Solutions of Practice Exercises Preparatory Course M.Sc. in ISFM

Andrianos E. Tsekrekos*
September, 2015

Exercise 1: You should get:

$$
\begin{aligned}
& \mathbf{A B}=\left[\begin{array}{rrr}
-12 & 8 & -1 \\
-5 & 7 & -7 \\
1 & 19 & -11
\end{array}\right] \\
& \mathbf{B A}=\left[\begin{array}{rrr}
4 & 10 & 11 \\
-10 & -10 & -6 \\
1 & 6 & -10
\end{array}\right] \\
& \mathbf{A}^{T}-\mathbf{B}=\left[\begin{array}{rrr}
1 & 0 & -3 \\
5 & -3 & 6 \\
-5 & -2 & 4
\end{array}\right] \\
& 3 \mathbf{A}+\mathbf{B}^{T}=\left[\begin{array}{rrr}
3 & 7 & -3 \\
-8 & 7 & -2 \\
3 & 10 & 8
\end{array}\right] \\
& \mathbf{A}^{T} \mathbf{B}=\left[\begin{array}{rrr}
4 & -10 & 7 \\
10 & 2 & 3 \\
11 & 3 & -7
\end{array}\right]
\end{aligned}
$$

[^0]\[

\mathbf{B}^{T} \mathbf{A}=\left[$$
\begin{array}{rrr}
4 & 10 & 11 \\
-10 & 2 & 3 \\
7 & 3 & -7
\end{array}
$$\right]
\]

Exersice 2: Answers are
[a] \mathbf{A}^{2} does not exist
$[\mathrm{b}] \mathbf{B}^{3}=\left[\begin{array}{rrr}0 & 0 & -4 \\ 2 & -1 & -2 \\ 0 & 0 & 8\end{array}\right]$
$[\mathrm{c}](\mathbf{A C})^{2}=\left[\begin{array}{rr}3 & -1 \\ -2 & 2\end{array}\right]$
[d] $\left(\mathbf{B A}^{T}\right)^{T}=\left[\begin{array}{rrr}0 & 3 & 0 \\ -1 & -1 & 2\end{array}\right]$
[e] $\mathbf{C C}^{T}-\mathbf{B}=\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & 6 & -1 \\ 0 & -1 & -1\end{array}\right]$
$[\mathrm{f}](\mathbf{A B})(\mathbf{A B})^{T}=\left[\begin{array}{rr}6 & -7 \\ -7 & 9\end{array}\right]$
Exersice 3: The reduced form of $\left[\begin{array}{rr}3 & 1 \\ 12 & 4\end{array}\right]$ is $\left[\begin{array}{rr}1 & 1 / 3 \\ 0 & 0\end{array}\right]$. The reduced
form of $\left[\begin{array}{rrr}2 & 0 & -4 \\ 1 & -2 & -2 \\ 1 & 1 & -2 \\ 3 & 1 & 1\end{array}\right]$ is $\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
Exercises 4-7: Please refer to the accompanying excel file.

[^0]: *Department of Accounting \& Finance, A.U.E.B. Tel./Fax: +30-210-8203928, e-mail: tsekrekos@aueb.gr.

