Solutions of Practice Exercises Preparatory Course M.Sc. in ISFM

Andrianos E. Tsekrekos*

September, 2015

Exercise 1:

[a] $f^{\prime}(x)=3 e^{x}+2 e^{x^{2}} x+e^{2} x^{-1+e^{2}}$
$[\mathrm{b}] f^{\prime}(x)=\frac{1+2 x}{x+x^{2}}$
[c] $f^{\prime}(x)=\frac{(9-x)(-6+x)+(9-x)(5+x)-(-6+x)(5+x)}{2 \sqrt{(9-x)(-6+x)(5+x)}}$
[d] $f^{\prime}(x)=-\frac{4 e^{1+2 x}}{x^{2}}+\frac{8 e^{1+2 x}}{x}$
[e] $f^{\prime}(x)=\frac{e^{-x}}{x}-e^{-x} \ln (x)$

Exercise 2: The elasticity is

$$
\epsilon=\frac{d q}{d p} \times \frac{p}{q}=\frac{e^{p} p\left(\frac{e^{-p}}{p}-e^{-p} \ln (p)\right)}{\ln (p)}
$$

which at $p=30$ gives $\epsilon=-29.71$. This implies that a $\frac{2}{3} \%$ decrease in the price will increase demand by $\frac{2}{3}(-29.71)=-19.81 \%$.

Exercise 3: The fourth-order Taylor series expansion of $f(x)$ at $x_{0}=0$

[^0]is given by
$$
f(x) \approx 1-2 x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}
$$
which at $x=0.5$ gives $f(x) \approx 0.148438$.

Exercise 4: The profit function is

$$
\Pi(q)=5000+20 q+(450-4 q) q-0.004 q^{3}
$$

and to find the maximum, consider the f.o.c.

$$
\Pi^{\prime}(q)=0 \Leftrightarrow 470-8 q-0.012 q^{2}=0 \Leftrightarrow q=54.3234 \text { and } q=-720.99
$$

The negative solution is ruled out (as negative quantity produced cannot exist). Check the s.o.c.

$$
\Pi^{\prime \prime}(q)=-8-0.024 q
$$

and verify that at $q=54.3234, \Pi^{\prime \prime}(q)<0$.

Exercise 5: The marginal cost function is

$$
M C(q)=T C^{\prime}(q)=12-12 q+3 q^{2}
$$

For the marginal cost to be increasing, its first derivative should be positive, thus we look for the values of q for which

$$
M C^{\prime}(q)>0 \Leftrightarrow-12+6 q>0 \Leftrightarrow q>2 .
$$

Exercise 6: Performing the matrix multiplications yields

$$
f(\alpha, \beta)=0.05-0.01 \alpha^{2} \lambda+\beta(0.15-0.09 \beta \lambda)+\alpha(0.05-0.03 \beta \lambda)
$$

The f.o.c. for a maximum are

$$
\begin{aligned}
& \frac{\partial f(\alpha, \beta)}{\partial \alpha}=0 \Leftrightarrow 0.05-0.02 \alpha \lambda-0.03 \beta \lambda=0 \\
& \frac{\partial f(\alpha, \beta)}{\partial \beta}=0 \Leftrightarrow 0.15-0.03 \alpha \lambda-0.18 \beta \lambda=0
\end{aligned}
$$

and yield

$$
\alpha=\frac{1.66667}{\lambda} \text { and } \beta=\frac{0.555556}{\lambda}
$$

For the s.o.c., construct the Hessian matrix

$$
H=\left[\begin{array}{ll}
f_{\alpha \alpha} & f_{\alpha \beta} \\
f_{\beta \alpha} & f_{\beta \beta}
\end{array}\right]=\left[\begin{array}{ll}
-0.02 \lambda & -0.03 \lambda \\
-0.03 \lambda & -0.18 \lambda
\end{array}\right]
$$

and calculate its determinant $|H|=0.0036 \lambda^{2}-0.0009 \lambda^{2}=0.0027 \lambda^{2}$ which is always positive.

[^0]: *Department of Accounting \& Finance, A.U.E.B. Tel./Fax: +30-210-8203928, e-mail: tsekrekos@aueb.gr.

