Statistics for Business

Assignment 2: Suggested Solutions

Discrete Random Variables

1. The correct Table with the probability is

Years, y	3	4	5	6	7	8	9	10	11	12	13
$p(y)$.03	.05	.07	$\mathbf{. 1 0}$.14	.20	.18	.12	.07	.03	.01

With the "correct" probability distribution you would get:
(a) $\mu=\mathrm{E}(Y)=3(.03)+4(.05)+5(.07)+\ldots+13(.01)=7.9$
(b) $\sigma^{2}=\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2}$

$$
=3^{2}(.03)+4^{2}(.05)+5^{2}(.07)+\ldots+13^{2}(.01)-7.9^{2}=67.14-62.41=4.73
$$

or
$\operatorname{Var}(Y)=\sum_{y=3}^{13}(y-\mu)^{2} P(y)=(3-7.9)^{2}(.03)+(4-7.9)^{2}(.05)+\ldots+(13-7.9)^{2}(.01)=4.73$.
So $\sigma=2.17$.
(c) $(\mu-2 \sigma, \mu+2 \sigma)=(3.56,12.24)$.So,

$$
\begin{gathered}
\operatorname{Pr}(3.56<Y<12.24)=\operatorname{Pr}(4 \leq Y \leq 12)= \\
=.05+.07+.10+.14+.20+.18+.12+.07+.03=0.96
\end{gathered}
$$

$\left(\mathrm{a}^{\prime}\right)$ Using the probabilities provides (e.g. $\left.p(6)=0.01\right)$ we find:

$$
3(.03)+4(.05)+5(.07)+6(.01)+\ldots+13(.01)=7.36
$$

(b') $\sigma^{2}=\operatorname{Var}(Y)$

$$
\operatorname{Var}(Y)=\sum_{y=3}^{13}(y-\mu)^{2} P(y)=(3-7.36)^{2}(.03)+(4-7.36)^{2}(.05)+\ldots++(13-7.36)^{2}(.01)=4.86
$$

($\left.\mathrm{c}^{\prime}\right)(\mu-2 \sigma, \mu+2 \sigma)=(2.95,11.774)$. So,

$$
\begin{gathered}
\operatorname{Pr}(2.95<Y<11.774)=\operatorname{Pr}(3 \leq Y \leq 11)= \\
=0.03+.05+.07+.01+.14+.20+.18+.12+.07=0.87
\end{gathered}
$$

2. (a) The mean of X will be larger than the mean of Y. We have

$$
\mathrm{E}(X)=\mathrm{E}(Y+1)=\mathrm{E}(Y)+1=\mu+1
$$

(b) The variances of X and Y will be the same (the addition of 1, a constant, doesn't affect variability). Note that

$$
\operatorname{Var}(X)=\operatorname{Var}(Y+1)=\operatorname{Var}(Y)=\sigma^{2} .
$$

3. Let $X=\#$ that recover from stomach disease. Then, Y is binomial with $n=20$ and $p=0.8$. To find these probabilities, I just use Excel.
(a) $\operatorname{Pr}(X \geq 10)=1-\operatorname{Pr}(X \leq 9)=1-0.001=0.999$.
(b) $\operatorname{Pr}(14 \leq X \leq 18)=\operatorname{Pr}(X \leq 18)-\operatorname{Pr}(X \leq 13)=0.931-0.087=0.844$.
(c) $\operatorname{Pr}(X \leq 16)=0.589$.
4. Let $Y=\#$ of successful operations. Then Y is binomial with $n=5$.
(a) With $p=0.8, \operatorname{Pr}(Y=5)=\frac{5!}{5!(5-5)!}(.8)^{5}(1-.8)^{5-5}=(.8)^{5}=0.328$.
(b) With $p=0.6, \operatorname{Pr}(Y=4)=\frac{5!}{4!(5-4)!}(.8)^{4}(1-.8)^{5-4}=5(.6)^{4}(.4)=0.259$.
(c) With $p=0.3, \operatorname{Pr}(Y<2)=\operatorname{Pr}(Y=1)+\operatorname{Pr}(Y=0)=0.528$.
5. Let $X=\#$ of customers that arrive during the hour. Then, X is Poisson with $\lambda=7$.
(a) $\operatorname{Pr}(X \leq 3)=.0818$
(b) $\operatorname{Pr}(X \geq 2)=1-\operatorname{Pr}(X \leq 3)=1-.0818=.9927$
(c) $\operatorname{Pr}(X=5)=.1277$
6. Note that over a one-minute period, $Y=\#$ of cars that arrive at the toll booth is Poisson with $\lambda=80 / 60=4 / 3$. Then

$$
\operatorname{Pr}(Y \geq 1)=1-\operatorname{Pr}(Y=0)=1-e^{-4 / 3}=0.7364
$$

7. Define: $X=\#$ of cars through entrance $I, Y=\#$ of cars through entrance II. Thus, X is Poisson with $\lambda=3$ and Y is Poisson with $\lambda=4$. Then,
Pr (three cars arrive)
$=\operatorname{Pr}(X=0, Y=3)+\operatorname{Pr}(X=1, Y=2)+\operatorname{Pr}(X=2, Y=1)+\operatorname{Pr}(X=3, Y=0)$.
By independence,

$$
\begin{aligned}
& \operatorname{Pr}(\text { three cars arrive }) \\
= & \operatorname{Pr}(X=0) \operatorname{Pr}(Y=3)+\operatorname{Pr}(X=1) \operatorname{Pr}(Y=2)+\operatorname{Pr}(X=2) \operatorname{Pr}(Y=1)+\operatorname{Pr}(X=3) \operatorname{Pr}(Y=0) \\
= & 0.0521
\end{aligned}
$$

Continuous Random Variables

8. Let X have an exponential distribution with $1 / \lambda=2.4$.
(a) $\operatorname{Pr}(X>3)=1-\operatorname{Pr}(Y<3)=1-\left(1-e^{-\frac{1}{2.4} 3}\right)=e^{-\frac{3}{2.4}}=0.2865$.
(b) $\operatorname{Pr}(2 \leq X \leq 3)=\left(1-e^{-\frac{1}{2.4} 3}\right)-\left(1-e^{-\frac{1}{2.4} 2}\right)=0.1481$.
9. Let $Y=$ time between fatal airplane accidents. So, Y is exponential with $1 / \lambda=44$ days.
(a) $\operatorname{Pr}(Y \leq 31)=1-e^{-\frac{1}{44} 31}=.5057$.
(b) $\operatorname{Var}(Y)=1 / \lambda^{2}=(1 / \lambda)^{2}=44^{2}=1936$.
10. Just looking up the relevant table, we find
(a) $z_{0}=0.5$
(b) $z_{0}=1.10$
(c) $z_{0}=1.645$
(d) $z_{0}=2.576$
11. A GPA 3.0 is

$$
\frac{3.0-2.4}{0.8}=0.75
$$

standard deviations above the mean. So

$$
\operatorname{Pr}(Z>0.75)=1-\operatorname{Pr}(Z \leq 0.75)=.2266
$$

12. Let $X=$ width of a bolt of fabric, so X has a normal distribution with $\mu=950 \mathrm{~mm}$ and $\sigma=10 \mathrm{~mm}$.
(a) $\operatorname{Pr}(947 \leq X \leq 958)=\operatorname{Pr}\left(\frac{947-950}{10} \leq \frac{X-950}{10} \leq \frac{958-950}{10}\right)=\operatorname{Pr}(-0.3 \leq Z \leq 0.8)=$.406
(b) It is necessary that $\operatorname{Pr}(X \leq c)=.8531$. Note that for the standard normal, we find that $\operatorname{Pr}\left(Z \leq z_{0}\right)=.8531$ when $z_{0}=1.05$. So, $c=\mu+z_{0} \cdot \sigma=950+(1.05)(10)=$ 960.5 mm
