, we have
that V = PΛP ′, where PP ′ = I and columns of P contain the
characteristic vectors of V . Then, let C ′ = PΛ−1/2, so that
C ′C = PΛ−1P ′ = V−1.



Perform the Linear Transformation

y →ỹ = Cy ,
X →X̃ = CX ,
u →ũ = Cu,

so that we have the linear model

Cy = CXβ + Cu =⇒ ỹ = X̃β + ũ.

Remark : Since C is a non-singular, X̃ and X have the same
information. Hence, E

[
t|X̃

]
= E [t|X ] for any t.

Remark : By construction V−1 = C ′C , therefore

(C ′)−1 V−1 = (C ′)−1 C ′C ⇐⇒ (C ′)−1 V−1 = C
⇐⇒ (C ′)−1 V−1C−1 = In
⇐⇒ (CVC ′)−1 = In
⇐⇒ CVC ′ = In



Therefore, the variance-covariance matrix of ũ is

E
[
ũũ′|X̃

]
= E [ũũ′|X ]

= E
[
Cu (Cu)′ |X

]
= E [Cuu′C ′|X ]
= CE [uu′|X ]C ′

= σ2CVC ′

⇐⇒ E [ũũ′|X ] = σ2In;

that is, ũ is spherical.
Also, strict exogeneity holds in the transformed variables as
well

E
[
ũ|X̃

]
= E [ũ|X ] = CE [u|X ] = 0



Fact:[GLS estimator is BLUE] The transformed model
satisfies the GM conditions. So, LS on the transformed model
gives the BLUE. This estimator is called the GLS estimator.
Proof: GM requirements are Linearity of the model, no
multicollinearity, strict exogeneity and spherical error. The
transformed model satisfies all the requirements. Then, we
know that in this case LS on the transformed model gives the
BLUE. Hence, GLS is BLUE.

The GLS estimator (i.e. LS estimator on the transformed
model) is

β̂GLS =
(
X̃ ′X̃

)−1
X̃ ′ỹ

= (X ′C ′CX )−1 X ′C ′Cy

⇐⇒ β̂GLS =
(
X ′V−1X

)−1
X ′V−1y . (1)



As we said GLS estimator is BLUE. The GLS estimator puts
different weights on observations, whereas the OLS puts the
same weight. This will be most apparent when we consider the
case of heteroskedasticity and the Weighted Least Squares
(WLS) estimator, where the weight is inversely related to the
skedasticity of the error.



(Conditional) Variance of β̂GLS differs from that of b1

Var
[
β̂GLS |X

]
= σ2

(
X̃ ′X̃

)−1

= σ2 (X ′C ′CX )−1

= σ2
(
X ′V−1X

)−1

1Note that since V is symmetric so is V−1. Also, recall that
V−1 = C ′C .



It can be seen that under strict exogeneity b and β̂GLS are
both unbiased. But, β̂GLS is relatively more efficient in that it
has lower variance in the matrix form. The gain in efficiency is
achieved by exploiting heteroskedasticity and correlation
between observations in the error term, which operationally, is
to insert the inverse of a (a matrix proportional to) Var [u|X ]
in the OLS formula [i.e., β̂GLS = (X ′V−1X )−1 X ′V−1y =(
X ′Var [u|X ]−1 X

)−1
X ′Var [u|X ]−1 y ].



Interpretation of estimate:
The interpretation is with respect tot the original model. That
is, β̂GLS is an estimate of β; i.e. the effect of X on the mean
value of y .
Similarly, in order to estimate the GLS residuals, we use β̂GLS
and the original model (i.e. model of interest):
ûGLS = y − X β̂GLS .
LS residuals are estimated in the usual way, û = y − Xb.



Remark :[Unknown V matrix] If we have to estimate V then
we are concerned with the Feasible (estimated) GLS (FGLS)
estimator, which replaces V in β̂GLS with V̂ .
In this case, the LS may perform better in finite samples than
the feasible GLS. Also, earlier results for GLS, i.e.
unbiasedness and BLUE, may not hold. To see this, suppose
V̂ = m (X ,Y ), then

E
[
β̂FGLS |X

]
= E

[(
X ′m (X ,Y )−1 X

)−1
X ′m (X ,Y )−1 y |X

]
,

then we cannot pass the expectation inside so unbiasedness
does not hold.



Algebra of GLS: Normal equations
GLS estimator is the LS in the transformed model. The
estimator minimizes a “weighted” sum of squares:

min ũ′ũ = u′C ′Cu = u′V−1u = (y − Xβ)′ V−1 (y − Xβ) .

FOCs:
X̃ ′ˆ̃u = 0, (2)

Using the fact that ˆ̃u = C
(
y − X β̂GLS

)
= CûGLS we can

re-write the

X̃ ′ˆ̃u = X ′C ′CûGLS = 0
=⇒ X ′V−1ûGLS = 0 (3)

Remark: see that X ′ûGLS 6= 0



Note that if we also assume normality of the error term,
u|X ∼ N (0, σ2V ), then the ML estimator is found by
maximizing the likelihood function

max L = 1
(2π)N/2 |σ2V |1/n exp

{
− 1
2πσ2 (y − Xβ)′ V−1 (y − Xβ)

}
,

which gives the same FOCs as above;

X̃ ′ˆ̃u = 0 ⇐⇒ X ′V−1ûGLS = 0



Finite Sample Properties of GLS estimator
Below we list the finite sample properties of the GLS estimator
of the linear model, y = Xβ + u with Σ ≡ E [uu′|X ] = σ2V .

Then, the estimator β̂GLS = (X ′V−1X )−1 X ′V−1y is

1) unbiased: E
[
β̂GLS |X

]
= β (under E [u|X ] = 0)

2) variance is Var
[
β̂GLS |X

]
= σ2 (X ′V−1X )−1

3) it’s BLUE.



Asymptotic Properties of GLS estimator
We can re-write β̂GLS = β + (X ′V−1X )−1 X ′V−1u. Assume
that

Q̃ = p lim
n→∞

(
X ′V−1X

n

)

is finite positive definite matrix. Then, β̂GLS is consistent,

bias
(
β̂GLS ; β

)
= 0 & Var

[
β̂GLS |X

]
= σ2

n

(
X ′V−1X

n

)−1

→ 0

=⇒ β̂GLS
m.s.−→ β =⇒ β̂GLS

p−→ β.

Also, β̂GLS is asymptotically normally distributed with the
stated variance above.



LS Estimator in the GL Regression

Most of the times we don’t know Σ = σ2V and we have to
assume a certain structure and to estimate - which entails the
risk of misspecification. The LS estimator may outperform the
feasible GLS. Most importantly, as we will see, LS does not
need the assumption of a certain structure of V . So, it’s
worthwhile to consider the LS estimator in the generalised
linear model

y = Xβ + u; E [u|X ] = 0 & E [uu′|X ] = σ2V ≡ Σ.

We know that the OLS estimator is

b = (X ′X )−1 X ′y = β + (X ′X )−1 X ′u.



Properties of LS estimator
Finite sample results:
1) Unbiased: E [b|X ] = β, under strict exogeneity.
2) Covariance matrix changes to:

Var [b|X ] = (X ′X )−1 X ′ΣX (X ′X )−1 6= σ2 (X ′X )−1.
3) u|X ∼ N (0,Σ) =⇒

b|X ∼ N
(
β, (X ′X )−1 X ′ΣX (X ′X )−1

)
4) It’s not BLUE.

Asymptotic results:
1) CAN: Consistent and Asymptotically Normal.
2) But, not efficient.



Consistency
Suppose Σ = σ2V , then
Var [b|X ] = σ2 (X ′X )−1 X ′VX (X ′X )−1. We are going to show
that b is a consistent estimator for β.
Assume that the probability limits

Q = p lim
n→∞

(
X ′X
n

)
& S = p lim

n→∞

(
X ′VX
n

)
are finite and positive definite matrices. Also, impose strict
exogeneity. Then,
E [b|X ] = β + E

[
(X ′X )−1 X ′u|X

]
= β + (X ′X )−1 X ′E [u|X ] = β

=⇒ bias (b; β) = 0
and

Var [b|X ] = σ2

n

(
X ′X
n

)−1 X ′VX
n

(
X ′X
n

)−1
a∼ σ2

n Q−1SQ−1 −→ 0

We thus have
b m.s.−→ β =⇒ b p−→ β.



Asymptotic Normality
We know that

√
n (b − β) =

(
X ′X
n

)−1 (X ′u√
n

)
=
(
X ′X
n

)−1 (∑n
i=1 xiui√

n

)

has the same limiting distribution as

Q−1
(∑n

i=1 xiui√
n

)
.



Conditional Heteroskedasticity:
Assume conditional heteroskedasticity, but no autocorrelation
and independent observations; i.e.
σ2

i ≡ E [u2
i |X ] = σ2vi (X ) = {indep} = σ2vi (xi) ≡ σ2vii and

E [uiuj |X ] = 0 for i 6= j . So, we have that

Var
[ n∑

i=1
xiui

]
=

n∑
i=1

Var [xiui ] =
n∑

i=1
E
[
xiui (xiui)′

]
=

n∑
i=1

E
[
xix′iu2

i

]
=

n∑
i=1

E
[
xix′iE

[
u2

i |X
]]

= σ2
n∑

i=1
E [viixix′i ] ≡ σ2

n∑
i=1

Qi



The Asymptotic results are the same as before; In our analysis
of the classical model, the heterogeneity of the variances arose
because of the regressors, but we still achieved the limiting
normal distribution. All that has changed here is that the
variance of u varies across observations as well. Therefore, the
proof of asymptotic normality from before is general enough to
include this model without modification. As long as X is
well-behaved and the diagonal elements of V are finite and
well-behaved, the LS estimator is asymptotically normally
distributed with the stated covariance matrix.



Apply the Lindeberg-Feller CLT with our new definition of
Qi = E [viixix′i ]. That is, as long as the variances of ui are
finite and are not dominated by any single term, so that the
conditions of the Lindeberg-Feller CLT apply to
√
n
(∑n

i=1 xi ui
n

)
, then we have

√
n
(∑n

i=1 xiui

n

)
d−→ N

(
0, σ2S

)
,

where
S = p lim

n→∞

(
X ′VX
n

)



It then follows that
√
n (b − β) d−→ N

(
0,Q−1σ2SQ−1

)
Since, AV (

√
nb) = Q−1σ2SQ−1, the variance for finite sample

of size n is
AV (b) = σ2

n Q−1SQ−1

Then as long as V is known, then a consistent estimator is

ÂV (b) = s2

n

(
X ′X
n

)−1 X ′VX
n

(
X ′X
n

)−1



Unknown V
Consider again the conditional heteroskedasticity case with no
serial correlation and independent observations, but suppose
that V is unknown. Then, how do we estimate AV (

√
nb)?

we need to estimate V .
Example: Consider the simple regression model,
y = β0 + β1xi + u and suppose that vii = x2

i then
σ2

i ≡ Var [ui |xi ] = σ2x2
i , and,

E [uu′|X ] = σ2


x2

1 0 · · · 0
0 x2

2 · · · 0
... . . . ...
0 0 · · · x2

n

 .



In this case, the solution is easy; use s2 and we have the
estimator

ÂV
(√

nb
)

= s2
(
X ′X
n

)−1 X ′diad {x2
1 , . . . , x2

n}X
n

(
X ′X
n

)−1

= s2
(∑n

i=1 x2
i

n

)−1 ∑n
i=1 x4

i
n

(∑n
i=1 x2

i
n

)−1

.

Now suppose instead that

E [uu′|X ] = σ2


x θ1 0 · · · 0
0 x θ2 · · · 0
... . . . ...
0 0 · · · x θn

 .

Then, we need to estimate θ.



Why use LS? White’s Standard Errors

Although GLS is efficient, we still use LS. Specifically, if we
don’t know V then feasible GLS requires specification of V ,
but this entails the risk of specification error.
On the other hand, the use of LS does not require specification
of V . With LS we just need a consistent estimator of X ′VX .
This is sufficient for valid asymptotic analysis with the LS.
Therefore, by using LS we trade efficiency for no specification
error.



To see the issue more clearly, suppose V is a full matrix, then
we have n(n+1)

2 variance and covariance parameters that we
need to estimate. We also have k beta parameters. So, with n
observations we have n(n+1)

2 + k unknowns. We have a
dimensionality problem.
Under LS, we can find a consistent estimator of X ′VX which
is robust to any form of V . But with GLS, the variance is
σ2 (X ′V−1X )−1, but cannot find a consistent and robust
estimator for (X ′V−1X )−1. So, since the standard errors are
robust, in practice we use LS estimator, even though it’s not
BLUE. We will expand on this now.



We have the model

y = Xβ + ε; E [εε′|X ] = σ2V = σ2


v11 · · · v1n
... . . . ...
vn1 · · · vnn

 ,
or

σ2V ≡ Σ =


σ2

1 · · · σ1n
... . . . ...
σ1n · · · σ2

n

 =⇒ σ2
i = σ2vi (X ) = σ2vii .



The LS estimator is

b = (X ′X )−1 X ′y

with
√
n (b − β) d−→ N

0, σ2Q−1SQ−1︸ ︷︷ ︸
AV (√nb)

 ,
where Q = p limn→∞

(
X ′X

n

)
and S = p limn→∞

(
X ′VX

n

)
. For a

finite sample b a∼ N

β, σ
2

n Q−1SQ−1︸ ︷︷ ︸
AV (b)

.



Conditional Heteroskedasticity
Assume that

V = diag {v1 (x1) , v2 (x2) , . . . , vn (xn)} = diag {v11, v22, . . . , vnn} ;

i.e., conditional heteroskedasticity with no autocorrelation and
independent observations.
Suppose V = diag {v11, v22, . . . , vnn} is known, then a
consistent estimator of AV (b) is

σ2

n

(
X ′X
n

)−1 (∑n
i=1 viixix′i

n

)(
X ′X
n

)−1

,

but note that if we know V , then we can also use GLS.



If V is not known, then there are two ways to proceed:
1) White’s approach: Use the LS estimator but be agnostic

about the form of heteroskedasticity.
2) Use feasible GLS. Know the structure of V and thus

estimate V . But we have n date points and we want to
estimate n + K parameters (K β and n σ2

i ). This is not
possible. So, we need to impose some structure on V by
allowing to be a function of few parameters. We will
come back to this later.



Agnostic about V : White’s (1980) standard errors
Under this approach, we are using the LS estimator for β, but
we are going to adjust the standard errors to account for the
possible heteroskedasticity. But, we are not going to go look
for a consistent estimator of σ2

i . In fact, White (1980)
proposed to look at

S0 = 1
n

n∑
i=1

û2
i xix′i ,

where ûi is the LS residual; i.e. û2
i used in lieu of σ2

i = σ2vii .
White showed that

p lim
n→∞

(∑n
i=1 û2

i xix′i
n −

∑n
i=1 σ

2
i xix′i

n

)
= 0.



Note: we are not using n residuals to estimate each of σ2
i s.

But we use (∑n
i=1 û2

i xix′i) /n as an estimator for
(∑n

i=1 σ
2
i xix′i) /n. We made no assumption about the form of

the heteroskedasticity (i.e. σ2
i could take any form). That is,

this procedure works for any kind of heteroskedasticity; i.e., it
even works if we have homoskedasticity.

ÂV (b) = 1
n

(
X ′X
n

)−1 ∑n
i=1 û2

i xix′i
n

(
X ′X
n

)−1

≡ 1
n

(
X ′X
n

)−1

S0

(
X ′X
n

)−1

,

is a consistent estimator of

AV (b) = 1
nQ
−1SQ−1,



The estimator ÂV (b) is the White Heteroskedasticity
Consistent Covariance Estimator (HCCE). HCCE does not
assume any information or knowledge of σ2

i ’s. That is, HCCE
is a robust estimator under any form of heteroskedasticity. So,
HCCE is valid asymptotically even if there is
homoskedasticity.
The square root of diagonal elements of ÂV (b) are the White
SE’s, or, the heteroskedasticity-Robust-Standard Errors.
Given that HCCE is asymptotically valid, then inference based
on White SE’s is asymptotically valid ; i.e. robust t-ratios
are asymptotically normally distributed.



Example: Consider the model y = β1 + β2xi + ui , then the LS
estimator for β2 is

b2 =
∑n

i=1 (xi − x̄) (yi − ȳ)∑n
i=1 (xi − x̄)2

=
∑n

i=1 (xi − x̄) yi∑n
i=1 (xi − x̄)2

= β2 +
∑n

i=1 (xi − x̄) ui∑n
i=1 (xi − x̄)2 ,

then under conditional heteroskedasticity with no
autocorrelation and independent observations,

Var [b2] =
∑n

i=1 (xi − x̄)2 Var (ui |xi)[∑n
i=1 (xi − x̄)2

]2 =
∑n

i=1 (xi − x̄)2 σ2
i[∑n

i=1 (xi − x̄)2
]2 ,



White’s approach replaces σ2
i with the squared LS residual û2

i
and thus have the consistent estimator

V̂ar [b2] =
∑n

i=1 (xi − x̄)2 û2
i[∑n

i=1 (xi − x̄)2
]2 .

But notice that we are not saying that û2
i is a consistent

estimator for σ2
i . What we are saying, it’s that V̂ar [b2] is a

consistent estimator for Var [b2]; that is, ∑n
i=1 (xi − x̄)2 û2

i is a
consistent estimator for ∑n

i=1 (xi − x̄)2 σ2
i .



The White standard errors’ are

White se (b2) =

√√√√√∑n
i=1 (xi − x̄)2 û2

i[∑n
i=1 (xi − x̄)2

]2 .
Notice that under conditional homoskedasticity σ2

i = σ2 for all
i , and we would have

Var [b2] = σ2
∑n

i=1 (xi − x̄)2[∑n
i=1 (xi − x̄)2

]2 = σ2∑n
i=1 (xi − x̄)2 .



Why it doesn’t work with GLS?
Recall the GLS estimator is β̂GLS = (X ′V−1X )−1 X ′V−1y with
Var

[
β̂GLS

]
= σ2 (X ′V−1X )−1. We don’t know V and so we

estimate it by V̂ . But note that, under conditional
heteroskedasticity, ∑n

i=1 û2
i xix′i/n is a consistent estimator for

X ′VX/n. But a consistent estimator of X ′V−1X/n is not
available.


