Chapter 1

Background in Matrix
Theory and Linear Algebra

This chapter reviews basic matrix theory and introduces some
of the elementary notation used throughout the book. Matrices
are objects that represent linear mappings between vector spaces.
The notions that will be predominantly used in this book are very
intimately related to these linear mappings and it is possible to
discuss eigenvalues of linear operators without ever mentioning
their matrix representations. However, to the numerical analyst,
or the engineer, any theory that would be developed in this man-
ner would be insufficient in that it will not be of much help in
developing or understanding computational algorithms. The ab-
straction of linear mappings on vector spaces does however pro-
vide very concise definitions and some important theorems.
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1. Matrices

When dealing with eigenvalues it is more convenient, if not more
relevant, to manipulate complex matrices rather than real matri-
ces. A complex n x m matrix A is an n X m array of complex
numbers

g, izl,...,n, jzl,,m

The set of all n x m matrices is a complex vector space denoted
by C"*™. The main operations with matrices are the following:

e Addition: C = A + B, where A, B and C' are matrices of
size n X m and
Cij = aij + bij ,
i=1,2,...n,5=1,2,...m.

e Multiplication by a scalar: C' = A, where ¢;; = a a;.

e Multiplication by another matrix:
C = AB,
where A € C"*™, B € C™*?,C € C™P, and

m
Cij = Z ik -
k=1

A notation that is often used is that of column vectors and
row vectors. The column vector a ; is the vector consisting of the
j-th column of A, i.e., aj = (aij)i=1,.n- Similarly we will use the
notation a; to denote the i-th row of the matrix A. For example,
we may write that

A — (a.laa.Qa R a.m) .

or
aq,
a2,

A=

Qp,
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The transpose of a matrix A in C™*"™ is a matrix C' in C™*"
whose elements are defined by ¢;; = aj;,1=1,...,m, j=1,...,n.
The transpose of a matrix A is denoted by AT. It is more rele-

vant in eigenvalue problems to use the transpose conjugate matrix
denoted by A” and defined by

AM = T = AT
in which the bar denotes the (element-wise) complex conjugation.

Finally, we should recall that matrices are strongly related to
linear mappings between vector spaces of finite dimension. They
are in fact representations of these transformations with respect
to two given bases; one for the initial vector space and the other
for the image vector space.

2. Square Matrices and Eigenvalues

A matrix belonging to C"*" is said to be square. Some notions
are only defined for square matrices. A square matrix which is
very important is the identity matrix

I ={di}ij=1,..m

where ¢;; is the Kronecker symbol. The identity matrix satisfies
the equality AT = IA = A for every matrix A of size n. The
inverse of a matrix, when it exists, is a matrix C' such that CA =
AC = I. The inverse of A is denoted by A~'.

The determinant of a matrix may be defined in several ways.
For simplicity we adopt here the following recursive definition.
The determinant of a 1 x 1 matrix (a) is defined as the scalar a.
Then the determinant of an n x n matrix is given by

det(A) = Xn:(—l)jﬂaljdet(fllj)

j=1
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where A;; is an (n —1) X (n — 1) matrix obtained by deleting the
1-st row and the j —th column of A. The determinant of a matrix
determines whether or not a matrix is singular since A is singular
if and only if its determinant is zero. We have the following simple
properties:

e det(AB) = det(BA),
o det(AT) = det(A4),

[ ]
o
@
t+
—~
~
~
I
=

From the above definition of the determinant it can be shown
by induction that the function that maps a given complex value
A to the value pa(\) = det(A — AI) is a polynomial of degree n
(Problem P-1.6). This is referred to as the characteristic polyno-
mial of the matrix A.

Definition 1.1 A complex scalar \ is called an eigenvalue of the
square matriz A if there exists a nonzero vector u of C" such that
Au = du. The vector u is called an eigenvector of A associated
with . The set of all the eigenvalues of A is referred to as the
spectrum of A and is denoted by o(A).

An eigenvalue of A is a root of the characteristic polynomial.
Indeed A is an eigenvalue of A iff det(A — AI) = pa(N\) = 0. So
there are at most n distinct eigenvalues. The maximum modulus
of the eigenvalues is called spectral radius and is denoted by p(A):

A) = Al
p(A) = max ||

The trace of a matrix is equal to the sum of all its diagonal ele-
ments,

tI'(A) = Z .
=1
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It can be easily shown that this is also equal to the sum of its
eigenvalues counted with their multiplicities as roots of the char-
acteristic polynomial.

Proposition 1.1 If \ is an eigenvalue of A then X is an eigen-
value of A An eigenvector v of A associated with the eigen-
value X is called left eigenvector of A.

When a distinction is necessary, an eigenvector of A is often called
a right eigenvector. Thus the eigenvalue A and the right and left
eigenvectors, u and v, satisfy the relations

Au=Xu, ovTA=X"
or, equivalently,

wTAT =\l ) Ay =)o .

3. Types of Matrices

The properties of eigenvalues and eigenvectors of square matrices
will sometimes depend on special properties of the matrix A. For
example, the eigenvalues or eigenvectors of the following types of
matrices will all have some special properties.

o Symmetric matrices: AT = A;

e Hermitian matrices: A" = A;

o Skew-symmetric matrices: AT = —A;
o Skew-Hermitian matrices: A = —A;
e Normal matrices: APA = AAM;

e Nonnegative matrices:  a;; > 0, 4,7 = 1,...,n (similar
definition for nonpositive, positive, and negative matrices);
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e Unitary matrices: Q7Q = 1I.

Often, a matrix @ such that Q" Q is diagonal is called orthogonal.
It is worth noting that a unitary matrix () is a matrix whose
inverse is its transpose conjugate QY.

Some matrices have particular structures that are often con-
venient for computational purposes and play important roles in
numerical analysis. The following list though incomplete, gives an
idea of the most important special matrices arising in applications
and algorithms.

e Diagonal matrices: a;; = 0 for j # . Notation:

A= dlag (an,agg, ceey Cl,m) .

e Upper triangular matrices: a;; = 0 for 7 > j.
e Lower triangular matrices: a;; = 0 for i < j.
e Upper bidiagonal matrices: a;; = 0 for j #i or j # ¢+ 1.
e Lower bidiagonal matrices: a;; =0 for j # i or j #1 — 1.

e Tridiagonal matrices: a;; = 0 for any pair 7,j such that
|7 —i|>1. Notation:

A = tridiag (ai,i—l, Qg ai,i+1) .

e Banded matrices: there exist two integers m; and m, such
that a;; # 0 only if ¢ — m; < j < ¢+ m,. The number
my + m, + 1 is called the bandwidth of A.

e Upper Hessenberg matrices: a;; = 0 for any pair 7, j such
that 7 > j + 1. One can define lower Hessenberg matrices
similarly.

e Outer product matrices: A = uv, where both u and v are
vectors.
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e Permutation matrices: the columns of A are a permutation
of the columns of the identity matrix.

e Block diagonal matrices: generalizes the diagonal matrix by
replacing each diagonal entry by a matrix. Notation:

A = diag (An,Am, .- 'aAnn) .

e Block tri-diagonal matrices: generalizes the tri-diagonal ma-
trix by replacing each nonzero entry by a square matrix.
Notation:

A = tridiag (A;;i 1, Aii, Aiit1) -

The above properties emphasize structure, i.e., positions of
the nonzero elements with respect to the zeros, and assume that
there are many zero elements or that the matrix is of low rank.
No such assumption is made for, say, orthogonal or symmetric
matrices.

4. Vector Inner Products and Norms

We define the Hermitian inner product of the two vectors x =
(®i)iz1,.n and y = (Yi)i=1,..n of C" as the complex number

n
(z,y) = in% (1.1)
i=1
which is often rewritten in matrix notation as

(z,y) = y" .
A vector norm on C" is a real-valued function on C", which
satisfies the following three conditions,
|lz]| >0 V=, and |z||=0iff x=0;
|laz|| = |a|l|z||, VzeC", VYaeC;
lz+yll < llzll +[lyll, Ve,yeC”.
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Associated with the inner product (1.1) is the Euclidean norm
of a complex vector defined by

lzllz = (z,2)'7* .
A fundamental additional property in matrix computations is the
simple relation

(Az,y) = (v, A%y) Va,yeC” (1.2)

the proof of which is straightforward. The following proposition
is a consequence of the above equality.

Proposition 1.2 Unitary matrices preserve the Hermitian inner
product, i.e., (Qx,Qy) = (x,y) for any unitary matriz Q.

Proof. Indeed (Qz,Qy) = (z,Q"Qy) = (z,vy). ]

In particular a unitary matrix preserves the 2-norm metric, i.e.,
it is isometric with respect to the 2-norm.

The most commonly used vector norms in numerical linear
algebra are special cases of the Holder norms

el = (31t " (13

Note that the limit of ||z||, when p tends to infinity exists and is
equal to the maximum modulus of the x;’s. This defines a norm
denoted by |[|.||s. The cases p =1, p = 2, and p = oo lead to the
most important norms in practice,

[l = feo] + |o] + - - + [

1/2
lzll = [l + |22l + -+ + |2a]’]

[2]loo = max |z;] .
i=1,..,n

Loy

A useful relation concerning the 2-norm is the so-called Cauchy-
Schwartz inequality:

|z, )| < [lll2llyll2-
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5. Matrix Norms

For a general matrix A in C"*™ we define a special set of norms
of matrices as follows

Azl

Allyg = .
|| ||pq xE(Dm, T#0 ||I||l1

(1.4)

We say that the norms ||.||,, are induced by the two norms ||.||,
and ||.||,- These norms satisfy the usual properties of norms, i.e.,

JA>0 VA €C™™ and ||A]|=0 iff A=0;
laAll = |a|[|A,YA € ™™, Va €T
|A+ Bl < [|All+1B]l, VA,B €C™™.

Again the most important cases are the ones associated with
the cases p,q = 1,2,00. The case ¢ = p is of particular interest
and the associated norm ||.||,, is simply denoted by ||.||,.

A fundamental property of these norms is that

[ABl, < [|All,[|Bllp,

which is an immediate consequence of the definition (1.4). Ma-
trix norms that satisfy the above property are sometimes called
consistent. As a result of the above inequality, for example, we
have that for any square matrix A,

1A™], < A4l17

which implies in particular that the matrix A converges to zero
if any of its p-norms is less than 1.
The Frobenius norm of a matrix is defined by

j=li=1

m n 1/2
[AllF = (ZZI%‘IZ) : (1.5)

This can be viewed as the 2-norm of the column (or row) vector
in €™ consisting of all the columns (resp. rows) of A listed from
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1 to m (resp. 1 to n). It can easily be shown that this norm is
also consistent, in spite of the fact that is not induced by a pair
of vector norms, i.e., it is not derived from a formula of the form
(1.4), see Problem P-1.3. However, it does not satisfy some of the
other properties of the p-norms. For example, the Frobenius norm
of the identity matrix is not unity. To avoid these difficulties, we
will only use the term matrix norm for a norm that is induced by
two norms as in the definition (1.4). Thus, we will not consider
the Frobenius norm to be a proper matrix norm, according to our
conventions, even though it is consistent.

It can be shown that the norms of matrices defined above
satisfy the following equalities that lead to alternative definitions
that are often easier to work with.

4l = max 3 o (16)
4l = . 3% o] (17)
1Al = [p(A"4)]"* = [praam)]™”” ; (18)
1AL = [ir(a” )] = [eaam)]” . (19

As will be shown in Section 5, the eigenvalues of A7 A are
nonnegative. Their square roots are called singular values of A
and are denoted by o;,i = 1,...,m. Thus, the relation (1.8)
shows that ||Al|s is equal to o7, the largest singular value of A.

Example 1.1 From the above properties, it is clear that the spectral
radius p(A) is equal to the 2-norm of a matrix when the matrix is
Hermitian. However, it is not a matrix norm in general. For example,
the first property of norms is not satisfied, since for

0 1
4=(5 o)
we have p(A) = 0 while A # 0. The triangle inequality is also not

satisfied for the pair A, and B = AT where A is defined above. Indeed,
p(A+B) =1 while p(A)+ p(B)=0.
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6. Subspaces

A subspace of C" is a subset of C" that is also a complex vector
space. The set of all linear combinations of a set of vectors G' =

{a1,a2,...,a,} of C" is a vector subspace called the linear span of
G,

span{G} = span{ai,as,...,a,}

q
= {z eC" | z= Zaiai ; {atici,. 4 € (Dq} )

=1

If the a;’s are linearly independent, then each vector of span{G}
admits a unique expression as a linear combination of the a;’s.
The set G is then called a basis of the subspace span{G}.

Given two vector subspaces S; and Ss, their sum S is a sub-
space defined as the set of all vectors that are equal to the sum of a
vector of S7 and a vector of S,. The intersection of two subspaces
is also a subspace. If the intersection of S; and S, is reduced to
{0} then the sum of S; and S, is called their direct sum and is
denoted by S = 51 @ S>. When S is equal to C" then every vec-
tor x of C" can be decomposed in a unique way as the sum of an
element z; of S; and an element x5 of S5. The transformation P
that maps x into x; is a linear transformation that is idempotent
(P? = P). It is called a projector, onto S; along Sy.

Two subspaces of importance that are associated with a ma-
trix A of C™™ are its range defined by

Ran(A) = {Az | z € C™} (1.10)
and its kernel or null space
Ker(A) ={z € C™ | Az =0}.

The range of A is clearly equal to the linear span of its columns.
The rank of a matrix is equal to the dimension of the range of A.

A subspace S is said to be invariant under a (square) matrix
A whenever AS C S. In particular for any eigenvalue A of A
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the subspace Ker(A — AI) is invariant under A. The subspace
Ker(A—\I) is called the eigenspace associated with A and consists
of all the eigenvectors of A associated with A and the vector 0.

7. Orthogonal Vectors and Subspaces

A set of vectors G = {ay,as, ...,a,} is said to be orthogonal if
(a;,a;) =0 when i#j

It is orthonormal if in addition every vector of G has a 2-norm
equal to unity. Every subspace admits an orthonormal basis which
is obtained by taking any basis and “orthonormalizing” it. The
orthonormalization can be achieved by an algorithm referred to
as the Gram-Schmidt process which we now describe. Given a set
of linearly independent vectors {z1, xo, . ..,z }, we first normalize
the vector 1, i.e., we divide it by its 2-norm, to obtain the scaled
vector ¢;. Then x5 is orthogonalized against the vector ¢; by
subtracting from x5 a multiple of ¢; to make the resulting vector
orthogonal to ¢, i.e.,

Ty & Ty — (%Jh)fh-

The resulting vector is again normalized to yield the second vec-
tor go. The i-th step of the Gram-Schmidt process consists of
orthogonalizing the vector x; against all previous vectors g;.

ALGORITHM 1.1 Gram-Schmidt

1. Start: Compute ry; := ||z1|]o. If 111 = 0 stop, else ¢ =
Il/TH.

2. Loop: For j =2,...,r do:

(a) Compute r;; == (v;,q;) fori=1,2,...,j—1,

(b) G :=mx; — El TijQi
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(c) rij = lldllz ,
(d) If rj; = 0 then stop, else g; := G/r;j.

It is easy to prove that the above algorithm will not break
down, i.e., all r steps will be completed, if and only if the family
of vectors z1,xs,...,x, is linearly independent. From 2-(b) and
2-(c) it is clear that at every step of the algorithm the following
relation holds:

j
Tj =) Tijli -
=1

If welet X = [z1,29,...,2:], @ = [¢1, G, - - -, ¢r], and if R denotes
the r x r upper triangular matrix whose nonzero elements are
the r;; defined in the algorithm, then the above relation can be
written as

X=QR. (1.11)

This is called the QR decomposition of the n x r matrix X. Thus,
from what was said above the QR decomposition of a matrix exists
whenever the column vectors of X form a linearly independent set
of vectors.

The above algorithm is the standard Gram-Schmidt process.
There are other formulations of the same algorithm which are

mathematically equivalent but have better numerical properties.
The Modified Gram-Schmidt algorithm (MGSA) is one such al-

ternative.
ALGORITHM 1.2 Modified Gram-Schmidt
1. Start: define riy := ||x1||2. If 113 = 0 stop, else 1 := x1/711.
2. Loop: For j =2,...,r do:
(a) Define ¢ := w;,
q=q—Tijg;

(b) Fori=1,...,5—1, do {Tza = (4 ¢)

(c) Compute 7;; = ||{]|2,
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(d) If rj; = 0 then stop, else g; := G/r;;.

A vector that is orthogonal to all the vectors of a subspace
S is said to be orthogonal to that subspace. The set of all the
vectors that are orthogonal to S is a vector subspace called the
orthogonal complement of S and denoted by S*. The space C" is
the direct sum of S and its orthogonal complement. The projector
onto S along its orthogonal complement is called an orthogonal
projector onto S. If V' = [vy,vs, ..., v,] is an orthonormal matrix
then VHV = I, ie., V is orthogonal. However, VV is not
the identity matrix but represents the orthogonal projector onto
span{V'}, see Section 1 of Chapter III for details.

8. Canonical Forms of Matrices

In this section we will be concerned with the reduction of square
matrices into matrices that have simpler forms, such as diagonal
or bidiagonal, or triangular. By reduction we mean a transforma-
tion that preserves the eigenvalues of a matrix.

Definition 1.2 Two matrices A and B are said to be similar if
there is a nonsingular matriz X such that

A=XBX!
The mapping B — A is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity
transformations preserve the eigenvalues of matrix. An eigenvec-
tor ug of B is transformed into the eigenvector uy = Xupg of A.
In effect, a similarity transformation amounts to representing the
matrix B in a different basis.

We now need to define some terminology.

1. An eigenvalue X of A is said to have algebraic multiplicity u if
it is a root of multiplicity u of the characteristic polynomial.
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2. If an eigenvalue is of algebraic multiplicity one it is said to
be simple. A nonsimple eigenvalue is said to be multiple.

3. An eigenvalue ) of A is said to have geometric multiplicity v
if the maximum number of independent eigenvectors associ-
ated with it is . In other words the geometric multiplicity
7 is the dimension of the eigenspace Ker (A — AI).

4. A matrix is said to be derogatory if the geometric multiplic-
ity of at least one of its eigenvalues is larger than one.

5. An eigenvalue is said to be semi-simple if its algebraic mul-
tiplicity is equal to its geometric multiplicity. An eigenvalue
that is not semi-simple is called defective .

We will often denote by i, \g, ..., Ay, (p < n), all the distinct
eigenvalues of A. It is a simple exercise to show that the char-
acteristic polynomials of two similar matrices are identical, see
Exercise P-1.7. Therefore, the eigenvalues of two similar matrices
are equal and so are their algebraic multiplicities. Moreover if v
is an eigenvector of B then Xwv is an eigenvector of A and, con-
versely, if y is an eigenvector of A then X 'y is an eigenvector of
B. As a result the number of independent eigenvectors associated
with a given eigenvalue is the same for two similar matrices, i.e.,
their geometric multiplicity is also the same.

The possible desired forms are numerous but they all have the
common goal of attempting to simplify the original eigenvalue
problem. Here are some possibilities with comments as to their
usefulness.

e Diagonal: the simplest and certainly most desirable choice
but it is not always achievable.

e Jordan: this is an upper bidiagonal matrix with ones or
zeroes on the super diagonal. Always possible but not nu-
merically trustworthy.
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e Upper triangular: in practice this is the most reasonable
compromise as the similarity from the original matrix to a
triangular form can be chosen to be isometric and there-
fore the transformation can be achieved via a sequence of
elementary unitary transformations which are numerically
stable.

8.1. Reduction to the Diagonal Form.

The simplest form in which a matrix can be reduced is undoubt-
edly the diagonal form but this reduction is, unfortunately, not
always possible. A matrix that can be reduced to the diagonal
form is called diagonalizable. The following theorem characterizes
such matrices.

Theorem 1.1 A matriz of dimension n is diagonalizable if and
only if it has n linearly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists
a nonsingular matrix X and a diagonal matrix D such that A =
XDX~!orequivalently AX = XD, where D is a diagonal matrix.
This is equivalent to saying that there exist n linearly independent
vectors — the n column-vectors of X — such that Ax; = d;x;, i.e.,
each of these column-vectors is an eigenvector of A. ]

A matrix that is diagonalizable has only semi-simple eigenvalues.
Conversely, if all the eigenvalues of a matrix are semi-simple then
there exist n eigenvectors of the matrix A. It can be easily shown
that these eigenvectors are linearly independent, see Exercise P-
1.1. As a result we have the following proposition.

Proposition 1.3 A matriz is diagonalizable if and only if all its
eigenvalues are semi-simple.

Since every simple eigenvalue is semi-simple, an immediate
corollary of the above result is that when A has n distinct eigen-
values then it is diagonalizable.
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8.2. The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canon-
ical forms of matrices is the well-known Jordan form. In what fol-
lows, the main constructive steps that lead to the Jordan canoni-
cal decomposition are outlined. For details, the reader is referred
to a standard book on matrix theory or linear algebra.

e For every integer [ and each eigenvalue )\; it is true that

Ker(A — N1 D Ker(A — NI .

e Because we are in a finite dimensional space the above property
implies that there is a first integer /; such that

Ker(A — \ 1) = Ker(4 — N\ 1),

and in fact Ker(4 — \1)! = Ker(A — N\ I)% for all [ > [;. The
integer [; is called the index of ;.

e The subspace M; = Ker(A — \;I)% is invariant under A. More-
over, the space C" is the direct sum of the subspaces M;’s, for
i=1,2,...,p. Let m; = dim(M;).

e In each invariant subspace M; there are ~; independent eigen-
vectors, i.e., elements of Ker(A — \; 1), with 7; < m,;. It turns
out that this set of vectors can be completed to form a basis
of M; by adding to it elements of Ker(A — A\;T)?, then elements
of Ker(A — \;1)3, and so on. These elements are generated by
starting separately from each eigenvector wu, i.e., an element of
Ker(A — X\;I), and then seeking an element that satisfies (4 —
Ail)z; = u. Then, more generally we construct z;;; by solving
the equation (A — \;I)z;11 = z; when possible. The vector z;
belongs to Ker(A — \;1)**! and is called a principal vector (some-
times generalized eigenvector). The process is continued until no
more principal vectors are found. There are at most [; principal
vectors for each of the 7; eigenvectors.
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e The final step is to represent the original matrix A with respect
to the basis made up of the p bases of the invariant subspaces M;
defined in the previous step.

The matrix representation J of A in the new basis described
above has the block diagonal structure,

Ji
Js

X 'AX =J =

Ip

where each .J; corresponds to the subspace M, associated with
the eigenvalue \;. It is of size m; and it has itself the following
structure,

Ji A1

- Ao 1

Ji’n Ai
Each of the blocks J;;. corresponds to a different eigenvector as-
sociated with the eigenvalue );. Its size is equal to the number of

principal vectors found for the eigenvector to which the block is
associated and does not exceed ;.

Theorem 1.2 Any matriz A can be reduced to a block diagonal
matrix consisting of p diagonal blocks, each associated with a dis-
tinct eigenvalue. FEach diagonal block number i has itself a block
diagonal structure consisting of v; subblocks, where ; is the ge-
ometric multiplicity of the eigenvalue \;. Fach of the subblocks,
referred to as a Jordan block, is an upper bidiagonal matriz of
size not exceeding l;, with the constant \; on the diagonal and the
constant one on the super diagonal.
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We refer to the i-th diagonal block, 7+ = 1,...,p as the i-
th Jordan submatrix (sometimes “Jordan Box”). The Jordan
submatrix number 7 starts in column j; = m;+mo+---+m; 1 +1.
From the above form it is not difficult to see that M; = Ker(A —
M\ I)% is merely the span of the columns j;, j; + 1,...,Ji1 — 1
of the matrix X. These vectors are all the eigenvectors and the
principal vectors associated with the eigenvalue A;.

Since A and J are similar matrices their characteristic poly-
nomials are identical. Hence, it is clear that the algebraic multi-
plicity of an eigenvalue ); is equal to the dimension of M;:

w; = m; = dim (M;) .
As a result,

i = Y-

Because C" is the direct sum of the subspaces M;,i =1,...,p
each vector x can be written in a unique way as

T=x1+To+ - +T;+ -+ Tp,

where x; is a member of the subspace M;. The linear transforma-
tion defined by
P :x— x;

is a projector onto M; along the direct sum of the subspaces
M;,j # i. The family of projectors P;,« = 1,...,p satisfies the
following properties,

Ran(P;) = M, (1.12)
PPj=PiP,=0, ifi #j (1.13)
p
pP=1 (1.14)
i=1

In fact it is easy to see that the above three properties define a
decomposition of C" into a direct sum of the images of the projec-
tors P; in a unique way. More precisely, any family of projectors
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that satisfies the above three properties is uniquely determined
and is associated with the decomposition of C" into the direct
sum of the images of the P; ’s.

It is helpful for the understanding of the Jordan canonical
form to determine the matrix representation of the projectors P;.
Consider the matrix jl which is obtained from the Jordan matrix
by replacing all the diagonal submatrices by zero blocks except
the i submatrix which is replaced by the identity matrix.

0

0

In other words if each i-th Jordan submatrix starts at the column
number j;, then the columns of .J; will be zero columns except
columns j;,...,J:41 — 1 which are the corresponding columns of
the identity matrix. Let P = X.J;X '. Then it is not difficult to
verify that P is a projector and that,

1. The range of P, is the span of columns Jis- -y Jix1 — 1 of the
matrix X. This is the same subspace as M;.

2. ]%—]5]-:]5]-152-:0 whenever ¢ # j
3. P+P+- 4+ P=1

According to our observation concerning the uniqueness of a fam-
ily of projectors that satisfy (1.12) - (1.14) this implies that

~

P=F , 1=1...,p
Example 1.2 Let us assume that the eigenvalue )\; is simple. Then,

P, = XeieZHXf1 = uile,
in which we have defined u; = Xe; and w; = X He;. Tt is easy to show
that u; and w; are right and left eigenvectors, respectively, associated

with \; and normalized so that wZH u; = 1.
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Consider now the matrix ﬁi obtained from the Jordan form of
A by replacing each Jordan submatrix by a zero matrix except the
i-th submatrix which is obtained by zeroing its diagonal elements,
ie.,

0

Ji — il

0

Define D; = XlA)iX*I. Then it is a simple exercise to show by
means of the explicit expression for P;, that

Di=(A— NP, (1.15)

Moreover, Di = 0, i.e., D; is a nilpotent matriz of index [;. We
are now ready to state the following important theorem which can
be viewed as an alternative mathematical formulation of Theorem
1.2 on Jordan forms.

Theorem 1.3 Every square matriz A admits the decomposition

A= fj(Az-Pi + D) (1.16)

=1

where the family of projectors {P;}i—1,.., satisfies the conditions
(1.12), (1.13), and (1.14), and where D; = (A—N,I)P; is a nilpo-

tent operator of index [;.

Proof. From (1.15), we have

Summing up the above equalities for i = 1,2,...,p we get

p

P
AY Pi=) (MPi+Dy)
i-1

=1
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The proof follows by substituting (1.14) into the left-hand-side. m

The projector P, is called the spectral projector associated with
the eigenvalue \;. The linear operator D; is called the nilpotent
associated with \;. The decomposition (1.16) is referred to as
the spectral decomposition of A. Additional properties that are
easy to prove from the various expressions of P; and D; are the
following

PiD; = D;P; = 6;P; (1.17)
AP, = P,A = PAP, = \;P; + D; (1.18)
AFP, = PAY = PARP, =

Pi(\I + Di)* = (NI + Di)* P, (1.19)

AR = [I’ji, e ?'%‘ji+1*1]Bi[yji’ e ,yjiJrl,l]H (120)

where B; is the i-th Jordan submatrix and where the columns y;
are the columns of the matrix X ¥,

Corollary 1.1 For any matriz norm ||.||, the following relation
holds

lim [|A%|YE = p(A) . (1.21)

k—o00

Proof. The proof of this corollary is the subject of exercise
P-1.8. ]

Another way of stating the above corollary is that there is a se-
quence € such that

145 = (p(A) + €)"

where limy,_, o, €, = 0.
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8.3. The Schur Canonical Form

We will now show that any matrix is unitarily similar to an upper
triangular matrix. The only result needed to prove the following
theorem is that any vector of 2-norm one can be completed by
n — 1 additional vectors to form an orthonormal basis of C".

Theorem 1.4 For any given matriz A there exists a unitary ma-
triz Q such that Q7 AQ = R is upper triangular.

Proof. The proof is by induction over the dimension n. The
result is trivial for n = 1. Let us assume that it is true for n—1 and
consider any matrix A of size n. The matrix admits at least one
eigenvector u that is associated with an eigenvalue A\. We assume
without loss of generality that ||ulls = 1. We can complete the
vector u into an orthonormal set, i.e., we can find an n X (n — 1)
matrix V' such that the n X n matrix U = [u, V] is unitary. Then
we have AU = [Au, AV] and hence,

’LLH

a (1.22)

UM AU = [

} [Au,AV]z(A uHAV)

0 VHAV

We now use our induction hypothesis for the (n — 1) x (n — 1)
matrix B = V7 AV: there exists an (n — 1) x (n — 1) unitary
matrix @, such that Q7 BQ, = R, is upper triangular. Let us
define the n x n matrix

A 1 0

2=y )
and multiply both members of (1.22) by Qfl from the left and Q;
from the right. The resulting matrix is clearly upper triangular

and this shows that the result is true for 4, with Q = Q,U which
is a unitary n X n matrix. [

A simpler proof that uses the Jordan canonical form and the QR
decomposition is the subject of Exercise P-1.5. Since the matrix
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R is triangular and similar to A, its diagonal elements are equal
to the eigenvalues of A ordered in a certain manner. In fact
it is easy to extend the proof of the theorem to show that we
can obtain this factorization with any order we want for the
eigenvalues. One might ask the question as to which order might
be best numerically but the answer to the question goes beyond
the scope of this book. Despite its simplicity, the above theorem
has far reaching consequences some of which will be examined in
the next section.

It is important to note that for any k£ < n the subspace
spanned by the first &£ columns of () is invariant under A. This is
because from the Schur decomposition we have, for 1 < j <k,

1=J
Ag; = rijg; -
=1

In fact, letting Qr = [¢1, G2, - - -, gx] and Ry, be the principal leading
submatrix of dimension k& of R, the above relation can be rewritten
as

AQr = QiR

which we refer to as the partial Schur decomposition of A. The
simplest case of this decomposition is when k£ = 1, in which case
¢1 is an eigenvector. The vectors ¢; are usually referred to as
Schur vectors. Note that the Schur vectors are not unique and in
fact they depend on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quasi
Schur form, also referred to as the real Schur form. Here, diagonal
blocks of size 2 x 2 are allowed in the upper triangular matrix
R. The reason for this is to avoid complex arithmetic when the
original matrix is real. A 2 x 2 block is associated with each
complex conjugate pair of eigenvalues of the matrix.

Example 1.3 Consider the 3 x 3 matrix

1 10 0
A= -1 3 1
-1 01
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The matrix A has the pair of complex conjugate eigenvalues
2.4069.. £ 1 x 3.2110..

and the real eigenvalue 0.1863... The standard (complex) Schur form
is given by the pair of matrices

0.3381 —0.8462¢  0.3572 —0.1071z  0.1749
V=1 0.3193 —0.0105: —0.2263 —0.6786: —0.6214
0.1824 4 0.1852¢ —0.2659 — 0.52777  0.7637

and

2.4069 + 3.2110z  4.6073 — 4.7030¢ —2.3418 — 5.2330:
S = 0 24069 —3.2110¢ —2.0251 — 1.20162
0 0 0.1863

It is possible to avoid complex arithmetic by using the quasi-Schur
form which consists of the pair of matrices

—0.9768 0.1236  0.1749
U=1] —-0.0121 0.7834 —0.6214
0.2138 0.6091  0.7637

and
1.3129 —7.7033 6.0407
R=| 1.4938 3.5008 —1.3870
0 0 0.1863

We would like to conclude this section by pointing out that
the Schur and the quasi Schur forms of a given matrix are in no
way unique. In addition to the dependence on the ordering of the
eigenvalues, any column of () can be multiplied by a complex sign
e and a new corresponding R can be found. For the quasi Schur
form there are infinitely many ways of selecting the 2 x 2 blocks,
corresponding to applying arbitrary rotations to the columns of
() associated with these blocks.
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9. Normal and Hermitian Matrices

In this section we look at the specific properties of normal matri-
ces and Hermitian matrices regarding among other things their
spectra and some important optimality properties of their eigen-
values. The most common normal matrices that arise in practice
are Hermitian or skew-Hermitian. In fact, symmetric real ma-
trices form a large part of the matrices that arise in practical
eigenvalue problems.

9.1. Normal Matrices

By definition a matrix is said to be normal if it satisfies the rela-
tion

AT A = AAT. (1.23)

An immediate property of normal matrices is stated in the fol-
lowing proposition.

Proposition 1.4 If a normal matriz is triangular then it is nec-
essarily a diagonal matriz.

Proof.  Assume for example that A is upper triangular and
normal and let us compare the first diagonal element of the left
hand side matrix of (1.23) with the corresponding element of the
matrix on the right hand side. We obtain that

n
|an|2 = Z |@1j|2a
j=1

which shows that the elements of the first row are zeros except
for the diagonal one. The same argument can now be used for
the second row, the third row, and so on to the last row, to show
that aij:0fori7éj. |

As a consequence of this we have the following important re-
sult.
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Theorem 1.5 A matriz is normal if and only if it is unitarily
stmilar to a diagonal matriz.

Proof. It is straightforward to verify that a matrix which is
unitarily similar to a diagonal matrix is normal. Let us now show
that any normal matrix A is unitarily similar to a diagonal matrix.
Let A = QRQ be the Schur canonical form of A where we recall
that () is unitary and R is upper triangular. By the normality of
A we have
QR"Q"QRQ™ = QRQTQRTQ"
or,
QR"RQ™ = QRR"Q"

Upon multiplication by @ on the left and @ on the right this
leads to the equality R¥ R = RR" which means that R is normal,
and according to the previous proposition this is only possible if
R is diagonal. (]

Thus, any normal matrix is diagonalizable and admits an or-
thonormal basis of eigenvectors, namely the column vectors of
Q.

Clearly, Hermitian matrices are just a particular case of nor-
mal matrices. Since a normal matrix satisfies the relation A =
QDQY, with D diagonal and @ unitary, the eigenvalues of A are
the diagonal entries of D. Therefore, if these entries are real it is
clear that we will have A = A. This is restated in the following
corollary.

Corollary 1.2 A normal matriz whose eigenvalues are real is
Hermitian.

As will be seen shortly the converse is also true, in that a Hermi-
tian matrix has real eigenvalues.
An eigenvalue A of any matrix satisfies the relation

(Au, u)

(u, u)
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where u is an associated eigenvector. More generally one might
consider the complex scalars,

(Az, )

o) = 120 (1.24)

defined for any nonzero vector in C". These ratios are referred
to as Rayleigh quotients and are important both from theoretical
and practical purposes. The set of all possible Rayleigh quotients
as x runs over C" is called the field of values of A. This set is
clearly bounded since each |u(z)| is bounded by the the 2-norm
of A, ie., |u(x)| < ||Alz for all z.

If a matrix is normal then any vector z in C" can be expressed

Z §idi
i=1

where the vectors ¢; form an orthogonal basis of eigenvectors, and
the expression for pi(z) becomes,

as

(Ara) | Sialal &
— = = A 1.25
M) = oy T Tgar S a2t ()

il
0<fi= s
k=1 &l
From a well-known characterization of convex hulls due to Haus-
dorff, (Hausdorft’s convex hull theorem) this means that the set
of all possible Rayleigh quotients as x runs over all of C" is equal
to the convex hull of the A;’s. This leads to the following theorem.

n
<1, and Zﬂizl
i=1

Theorem 1.6 The field of values of a normal matriz is equal to
the convex hull of its spectrum.

The question that arises next is whether or not this is also true
for non-normal matrices and the answer is no, i.e., the convex hull
of the eigenvalues and the field of values of a non-normal matrix
are different in general, see Exercise P-1.10 for an example. As a
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generic example, one can take any nonsymmetric real matrix that
has real eigenvalues only; its field of values will contain imaginary
values. It has been shown (Hausdorff) that the field of values of a
matrix is a convex set. Since the eigenvalues are members of the
field of values, their convex hull is contained in the field of values.
This is summarized in the following proposition.

Proposition 1.5 The field of values of an arbitrary matric is
a convexr set which contains the convex hull of its spectrum. It
1s equal to the convexr hull of the spectrum when the matriz in
normal.

9.2. Hermitian Matrices

A first and important result on Hermitian matrices is the follow-
ing.

Theorem 1.7 The eigenvalues of a Hermitian matriz are real,

i.e., o(A) CR.

Proof. Let A\ be an eigenvalue of A and u an associated eigen-
vector or 2-norm unity. Then

A= (Au,u) = (u, Au) = (Au,u) = X

Moreover, it is not difficult to see that if, in addition, the matrix
is real then the eigenvectors can be chosen to be real, see Exer-
cise P-1.16. Since a Hermitian matrix is normal an immediate
consequence of Theorem 1.5 is the following result.

Theorem 1.8 Any Hermitian matriz is unitarily similar to a real
diagonal matrix.
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In particular a Hermitian matrix admits a set of orthonormal
eigenvectors that form a basis of C".

In the proof of Theorem 1.6 we used the fact that the inner
products (Au,u) are real. More generally it is clear that any
Hermitian matrix is such that (Az,x) is real for any vector x €
C". It turns out that the converse is also true, i.e., it can be shown
that if (Az, z) is real for all vectors z in C" then the matrix A is
Hermitian, see Problem P-1.14.

Eigenvalues of Hermitian matrices can be characterized by op-
timality properties of the Rayleigh quotients (1.24). The best
known of these is the Min-Max principle. Let us order all the
eigenvalues of A in descending order:

A > A > A,

Here the eigenvalues are not necessarily distinct and they are
repeated, each according to its multiplicity. In what follows, we
denote by S a generic subspace of C". Then we have the following
theorem.

Theorem 1.9 (Min-Max theorem) The eigenvalues of a Her-
mitian matriz A are characterized by the relation

: (Az, x)
)‘k = min max
s, dim (S)=n—k+1 TESTFO (z,7)

(1.26)

Proof. Let {¢;};=1,. ., be an orthonormal basis of C" consisting
of eigenvectors of A associated with Aq,..., A\, respectively. Let
Sk be the subspace spanned by the first k£ of these vectors and
denote by p(S) the maximum of (Ax,x)/(z,z) over all nonzero
vectors of a subspace S. Since the dimension of S; is k, a well-
known theorem of linear algebra shows that its intersection with
any subspace S of dimension n — k + 1 is not reduced to {0}, i.e.,
there is vector x in S S). For this x = Ele &:q; we have

(Az,2) _ Sh, Ml&P
(I’, .%‘) Z?:l |§z|2 -

Ak
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so that p(S) > Ax .

Consider on the other hand the particular subspace Sy of di-
mension n — k + 1 which is spanned by gy, ..., q,. For each vector
x in this subspace we have

(Az, ) _ ik )\i|§i|2
(z, ) k&Gl T
so that u(Sp) < Ag. In other words, as S runs over all n — k + 1-

dimensional subspaces p(S) is always > A and there is at least
one subspace Sy for which 1(Sy) < A\x which shows the result. m

Ak

This result is attributed to Courant and Fisher, and to Poincaré
and Weyl. It is often referred to as Courant-Fisher min-max prin-
ciple or theorem. As a particular case, the largest eigenvalue of
A satisfies
)\1 = max (AI7 :E) .
o0 (z, 1)

(1.27)

Actually, there are four different ways of rewriting the above
characterization. The second formulation is

: (Az, z)
A = max min
s, dim (s)=k *€Sa#0  (z,1)

(1.28)

and the two other ones can be obtained from the above two for-
mulations by simply relabeling the eigenvalues increasingly in-
stead of decreasingly. Thus, with our labeling of the eigenvalues
in descending order, (1.28) tells us that the smallest eigenvalue
satisfies,
A\, = min (Az, 7) .
220 (x,x)

with A\, replaced by )\ if the eigenvalues are relabeled increasingly.
In order for all the eigenvalues of a Hermitian matrix to be
positive it is necessary and sufficient that

(Az,z) >0, YzeC" z#0.
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Such a matrix is called positive definite. A matrix that satisfies
(Az,z) > 0 for any z is said to be positive semi-definite. In partic-
ular the matrix A” A is semi-positive definite for any rectangular
matrix, since

(AT Az, z) = (Az,Az) > 0 VY a.

Similarly, AA¥ is also a Hermitian semi-positive definite matrix.
The square roots of the eigenvalues of A7 A for a general rectan-
gular matrix A are called the singular values of A and are denoted
by o;. In Section 1.5 we have stated without proof that the 2-
norm of any matrix A is equal to the largest singular value o; of
A. This is now an obvious fact, because

|Acl3 _ (Ar,Ax) (A" Aw)

Al = _ (Az, Az) (AAz,z)
M=ng o = oo T G 7

which results from (1.27).

Another characterization of eigenvalues, known as the Courant
characterization, is stated in the next theorem. In contrast with
the min-max theorem this property is recursive in nature.

Theorem 1.10 The eigenvalue \; and the corresponding eigen-
vector q; of a Hermitian matriz are such that

A A
A = (Aq1, 1) _ o (Az, )
(71, q1) 2eC" 220 (7,7)
and for k > 1:
A A
Ap = (Agr, qe) max (Az, ) . (1.29)
(qk, ar) 1#0,q 2=..=¢fL_ z=0 (T, )

In other words, the maximum of the Rayleigh quotient over a
subspace that is orthogonal to the first k£ — 1 eigenvectors is equal
to A\r and is achieved for the eigenvector ¢, associated with \j.
The proof follows easily from the expansion (1.25) of the Rayleigh
quotient.
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10. Nonnegative Matrices

A nonnegative matrix is a matrix whose entries are nonnegative,
Qg5 Z 0.

Nonnegative matrices arise in many applications and play a cru-
cial role in the theory of matrices. They play for example a key
role in the analysis of convergence of iterative methods for par-
tial differential equations. They also arise in economics, queuing
theory, chemical engineering, etc..

A matrix is said to be reducible if, there is a permutation ma-
trix P such that PAPT is block upper triangular. An important
result concerning nonnegative matrices is the following theorem
known as the Perron-Frobenius theorem.

Theorem 1.11 Let A be a real n xn nonnegative irreducible ma-
triz. Then X\ = p(A), the spectral radius of A, is a simple eigen-
value of A. Moreover, there exists an eigenvector u with positive
elements associated with this eigenvalue.

PROBLEMS

P-1.1 Show that two eigenvectors associated with two distinct eigen-
values are linearly independent. More generally show that a family of
eigenvectors associated with distinct eigenvalues forms a linearly inde-
pendent family.

P-1.2 Show that if A is any eigenvalue of the matrix AB then it is
also an eigenvalue of the matrix BA. Start with the particular case
where A and B are square and B is nonsingular then consider the more

general case where A, B may be singular or even rectangular (but such
that AB and BA are square).

P-1.3 Show that the Frobenius norm is consistent. Can this norm
be associated to two vector norms via (1.4)? What is the Frobenius
norm of a diagonal matrix? What is the p-norm of a diagonal matrix
(for any p)?



34 CHAPTER [

P-1.4 Find the Jordan canonical form of the matrix:

1 2 -4
A:(O 1 2).
0 0 2

Same question for the matrix obtained by replacing the element ass
by 1.

P-1.5 Give an alternative proof of Theorem 1.4 on the Schur form
by starting from the Jordan canonical form. [Hint: write A = X JX !
and use the QR decomposition of X]

P-1.6 Show from the definition of determinants used in Section (1.2)
that the characteristic polynomial is a polynomial of degree n for an
n X n matrix.

P-1.7 Show that the characteristic polynomials of two similar matri-
ces are equal.

P-1.8 Show that
lim [|4%'/% = p(A),
k—o00

for any matrix norm. [Hint: use the Jordan canonical form or Theorem

1.3]

P-1.9 Let X be a nonsingular matrix and, for any matrix norm .||,
define ||A]|x = ||AX||. Show that this is indeed a matrix norm. Is
this matrix norm consistent? Similar questions for || X A|| and ||[Y AX ||
where Y is also a nonsingular matrix. These norms are not, in general,
associated with any vector norms, i.e., they can’t be defined by a
formula of the form (1.4). Why? What about the particular case
JAl = | XAX |7

P-1.10 Find the field of values of the matrix

0 1
4=(o o)
and verify that it is not equal to the convex hull of its eigenvalues.

P-1.11 Show that any matrix can be written as the sum of a Hermi-
tian and a skew-Hermitian matrix (or the sum of a symmetric and a
skew-symmetric matrix).
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P-1.12 Show that for a skew-Hermitian matrix S, we have
Re(Sz,z) =0 for any z € C".

P-1.13 Given an arbitrary matrix S, show that if (Sz,z) = 0 for all
2 in C" then we must have

(Sy,z) + (Sz,y) =0 Vy,z € C"

[Hint: expand (S(y + 2),y + 2) |.

P-1.14 Using the result of the previous two problems, show that if
(Az, ) is real for all z in C", then A must be Hermitian. Would this
result be true if we were to replace the assumption by: (Az,z) is real
for all real x? Explain.

P-1.15 The definition of a positive definite matrix is that (Az,z) be
real and positive for all real vectors x. Show that this is equivalent
to requiring that the Hermitian part of A, namely %(A + A, be
(Hermitian) positive definite.

P-1.16 Let A be a real symmetric matrix and A an eigenvalue of A.
Show that if u is an eigenvector associated with \ then so is 4. As a
result, prove that for any eigenvalue of a real symmetric matrix, there
is an associated eigenvector which is real.

P-1.17 Show that a Hessenberg matrix H such that hjy1; # 0,5 =
1,2,...,n — 1 cannot be derogatory.

NOTES AND REFERENCES. For additional reading on the material presented
in this Chapter, see Golub and Van Loan [63] and Stewart [167]. More details
on matrix eigenvalue problems can be found in Gantmacher’s book [54] and
Wilkinson [183]. Stewart and Sun’s recent book [172] devotes a separate
chapter to matrix norms and contains a wealth of information. Some of the
terminology we used is borrowed from Chatelin [14, 15] and Kato [85]. For a
good overview of the linear algebra aspects of matrix theory and a complete
proof of Jordan’s canonical form we recommend Halmos’ book [69]. A
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