Statistics for Business

Elements of Probability Theory

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management, Athens University of Economics and Business

First Draft: July 15, 2015. This Draft: August 28, 2023.

Important Terms in Probability - I

- Random Experiment - it is a process leading to an uncertain outcome
- Basic Outcome $\left(S_{i}\right)$ - a possible outcome (the most basic one) of a random experiment
- Sample Space (S) - the collection of all possible (basic) outcomes of a random experiment
- Event A - is any subset of basic outcomes from the sample space $(A \subseteq S)$. This is our object of interest here - among other things.

Important Terms in Probability - II

- Intersection of Events - If A and B are two events in a sample space S, then their intersection, $A \cap B$, is the set of all outcomes in S that belong to both A and B
- We say that A and B are Mutually Exclusive Events if they have no basic outcomes in common i.e., the set $A \cap B$ is empty (\varnothing)

Important Terms in Probability - III

- Union of Events - If A and B are two events in a sample space S, then their union, $A \cup B$, is the set of all outcomes in S that belong to either A or B
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted \bar{A} or A^{c}.

Important Terms in Probability - IV

- Events $E_{1}, E_{2}, \ldots, E_{k}$ are Collectively Exhaustive events if $E_{1} \cup E_{2} \cup \ldots \cup E_{k}=S$, i.e., the events completely cover the sample space.

Examples

Let the Sample Space be the collection of all possible outcomes of rolling one die $S=\{1,2,3,4,5,6\}$.

- Let A be the event "Number rolled is even": $A=\{2,4,6\}$
- Let B be the event "Number rolled is at least 4 " : $B=\{4,5,6\}$
- Mutually exclusive: A and B are not mutually exclusive. The outcomes 4 and 6 are common to both.

Important Terms in Probability - V

Examples (Continued)

$A=\{2,4,6\} \quad B=\{4,5,6\}$

- Collectively exhaustive: A and B are not collectively exhaustive. $A \cup B$ does not contain 1 or 3 .
- Complements: $\bar{A}=\{1,3,5\}$ and $\bar{B}=\{1,2,3\}$
- Intersections: $A \cap B=\{4,6\} ; \bar{A} \cap B=\{5\} ; A \cap \bar{B}=\{2\}$; $\bar{A} \cap \bar{B}=\{1,3\}$.
- Unions: $A \cup B=\{2,4,5,6\} ; A \cup \bar{A}=\{1,2,3,4,5,6\}=S$.

Assessing Probability - I

- Probability - the chance that an uncertain event A will occur is always between 0 and 1 .

$$
\underbrace{0}_{\text {Impossible }} \leq \operatorname{Pr}(A) \leq \underbrace{1}_{\text {Certain }}
$$

- There are three approaches to assessing the probability of an uncertain event:

Assessing Probability - II

(1) Classical Definition of Probability:

$$
\text { Probability of an event } A=\frac{N_{A}}{N}
$$

$=\frac{\text { number of outcomes that satisfy the event } A}{\text { total number of outcomes in the sample space } S}$

- Assumes all outcomes in the sample space are equally likely to occur.
- Example: Consider the experiment of tossing 2 coins. The sample space is $S=\{H H, H T, T H, T T\}$.
- Event $A=\{$ one $T\}=\{T H, H T\}$. Hence $\operatorname{Pr}(A)=0.5$ - assuming that all basic outcomes are equally likely.
- Event $B=\{$ at least one $T\}=\{T H, H T, T T\}$. So $\operatorname{Pr}(B)=0.75$.

Assessing Probability - III

(2) Probability as Relative Frequency:

$$
\text { Probability of an event } A=\frac{n_{A}}{n}
$$

$=\underline{\text { number of events in the population that satisfy event } A}$ total number of events in the population

- The limit of the proportion of times that an event A occurs in a large number of trials, n.

Assessing Probability - IV

- Subjective Probability: an individual has opinion or belief about the probability of occurrence of A.
- When economic conditions or a company's circumstances change rapidly, it might be inappropriate to assign probabilities based solely on historical data
- We can use any data available as well as our experience and intuition, but ultimately a probability value should express our degree of belief that the experimental outcome will occur.

Measuring Outcomes - I

Classical Definition of Probability

- Basic Rule of Counting: If an experiment consists of a sequence of k steps in which there are n_{1} possible results for the first step, n_{2} possible results for the second step, and so on, then the total number of experimental outcomes is given by $\left(n_{1}\right)\left(n_{2}\right) \ldots\left(n_{k}\right)-$ tree diagram...

Measuring Outcomes - II

Classical Definition of Probability

- Counting Rule for Combinations (Number of Combinations of n Objects taken k at a time): A second useful counting rule enables us to count the number of experimental outcomes when k objects are to be selected from a set of n objects (the ordering does not matter)

$$
C_{k}^{n}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

where $n!=n(n-1)(n-2) \ldots(2)(1)$ and $0!=1$.

Measuring Outcomes - III

Classical Definition of Probability

- Example: Suppose we flip three coins. How many are the possible combinations with (exactly) $1 T$?

$$
C_{1}^{3}=\binom{3}{1}=\frac{3!}{1!(3-1)!}=3
$$

- Example: Suppose we flip three coins. How many are the possible combinations with at least $1 T$?
- Example: Suppose that there are two groups of questions. Group A with 6 questions and group B with 4 questions. How many are the possible half-a-dozens we can put together?

$$
n=6+4=10 ; C_{6}^{10}=\binom{10}{6}=\frac{10!}{6!(10-6)!}=210
$$

Measuring Outcomes - IV

Classical Definition of Probability

- Example: How many possible half-a-dozens we can put together, preserving the ratio $4: 2$?

$$
\binom{6}{4} \times\binom{ 4}{2}=15 \times 6=90
$$

- Probability: What is the probability of selecting a particular half-a-dozen (with ratio $4: 2$), when we choose at random? Using the classical definition of probability

$$
\frac{90}{210}=0.4286
$$

Measuring Outcomes - V

Classical Definition of Probability

- Counting Rule for Permutations (Number of Permutations of n Objects taken k at a time): A third useful counting rule enables us to count the number of experimental outcomes when k objects are to be selected from a set of n objects, where the order of selection is important

$$
P_{k}^{n}=\frac{n!}{(n-k)!}
$$

Measuring Outcomes - VI

Classical Definition of Probability

- Example: How many 3-digit lock combinations can we make from the numbers $1,2,3$, and 4 ?
The order of the choice is important! So

$$
P_{3}^{4}=\frac{4!}{1!}=4!=4(3)(2)(1)=24
$$

- Example: Let the characters A, B, Γ. In how many ways can we combine them in making triads?

$$
P_{3}^{3}=\frac{3!}{0!}=3!=3(2)(1)=6 .
$$

These are: $А В Г, А Г B, В А Г, B Г A, Г A B$, and $Г B A$.

Measuring Outcomes - VII

Classical Definition of Probability

- Example: Let the characters A, B, Γ, Δ, E. In how many ways is it possible to combine them into pairs?
* If the order matters, we may have

$$
P_{2}^{5}=\frac{5!}{3!}=(5)(4)=20 .
$$

* If the order does not matters, we may choose pairs

$$
C_{2}^{5}=\binom{5}{2}=\frac{5!}{2!(5-2)!}=\frac{5!}{2!3!}=10
$$

Probability Axioms

- The following Axioms hold
(1) If A is any event in the sample space S, then

$$
0 \leq \operatorname{Pr}(A) \leq 1
$$

(2) Let A be an event in S, and let S_{i} denote the basic outcomes. Then

$$
\operatorname{Pr}(A)=\sum_{\text {all } S_{i} \text { in } A} \operatorname{Pr}\left(S_{i}\right)
$$

(3) $\operatorname{Pr}(S)=1$.

Probability Rules - I

- The Complement Rule:

$$
\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A) \text { [i.e., } \operatorname{Pr}(A)+\operatorname{Pr}(\bar{A})=1] .
$$

- The Addition Rule: The probability of the union of two events is

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

- Probabilities and joint probabilities for two events A and B are summarized in the following table:

	B	\bar{B}	
A	$\operatorname{Pr}(\boldsymbol{A} \cap \boldsymbol{B})$	$\operatorname{Pr}(\boldsymbol{A} \cap \overline{\boldsymbol{B}})$	$\operatorname{Pr}(\boldsymbol{A})$
\bar{A}	$\operatorname{Pr}(\overline{\boldsymbol{A}} \cap \boldsymbol{B})$	$\operatorname{Pr}(\overline{\boldsymbol{A}} \cap \overline{\boldsymbol{B}})$	$\operatorname{Pr}(\overline{\boldsymbol{A}})$
	$\operatorname{Pr}(\boldsymbol{B})$	$\operatorname{Pr}(\overline{\boldsymbol{B}})$	$\operatorname{Pr}(S)=1$

Probability Rules - II

Example (Addition Rule)

Consider a standard deck of 52 cards, with four suits $\oslash \boldsymbol{\beta} \downarrow$. Let event $A=$ card is an Ace and event $B=$ card is from a red suit. $\operatorname{Pr}($ Red \cup Ace $)=\mathbf{P r}($ Red $)+\operatorname{Pr}($ Ace $)-\operatorname{Pr}($ Red \cap Ace $)$

Conditional Probability - I

- A conditional probability is the probability of one event, given that another event has occurred:

$$
\begin{aligned}
& \left.\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \text { (if } \operatorname{Pr}(B)>0\right) ; \\
& \operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}(\text { if } \operatorname{Pr}(A)>0)
\end{aligned}
$$

Conditional Probability - II

Example (Conditional Probability)

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both. What is the probability that a car has a CD player, given that it has AC? $[\operatorname{Pr}(C D \mid A C)=?]$

	CD	No CD	Total
AC	$(.2)$.5	$(.7)$
No AC	.2	.1	.3
Total	.4	.6	1.0

Multiplication Rule

- The Multiplication Rule for two events A and B :

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(\boldsymbol{B})=\operatorname{Pr}(\boldsymbol{B} \mid \boldsymbol{A}) \operatorname{Pr}(\boldsymbol{A})
$$

Example (Multiplication Rule)

$\begin{aligned} \operatorname{Pr}(\operatorname{Red} \cap \mathrm{Ace}) & =\operatorname{Pr}(\operatorname{Red} \mid \operatorname{Ace}) \operatorname{Pr}(\text { Ace }) \\ & =\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52} \\ & =\text { number of cards that are red and ace } \end{aligned}=\frac{2}{50}$			
Type	Red	Black	Total
Ace	(2)	2	4
Non-Ace	24	24	48
Total	26	26	52

Statistical Independence - I

- Two events are statistically independent if and only if:

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

- Events A and B are independent when the probability of one event is not affected by the other event.
- If A and B are independent, then

$$
\begin{aligned}
& \operatorname{Pr}(A \mid B)=\operatorname{Pr}(A), \text { if } \operatorname{Pr}(B)>0 \\
& \operatorname{Pr}(B \mid A)=\operatorname{Pr}(B), \text { if } \operatorname{Pr}(A)>0
\end{aligned}
$$

Statistical Independence - II

Example (Statistical Independence)

Of the cars on a used car lot, 70% have air conditioning (AC) and 40\% have a CD player (CD). 20% of the cars have both. Are the events AC and CD statistically independent?

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$\mathbf{P}(A C \cap C D)=0.2$
$\left.\begin{array}{l}P(A C)=0.7 \\ P(C D)=0.4\end{array}\right\} P(A C) P(C D)=(0.7)(0.4)=0.28$

$$
\mathbf{P}(A C \cap C D)=0.2 \neq P(A C) P(C D)=0.28
$$

So the two events are not statistically independent

Statistical Independence - III

Remark (Exclussive Events and Statistical Independence)

Let two events A and B with $\operatorname{Pr}(A)>0$ and $\operatorname{Pr}(B)>0$ which are mutually exclusive. Are A and B independent? NO!

To see this use a Venn diagram and the formula of conditional probability (or the multiplication rule).

- If one mutually exclusive event is known to occur, the other cannot occur; thus, the probability of the other event occurring is reduced to zero (and they are therefore dependent).

Examples - I

- Example 1. In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?
- Define H : high risk, and N : not high risk. Then

$$
\begin{aligned}
& \operatorname{Pr}(\text { exactly one high risk })=\operatorname{Pr}(H N N)+\operatorname{Pr}(N H N)+\operatorname{Pr}(N N H)= \\
& =\operatorname{Pr}(H) \operatorname{Pr}(N) \operatorname{Pr}(N)+\operatorname{Pr}(N) \operatorname{Pr}(H) \operatorname{Pr}(N)+\operatorname{Pr}(N) \operatorname{Pr}(N) \operatorname{Pr}(H) \\
& =(.1)(.9)(.9)+(.9)(.1)(.9)+(.9)(.9)(.1)=3(.1)(.9)^{2}=.243
\end{aligned}
$$

Examples - II

- Example 2. Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?
- Define H : high risk, and F : female. From the example, $\operatorname{Pr}(F)=$.49 and $\operatorname{Pr}(H \mid F)=.08$. Using the Multiplication Rule:

$$
\begin{aligned}
& \operatorname{Pr}(\text { high risk female })=\operatorname{Pr}(H \cap F) \\
= & \operatorname{Pr}(F) \operatorname{Pr}(H \mid F)=.49(.08)=.0392
\end{aligned}
$$

