Statistics for Business

Sampling Distributions, Interval Estimation and Hypothesis Tests.

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management,

Athens University of Economics and Business

First Draft: July 15, 2015. This Draft: August 28, 2023.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lecture Outline

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
 - Law of Large Numbers
 - Central Limit Theorem
- Estimation of the population mean
 - Unbiasedness
 - Consistency
 - Efficiency
- Hypothesis test concerning the population mean
- Confidence intervals for the population mean
 - Using the *t*-statistic when *n* is small
- Comparing means from different populations

Sampling

- A *population* is a collection of all the elements of interest, while a *sample* is a subset of the population.
- The reason we select a sample is to collect data to answer a research question about a population.
- The sample results provide only **estimates** of the values of the population characteristics. With *proper sampling methods*, the sample results can provide "good" estimates of the population characteristics.
- A *random sample* from an infinite population is a sample selected such that the following conditions are satisfied:
 - Each element selected comes from the population of interest.
 - Each element is selected *independently*.
 - \star If the population is finite, then we sample with replacement...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Simple Random Sampling – I

- *Simple random sampling* means that *n* objects are drawn randomly from a population and each object is equally likely to be drawn
- Let $Y_1, Y_2, ..., Y_n$ denote the 1st to the *n* th randomly drawn object. Under simple random sampling
 - The marginal probability distribution of Y_i is the same for all i = 1, 2, ..., n and equals the population distribution of Y.
 - * because $Y_1, Y_2, ..., Y_n$ are drawn randomly from the same population.
 - ▶ Y_1 is distributed independently from $Y_2, ..., Y_n$. knowing the value of Y_i does not provide information on Y_j for $i \neq j$
- When *Y*₁, *Y*₂, ..., *Y_n* are drawn from the same population and are independently distributed, they are said to be *I.I.D. random variables*

イロト 不得 とくき とくき とうき

Simple Random Sampling – II

Example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- G is a Bernoulli r.v. with $E(G) = \mu_G = Pr(G = 1) = 0.5$
- Suppose we take the population register and randomly draw a sample of size *n*
 - The probability distribution of G_i is a Bernoulli with mean 0.5
 - G_1 is distributed independently from $G_2, ..., G_n$
- Suppose we draw a random sample of individuals entering the building of the accounting department
 - ▶ This is not a sample obtained by simple random sampling and *G*₁, *G*₂,..., *G*_n are not i.i.d
 - Men are more likely to enter the building of the accounting department!

イロト 不得 とうほう イヨト

The Sampling Distribution of the Sample Average – I

• The *sample average* \overline{Y} of a randomly drawn sample is a random variable with a probability distribution called the *sampling distribution*

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

- The individuals in the sample are drawn at random.
- Thus the values of (Y_1, Y_2, \dots, Y_n) are random
- Thus functions of (Y_1, Y_2, \dots, Y_n) , such as \overline{Y} , are random: had a different sample been drawn, they would have taken on a different value
- The distribution of over different possible samples of size *n* is called the *sampling distribution* of \bar{Y} .
- The mean and variance of are the mean and variance of its sampling distribution, E(Y) and Var(Y).
- The concept of the sampling distribution underpins all of statistics/econometrics.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Sampling Distribution of the Sample Average – II

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

• Suppose that $Y_1, Y_2, ..., Y_n$ are *I.I.D.* and the mean & variance of the population distribution of *Y* are respectively μ_Y and σ_Y^2

• The mean of (the sampling distribution of) \overline{Y} is

$$E(\bar{Y}) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(Y_{i}) = \frac{1}{n}nE(Y) = \mu_{Y}$$

• The variance of (the sampling distribution of) \overline{Y} is

$$Var(\bar{Y}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(Y_{i}) + 2\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n}Cov(Y_{i}, Y_{j})$$
$$= \frac{1}{n^{2}}nVar(Y) + 0 = \frac{1}{n}Var(Y) = \frac{\sigma_{Y}^{2}}{n}$$

The Sampling Distribution of the Sample Average – III

Example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- The mean of the population distribution of G is

$$E(G) = \mu_G = Pr(G = 1) = p = 0.5$$

• The variance of the population distribution of G is

$$Var(G) = \sigma_G^2 = p(1-p) = 0.5(1-0.5) = 0.25$$

• The mean and variance of the average gender (proportion of women) \overline{G} in a random sample with n = 10 are

$$E(\bar{G}) = \mu_G = 0.5$$

Var $(\bar{G}) = \frac{1}{n}\sigma_G^2 = \frac{1}{10}0.25 = 0.025$

The Finite-Sample Distribution of the Sample Average

- The *finite sample distribution* is the sampling distribution that exactly describes the distribution of \overline{Y} for any sample size *n*.
- In general the exact sampling distribution of \overline{Y} is complicated and depends on the population distribution of *Y*.
- A special case is when $Y_1, Y_2, ..., Y_n$ are *IID* draws from the $N(\mu_Y, \sigma_Y^2)$, because in this case

$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Sampling Distribution of the Average Gender \overline{G}

• Suppose *G* takes on 0 or 1 (a Bernoulli random variable) with the probability distribution

$$\Pr(G=0) = p = 0.5, \ \Pr(G=1) = 1 - p = 0.5$$

• As we discussed above:

$$\begin{split} \mathrm{E}(G) &= \ \mu_G = \Pr(G=1) = p = 0.5 \\ \mathrm{Var}(G) &= \ \sigma_G^2 = p(1-p) = 0.5(1-0.5) = 0.25 \end{split}$$

- The sampling distribution of \overline{G} depends on n.
- Consider n = 2. The sampling distribution of \overline{G} is

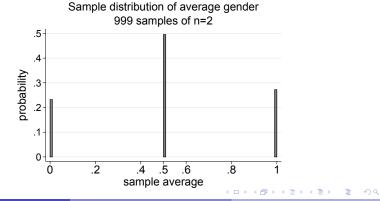
$$\Pr(\bar{G}=0) = 0.5^2 = 0.25$$

- Pr($\bar{G} = 1/2$) = 2 × 0.5 × (1 0.5) = 0.5
- $\Pr(\bar{G}=1) = (1-0.5)^2 = 0.25$

The Finite-Sample Distribution of the Average Gender \bar{G}

• Suppose we draw 999 samples of n = 2:

S	ample	e 1	Sa	mple	1	Sa	ample	e 3	 San	nple 9	99
G_1	G_2	\bar{G}	G_1	G_2	\bar{G}	G_1	G_2	\bar{G}	G_1	G_2	\bar{G}
1	0	0.5	1	1	1	0	1	0.5	0	0	0



The Asymptotic Distribution of the Sample Average \overline{Y}

- Given that the exact sampling distribution of \overline{Y} is complicated and given that we generally use large samples in statistics/econometrics we will often use an approximation of the sample distribution that relies on the sample being large
- The *asymptotic distribution* or *large-sample distribution* is the approximate sampling distribution of \overline{Y} if the sample size becomes very large: $n \to \infty$.
- We will use two concepts to approximate the large-sample distribution of the sample average
 - ► The law of large numbers.
 - ► The central limit theorem.

12/61

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Law of Large Numbers (LLN)

Definition (Law of Large Numbers)

Suppose that

- $Y_i, i = 1, ..., n$ are independently and identically distributed with $E(Y_i) = \mu_Y$; and
- ② large outliers are unlikely i.e. $Var(Y_i) = \sigma_Y^2 < +\infty$. Then \overline{Y} will be near μ_Y with very high probability when *n* is very large $(n \to \infty)$

$$\bar{Y} \xrightarrow{p} \mu_Y.$$

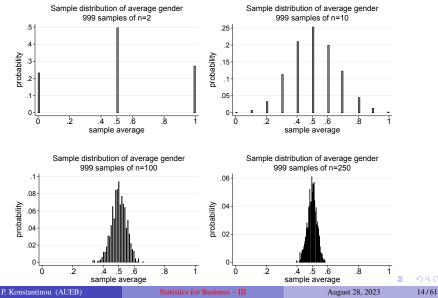
We also say that the sequence of random variables $\{Y_n\}$ converges in probability to the μ_Y , if for every $\varepsilon > 0$

$$\lim_{n\to\infty}\Pr(|\bar{Y}_n-\mu_Y|>\varepsilon)=0.$$

We also denote this by $plim(Y_n) = \mu_Y$

The Law of Large Numbers (LLN)

Example: Gender $G \sim Bernoulli(0.5, 0.25)$



The Central Limit Theorem (CLT)

Definition (Central Limit Theorem)

Suppose that

- $Y_i, i = 1, ..., n$ are independently and identically distributed with $E(Y_i) = \mu_Y$; and
- 2 large outliers are unlikely i.e. $\operatorname{Var}(Y_i) = \sigma_Y^2$ with $0 < \sigma_Y^2 < +\infty$. Then the distribution of the sample average \overline{Y} will be approximately normal as *n* becomes very large $(n \to \infty)$

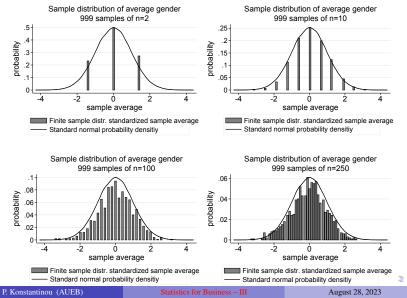
$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right).$$

The distribution of the the standardized sample average is approximately standard normal for $n \to \infty$ _____

$$\frac{\bar{Y} - \mu_Y}{\sigma_Y / \sqrt{n}}$$

The Central Limit Theorem (CLT)

Example: Gender $G \sim Bernoulli(0.5, 0.25)$



16/61

The Central Limit Theorem (CLT)

- How good is the large-sample approximation?
- * If $Y_i \sim N(\mu_Y, \sigma_Y^2)$ the approximation is perfect.
- * If Y_i is not normally distributed the quality of the approximation depends on how close *n* is to infinity (how large *n* is)
- ★ For $n \ge 100$ the normal approximation to the distribution of \overline{Y} is typically very good for a wide variety of population distributions.

17/61

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimators and Estimates

Definition

An *estimator* is a function of a sample of data to be drawn randomly from a population.

• An estimator is a random variable because of randomness in drawing the sample. Typically used estimators

Sample Average:
$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
, Sample variance: $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

Using a particular sample $y_1, y_2, ..., y_n$ we obtain

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

which are *point estimates*. These are the numerical value of an estimator when it is actually computed using a specific sample.

P. Konstantinou (AUEB)

Statistics for Business – II

August 28, 2023

Estimation of the Population Mean – I

- Suppose we want to know the mean value of $Y(\mu_Y)$ in a population, for example
 - The mean wage of college graduates.
 - The mean level of education in Greece.
 - The mean probability of passing the statistics exam.
- Suppose we draw a random sample of size n with $Y_1, Y_2, ..., Y_n$ being *IID*
- Possible estimators of μ_Y are:
 - The sample average: $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
 - The first observation: Y_1
 - The weighted average: $\tilde{Y} = \frac{1}{n} \left(\frac{1}{2}Y_1 + \frac{3}{2}Y_2 + ... + \frac{1}{2}Y_{n-1} + \frac{3}{2}Y_n \right).$
- To determine which of the estimators, \overline{Y} , Y_1 or \widetilde{Y} is the best estimator of μ_Y we consider 3 properties.
- Let $\hat{\mu}_Y$ be an estimator of the population mean μ_Y

Estimation of the Population Mean - II

Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y

$$\mathbf{E}(\hat{\mu}_Y) = \mu_Y.$$

Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \to \infty$

$$\hat{\mu}_Y \xrightarrow{p} \mu_Y$$
 or $\Pr(|\hat{\mu}_Y - \mu_Y| < \varepsilon) = 1$

Summarize Structure Struc

$$\operatorname{Var}(\hat{\mu}_Y) \leq \operatorname{Var}(\tilde{\mu}_Y)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimating Mean Wages – I

• Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample (n = 10) by simple random sampling

i	1	2	3	4	5
W _i	47281.92	70781.94	55174.46	49096.05	67424.82
i	6	7	8	9	10

• The 3 estimators give the following estimates:

•
$$\overline{W} = \frac{1}{10} \sum_{i=1}^{10} W_i = 52618.18$$

• $W_1 = 47281.92$
• $\widetilde{W} = \frac{1}{10} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + \dots + \frac{1}{2} W_9 + \frac{3}{2} W_{10} \right) = 49398.82$

• Unbiasedness: All 3 proposed estimators are unbiased

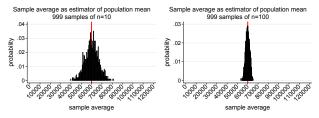
21/61

• □ ▶ • • □ ▶ • □ ▶ • □ ▶ •

Estimating Mean Wages - II

• Consistency:

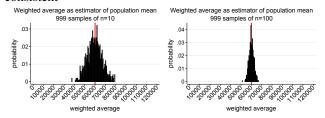
▶ By the law of large numbers $\overline{W} \xrightarrow{p} \mu_W$ which implies that the probability that \overline{W} is within a very small interval of μ_W approaches 1 if $n \to \infty$



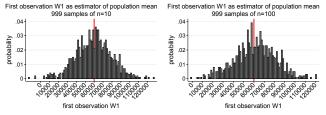
< ロ > < 同 > < 回 > < 回 > < 回 >

Estimating Mean Wages - III

•
$$\tilde{W} = \frac{1}{n} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + ... + \frac{1}{2} W_{n-1} + \frac{3}{2} W_n \right)$$
 can also be shown to be consistent



• However W_1 is not a consistent estimator of μ_W .



イロト イポト イヨト イヨト

Estimating Mean Wages – IV

- Efficiency: We have that
 - Var $(\bar{W}) = \frac{1}{n}\sigma_W^2$
 - $\operatorname{Var}(W_1) = \sigma_W^2$
 - $\blacktriangleright \operatorname{Var}(\tilde{W}) = 1.25 \frac{1}{n} \sigma_W^2$
 - So for any $n \ge 2$, \overline{W} is more efficient than W_1 and \widetilde{W} .
- In fact \overline{Y} is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of $Y_1, Y_2, ..., Y_n$
- * Let $\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n \alpha_i Y_i$ be an unbiased estimator of μ_Y with α_i nonrandom constants. Then \bar{Y} is more efficient than $\hat{\mu}_Y$

 $\operatorname{Var}(\bar{Y}) \leq \operatorname{Var}(\hat{\mu}_Y)$

Hypothesis Tests

Consider the following questions:

- Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?
- Is the mean level of education in Greece equal to 12 years?
- Is the mean probability of passing the stats exam equal to 1?

These questions involve the population mean taking on a specific value $\mu_{Y,0}$. Answering these questions implies using data to compare a *null hypothesis* (a tentative assumption about the population mean parameter)

$$H_0: \mathcal{E}(Y) = \mu_{Y,0}$$

to an *alternative hypothesis* (the opposite of what is stated in the H_0)

$$H_1: \mathbf{E}(Y) \neq \mu_{Y,0}$$

- Alternative Hypothesis as a Research Hypothesis
 - **Example:** A new sales force bonus plan is developed in an attempt to increase sales.
 - Alternative Hypothesis: The new bonus plan increase sales.
 - ▶ Null Hypothesis: The new bonus plan does not increase sales.

P. Konstantinou (AUEB)

Statistics for Business - III

Basics

Hypothesis Tests: Terminology

• The **hypothesis testing problem** (for the mean): make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true. That is, test

►
$$H_0: E(Y) \le \mu_{Y,0}$$
 vs. $H_1: E(Y) > \mu_{Y,0}$ (1-sided, >)
► $H_0: E(Y) \ge \mu_{Y,0}$ vs. $H_1: E(Y) < \mu_{Y,0}$ (1-sided, <)

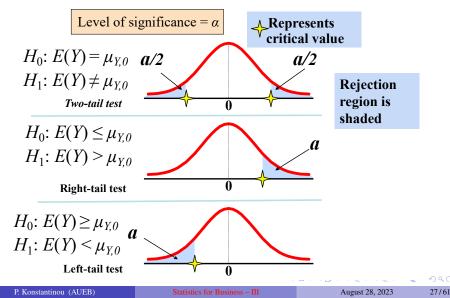
- $H_0: E(Y) = \mu_{Y,0}$ vs. $H_1: E(Y) \neq \mu_{Y,0}$ (2-sided)
- *p*-value = probability of drawing a statistic (e.g. \overline{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.
- The significance level of a test (α) is a pre-specified probability of incorrectly rejecting the null, when the null is true. Typical values are 0.01 (1%), 0.05 (5%), or 0.10 (10%).
 - It is selected by the researcher at the beginning, and determines the *critical value(s)* of the test.
 - If the test-statistic falls outside the non-rejection region, we reject H_0 .

イロト 不得 とうほう イヨト

Basics

Hypothesis Tests

The Testing Process and Rejections



Hypothesis Testing using *p*-values

- The <u>*p*-value</u> is the probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis
 - If the <u>*p*-value</u> is less than or equal to the level of significance α , the value of the test statistic is in the rejection region.
 - Reject H_0 if the *p*-value $< \alpha$.
 - See also Annex

Rules of thumb

- If *p*-value is less than .01, there is overwhelming evidence to conclude H₀ is false.
- If *p*-value is between .01 and .05, there is strong evidence to conclude H_0 is false.
- If *p*-value is between .05 and .10, there is weak evidence to conclude H_0 is false.
- If *p*-value is greater than .10, there is insufficient evidence to conclude H_0 is false.

イロト 不得 とうほう イヨト

3

Hypothesis Test for the Mean with σ_Y^2 known – I Decision Rules

• The test statistic employed is obtained by converting the sample result (\bar{y}) to a *z*-value

$$z = \frac{y - \mu_{Y,0}}{\sigma_Y / \sqrt{n}}$$

$ \begin{array}{c} H_0 : \mathcal{E}(Y) \ge \mu_{Y,0} \\ H_1 : \mathcal{E}(Y) < \mu_{Y,0} \end{array} $	$ \begin{array}{c} H_0: \mathcal{E}(Y) \leq \mu_{Y,0} \\ H_1: \mathcal{E}(Y) > \mu_{Y,0} \end{array} $	$H_0: \mathbf{E}(Y) = \mu_{Y,0}$ $H_1: \mathbf{E}(Y) \neq \mu_{Y,0}$
Lower-tail	Upper-tail	Two-tailed
Reject H_0 if $z < z_{\alpha}$	Reject H_0 if $z > z_{\alpha}$	Reject H_0 if $z < -z_{\alpha/2}$
		or if $z > z_{\alpha/2}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hypothesis Test for the Mean with σ_Y^2 known – II Decision Rules

Hypothesis Tests for
$$E(Y)$$
 $z = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{Y}/\sqrt{n}}$
Lower-tail test:
 $H_0: E(Y) \ge \mu_0$
 $H_1: E(Y) < \mu_0$
 u
 $-z_\alpha$
 z_α
 z_α
 z_α
 z_{α}
 z_{α}

Reject H_0 if $z \leq -\mathbf{Z}_{\alpha}$

Reject H_0 if $z > z_{\alpha}$

 $\begin{array}{c} -Z_{\alpha/2} & Z_{\alpha/2} \\ \text{Reject } H_0 \text{ if } z < -Z_{\alpha/2} \\ \text{ or } z > Z_{\alpha/2} \end{array}$

Hypothesis Test for the Mean (σ^2 known) – I Examples

- Example 1. A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. Assume $\sigma = 10$ \$ is known and let $\alpha = 0.10$. Suppose a sample of 64 persons is taken, and it is found that the average bill \$53.1.
 - Form the hypothesis to be tested

 $H_0: E(Y) \le 52$ the *mean* is not over \$52 per month $H_1: E(Y) > 52$ the *mean* is over \$52 per month

$$z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} = \frac{53.1 - 52}{10 / \sqrt{64}} = 0.88 < z_{0.10} = 1.28$$

Hence H_0 cannot be rejected.

Hypothesis Test for the Mean (σ^2 known) – II Examples

- Example 2. We would like to test the claim that the true mean # of TV sets in EU homes is equal to 3 (assuming $\sigma_Y = 0.8$ known). For this purpose a sample of 100 homes is selected, and the average number of TV sets is 2.84. Test the above hypothesis using $\alpha = 0.05$.
 - Form the hypothesis to be tested

 $H_0: E(Y) = 3$ the *mean* **# is** 3 TV sets per home $H_1: E(Y) \neq 3$ the *mean* **is not** 3 TV sets per home

For $\alpha = 0.05$, $z_{\alpha/2} = z_{0.025} = 1.96$ and $-z_{0.025} = -1.96$, so we would reject H_0 if |z| > 1.96.

Hypothesis Test for the Mean (σ^2 known) – III Examples

• We have n = 100 and $\bar{y} = 2.84$, so the test statistic is

$$z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} = \frac{2.84 - 3}{0.8 / \sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$$

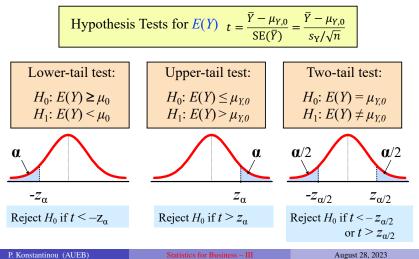
or |z| = 2 > 1.96, Hence H_0 is rejected. We **conclude** that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test for the Mean with σ_Y^2 unknown but $n \to \infty$

Decision Rules

• Since $S_Y^2 \xrightarrow{p} \sigma_Y^2$, compute the standard error of \overline{Y} , $SE(\overline{Y}) = s_Y / \sqrt{n}$ and construct a *t*-ratio.



Test for the Mean with σ_Y^2 unknown but $n \to \infty$ Example

• Suppose we would like to test

$$H_0: \mathcal{E}(W) = 60000, \qquad H_1: \mathcal{E}(W) \neq 60000,$$

using a sample of 250 individuals with a Ph.D. degree at the 5% significance level.

• We perform the following steps:

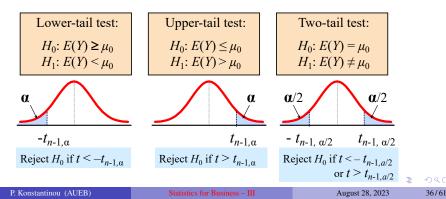
• Suppose we are interested in the alternative $H_1 : E(W) > 60000$. The *t*-stat is **exactly** the same: $t^{act} = 1.4819$. but now needs to be compared with $z_{0.05} = 1.645$.

P. Konstantinou (AUEB)

Hypothesis Test for the Mean with σ^2 unknown (*n* small) Decision Rules

- Consider a random sample of *n* observations from a population that is normally distributed, *AND* variance σ_Y^2 is unknown: $Y_i \sim N(\mu_Y, \sigma_Y^2)$
- Converting the sample average (\bar{y}) to a *t*-value...

Hypothesis Tests for
$$E(Y)$$
 $t = \frac{\overline{Y} - \mu_{Y,0}}{SE(\overline{Y})} = \frac{\overline{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$



Hypothesis Test for the Mean with σ^2 unknown (*n* small) Example

- The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in y
 = \$172.50 and s_y = \$15.40. Perform a test at the α = 0.05 level (assuming the population distribution is normal).
 - Form the hypothesis to be tested

 $H_0: E(Y) = 168$ the mean cost is \$168 $H_1: E(Y) \neq 168$ the mean cost is not \$168

- For $\alpha = 0.05$, with n = 25, $t_{n-1,\alpha/2} = t_{24,0.025} = 2.0639$ and $-t_{24,0.025} = 2.0639$, so we would reject H_0 if |t| > 2.0639.
- We have $\bar{y} = 172.50$ and $s_y = 15.40$, so the test statistic is

$$t = \frac{\bar{y} - \mu_{Y,0}}{s_y / \sqrt{n}} = \frac{172.50 - 168}{15.40 / \sqrt{25}} = 1.46 < t_{24,0.025} = 2.0639$$

or |t| = 1.46 < 2.0639. Hence H_0 cannot be rejected. We conclude that there is not sufficient evidence that the true mean cost is different than \$168.

Confidence Intervals for the Population Mean – I

- Suppose we would do a two-sided hypothesis test for many different values of $\mu_{0,Y}$. On the basis of this we can construct a set of values which are not rejected at 5% (α %) significance level.
- If we were able to test all possible values of $\mu_{0,Y}$ we could construct a 95% ((1α) %) confidence interval

Definition

A 95% ($(1 - \alpha)$ %) confidence interval is an interval that contains the true value of μ_Y in 95% ($(1 - \alpha)$ %) of all possible random samples.

A relative frequency interpretation: From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true population mean

38/61

Confidence Intervals for the Population Mean - II

• The general formula for all confidence intervals is

Point Estimate \pm (Reliability Factor)(Standard Error) Margin of Error $\hat{\mu} \pm c \cdot SE(\hat{\mu})$

and using the sample average estimator

$$\bar{Y} \pm c \cdot \operatorname{SE}(\bar{Y})$$

• Instead of doing infinitely many hypothesis tests we can compute the 95% ($(1 - \alpha)$ %) confidence interval as

$$\bar{Y} - z_{\alpha/2} \operatorname{SE}(\bar{Y}) < \mu < \bar{Y} + z_{\alpha/2} \operatorname{SE}(\bar{Y}) \quad \text{or} \quad \bar{Y} \pm \underbrace{z_{\alpha/2} \operatorname{SE}(\bar{Y})}_{\text{Margin of Error}}$$

Confidence Intervals for the Population Mean – III

- When the sample size *n* is large (or when the population is normal and σ_Y^2 is known):
 - A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.645 \cdot SE(\bar{Y})]$
 - A 95% confidence interval for μ_Y : $[\bar{Y} \pm 1.96 \cdot SE(\bar{Y})]$
 - A 99% confidence interval for μ_Y : $[\bar{Y} \pm 2.58 \cdot SE(\bar{Y})]$
 - with $SE(\bar{Y}) = \sigma_Y / \sqrt{n}$ when variance is known or $SE(\bar{Y}) = s_Y / \sqrt{n}$ when unknown and is estimated.

40/61

Confidence Intervals for the Population Mean – IV Example

A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of the population.

$$\bar{y} \pm z_{\alpha/2} \frac{\sigma_Y}{\sqrt{n}} = 2.20 \pm 1.96(0.35/\sqrt{11}) = 2.20 \pm 0.2068$$

1.9932 < $\mu_Y < 2.4068$

► We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms

Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Confidence Intervals for the Population Mean – V Example

Using the sample of n = 250 individuals with a Ph.D. degree discussed above $(\bar{W} = 61977.12, s_W = 21095.37, SE(\bar{Y}) = s_W / \sqrt{n} = 21095.37 / \sqrt{250})$:

- A 90% C.I. for μ_W is: $[61977.12 \pm 1.64 \cdot 1334.19] = [59349.39, 64604.85].$
- A 95% C.I. for μ_W is: [61977.12 ± 1.96 · 1334.19] = [59774.38, 64179.86].
- A 99% C.I. for μ_W is: [61977.12 \pm 2.58 \cdot 1334.19] = [58513.94, 65440.30].

< ロ > < 同 > < 回 > < 回 > .

Confidence Intervals for the Population Mean – VI

• When the sample size *n* is small *AND* the population from which we draw data is normal:

$$\bar{Y} - t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}} < \mu_Y < \bar{Y} + t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}} \quad \text{or} \quad \bar{Y} \pm \underbrace{t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}}}_{\text{Margin of Error}}$$

- A 90% confidence interval for μ_Y : $[\bar{Y} \pm t_{n-1,0.05} \cdot SE(\bar{Y})]$
- A 95% confidence interval for μ_Y : $[\bar{Y} \pm t_{n-1,0.025} \cdot SE(\bar{Y})]$
- A 99% confidence interval for μ_Y : $[\bar{Y} \pm t_{n-1,0.005} \cdot SE(\bar{Y})]$
- with $\operatorname{SE}(\overline{Y}) = s_Y / \sqrt{n}$

Confidence Intervals for the Population Mean - VII

Example

A random sample of n = 25 has $\bar{x} = 50$ and s = 8. Form a 95% confidence interval for μ .

•
$$d.f. = n - 1 = 24$$
, so $t_{24,\alpha/2} = t_{24,0.025} = 2.0639$
 $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = 50 \pm 2.0639(8/\sqrt{25}) = 50 \pm 3.302$
 $46.698 < \mu < 53.302$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations

• Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount *d*₀:

$$H_0: \mu_{W,M} - \mu_{W,F} = d_0 \quad H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$$

- To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments
- Estimate $(\mu_{W,M} \mu_{W,F})$ by $(\overline{W}_M \overline{W}_M)$.
 - Because a weighted average of 2 independent normal random variables is itself normally distributed we have (using the CLT and the fact that $\text{Cov}(\bar{W}_M, \bar{W}_F) = 0$)

$$\bar{W}_M - \bar{W}_F \sim N\left(\mu_{W,M} - \mu_{W,F}, \frac{\sigma_{W,M}^2}{n_M} + \frac{\sigma_{W,F}^2}{n_F}\right)$$

Comparing Means from Different Populations – II Large Samples or Known Variances from Normal Populations

Set Estimate $\sigma_{W,M}$ and $\sigma_{W,F}$ to obtain SE $(\bar{W}_M - \bar{W}_F)$:

$$SE(\bar{W}_M - \bar{W}_F) = \sqrt{\frac{s_{W,M}^2}{n_M} + \frac{s_{W,F}^2}{n_F}}$$

Compute the *t*-statistic

$$t^{act} = \frac{(\bar{W}_M - \bar{W}_M) - d_0}{\operatorname{SE}(\bar{W}_M - \bar{W}_F)}$$

Reject H₀ at a 5% significance level if |t^{act}| > 1.96 or if the p-value< 0.05.</p>

P. Konstantinou (AUEB)

Comparing Means from Different Populations – III

Large Samples or Known Variances from Normal Populations

Example

Suppose we have random samples of 500 men and 500 women with a Ph.D. degree and we would like to test that the mean wages are equal:

$$H_0: \mu_{W,M} - \mu_{W,M} = 0 \quad H_1: \mu_{W,M} - \mu_{W,M} \neq 0$$

We obtained $\bar{W}_M = 64159.45$, $\bar{W}_F = 53163.41$, $s_{W,M} = 18957.26$, and $s_{W,F} = 20255.89$. We have:

2 SE
$$(\bar{W}_M - \bar{W}_F) = 1240.709.$$

3
$$t^{act} = \frac{(\bar{W}_M - \bar{W}_F) - 0}{\text{SE}(\bar{W}_M - \bar{W}_F)} = \frac{10996.04}{1240.709} = 8.86.$$

Since we use a 5% significance level, we reject H_0 because $|t^{act}| = 8.86 > 1.96$

イロン イボン イヨン イヨン

Confidence Interval for the Difference in Population Means

- The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.
- A hypothesized value of the difference in means d_0 will be rejected if |t| > 1.96 and will be in the confidence set if $|t| \le 1.96$.
- Thus the 95% confidence interval for μ_{W,M} − μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W
 _M − W
 _F).
- So a 95% confidence interval for $\mu_{W,M} \mu_{W,F}$ is

$$(\bar{W}_M - \bar{W}_M) \pm 1.96 \cdot \text{SE}(\bar{W}_M - \bar{W}_M)$$

10996.04 ± 1.96 \cdot 1240.709
[8561.34, 13430.73]

Testing Population Mean Differences

Normal Populations, **Unknown Variances** σ_X^2 and σ_Y^2 but Assumed **Equal**

$$t = \frac{(\bar{X} - \bar{Y}) - d_0}{\text{SE}(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$$

where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$

• The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot SE(\bar{X} - \bar{Y})$.

• Recall $\mu_X = E(X), \mu_Y = E(Y)$ $H_0: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y < d_0$ Lower-tail Upper-tail Reject H_0 if $t < t_\alpha$ Reject H_0 if $t > t_\alpha$ $H_0: \mu_X - \mu_Y \le d_0$ $H_1: \mu_X - \mu_Y > d_0$ $H_1: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y \ge d_0$

P. Konstantinou (AUEB)

August 28, 2023

Testing Population Mean Differences – I

Example: Normal Populations, **Unknown Variances** σ_X^2 and σ_Y^2 but Assumed **Equal**

• You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

	NYSE	NASDAQ
Number:	21	25
Sample mean:	3.27	2.53
Sample std. dev .:	1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in average yield ($\alpha = 0.05$)?

The hypothesis of interest is

$$\begin{array}{c} H_0: \mu_{NYSE} - \mu_{NASDAQ} = 0 \\ H_1: \mu_{NYSE} - \mu_{NASDAQ} \neq 0 \end{array} \right|_{Or} \begin{array}{c} H_0: \mu_{NYSE} = \mu_{NASDAQ} \\ H_1: \mu_{NYSE} \neq \mu_{NASDAQ} \end{array}$$

Testing Population Mean Differences – II

Example: Normal Populations, **Unknown Variances** σ_X^2 and σ_Y^2 but Assumed **Equal**

- Note that $df = n_X + n_Y 2 = 21 + 25 2 = 44$, so the critical value for the test is $t_{44,0.025} = 2.0154$
- The pooled variance is:

$$s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)}$$

= 1.5021

The test statistic is

$$t^{act} = \frac{(\bar{x} - \bar{y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} = \frac{(3.27 - 2.53) - 0}{\sqrt{1.5021\left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040.$$

Since $|t^{act}| > t_{44,0.025} = 2.0154$, we reject H_0 at $\alpha = 0.05$. We conclude that there is evidence of a difference...

• The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot \text{SE}(\bar{X} - \bar{Y})$

イロト イポト イヨト イヨト

э.

Testing Population Mean Differences – I

Matched or Paired Samples

- Suppose we obtain a sample of *n* observations from two populations which are normally distributed and we have paired or matched samples repeated measures (before/after).
- Define, the pair difference $d_i = X_i Y_i$. We have

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \bar{X} - \bar{Y}; \text{ and } S_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2}$$

with $E(\bar{d}) = \mu_d = E(X) - E(Y)$ and $SE(\bar{d}) = \sqrt{\frac{S_d^2}{n}} = S_d / \sqrt{n}$
• If the sample size is large enough $(n \to \infty)$ then

$$\frac{\bar{d}-\mu_d}{S_d/\sqrt{n}} \sim N\left(0,\frac{S_d^2}{n}\right).$$

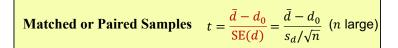
If the sample size is relatively small, then

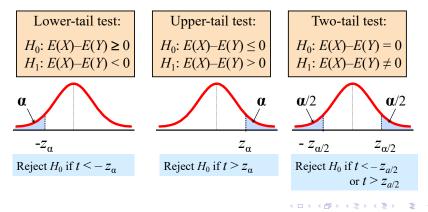
$$\frac{\bar{d}-\mu_d}{S_d/\sqrt{n}}\sim t_{n-1}.$$

52/61

・ 同 ト ・ ヨ ト ・ ヨ ト

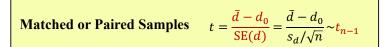
Testing Population Mean Differences – II Matched or Paired Samples

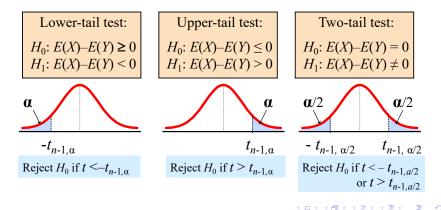




53/61

Testing Population Mean Differences – III Matched or Paired Samples





Testing Population Mean Differences – I Matched or Paired Samples: Example

• Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? Test at the 5% significance level. You collect the following data:

Salesperson	C.B.	T.F	M.H.	R.K.	M.O.
Complaints, Before:	6	20	3	0	4
Complaints, After:	4	6	2	0	0
Difference, d_i	-2	-14	-1	0	-4

The hypothesis of interest is

$$H_0: \mu_X - \mu_Y = 0$$
$$H_1: \mu_X - \mu_Y \neq 0$$

55/61

・ 回 ト ・ ヨ ト ・ ヨ ト

Testing Population Mean Differences – II Matched or Paired Samples: Example

With n = 4 and α = 0.05 the critical value is t_{n-1,α/2} = t_{4,0.025} = 2.776.
 We have

$$t = \frac{\bar{d} - d_0}{s_d / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{4}} = -1.66 > -t_{4,0.025} = -2.776,$$

or $|t| < t_{4,0.025} = 2.776$. Hence, we **do not reject** H_0 . There is not a significant change in the number of complaints.

イロト イポト イヨト イヨト

Annex: Hypothesis Tests – I

Employing the *p*-value

- Suppose we have a sample of *n* observations (they are assumed *IID*) and compute the sample average \bar{Y} . The sample average can differ from $\mu_{Y,0}$ for two reasons
 - **①** The population mean μ_Y is not equal to $\mu_{Y,0}$ (H_0 is not true)
 - 2 Due to random sampling $\bar{Y} \neq \mu_Y = \mu_{Y,0}$ (*H*₀ is true)
- To quantify the second reason we define the *p*-value. The *p*-value is the probability of drawing a sample with \bar{Y} at least as far from $\mu_{Y,0}$ as the value actually observed, given that the null hypothesis is true.

$$p\text{-value} = \Pr_{H_0} \left[\left| \bar{Y} - \mu_{Y,0} \right| > \left| \bar{Y}^{act} - \mu_{Y,0} \right| \right],$$

where \overline{Y}^{act} is the value of \overline{Y} actually observed

Annex: Hypothesis Tests – II

Employing the *p*-value

• To compute the *p*-value, you need the to know the sampling distribution of \overline{Y} , which is complicated if *n* is small. With large *n* the CLT states that

$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right),$$

which implies that if the null hypothesis is true:

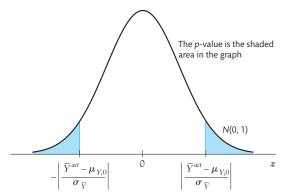
$$rac{ar{Y}-\mu_{Y,0}}{\sqrt{rac{\sigma_Y^2}{n}}}\sim N(0,1)$$

• Hence

$$p\text{-value} = \Pr_{H_0} \left[\left| \frac{\bar{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| > \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right] = 2\Phi \left(- \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right)$$

Annex: Hypothesis Tests – III

Employing the p-value



• For large *n*, *p*-value = the probability that a N(0, 1) random variable falls outside $\left|\frac{\bar{Y}^{act} - \mu_{Y,0}}{\sigma_{\bar{Y}}}\right|$, where $\sigma_{\bar{Y}} = \sigma_Y / \sqrt{n}$

P. Konstantinou (AUEB)

Annex: Hypothesis Tests – I Computing the *p*-value when σ_Y^2 is unknown

- In practice σ_Y^2 is usually unknown and must be estimated
- The sample variance S_Y^2 is the estimator of $\sigma_Y^2 = E[(Y \mu_Y)^2]$, defined as

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

- division by n 1 because we 'replace' μ_Y by \overline{Y} which uses up 1 degree of freedom
- ▶ if $Y_1, Y_2, ..., Y_n$ are *IID* and $E(Y^4) < \infty$, then $S_Y^2 \xrightarrow{p} \sigma_Y^2$ (Law of Large Numbers)
- The sample standard deviation $S_Y = \sqrt{S_Y^2}$, is the estimator of σ_Y .

Annex: Hypothesis Tests - II

Computing the *p*-value when σ_Y^2 is unknown

• The standard error $SE(\bar{Y})$ is an estimator of $\sigma_{\bar{Y}}$

$$SE(\bar{Y}) = \frac{S_Y}{\sqrt{n}}$$

• Because S_Y^2 is a consistent estimator of σ_Y^2 we can (for large *n*) replace

$$\sqrt{rac{\sigma_Y^2}{n}}$$
 by $SE(\bar{Y}) = rac{S_Y}{\sqrt{n}}$

• This implies that when σ_Y^2 is unknown and $Y_1, Y_2, ..., Y_n$ are *IID* the *p*-value is computed as

$$p-\mathsf{value} = 2\Phi\left(-\left|rac{ar{Y}^{act}-\mu_{Y,0}}{SE(ar{Y})}
ight|
ight)$$