

Finance for Cultural Organisations
Lecture 8. Capital Budgeting: Making Capital Investment Decisions

MA in Heritage Management ent

Lecture 8. Capital Budgeting: Making Capital Investment Decisions

- Understand how to determine the relevant cash flows for various types of proposed investments
- Be able to compute depreciation expense for tax purposes
- Understand the various methods for computing operating cash flow

Reading

- RWJ Ch10, HBP Ch7.

Chapter Outline

- Project Cash Flows: A First Look
- Incremental Cash Flows
- Pro Forma Financial Statements and Project Cash Flows
- More on Project Cash Flow
- Alternative Definitions of Operating Cash Flow
- Some Special Cases of Cash Flow Analysis

Relevant Cash Flows

- The cash flows that should be included in a capital budgeting analysis are those that will only occur if the project is accepted
- These cash flows are called incremental cash flows
- The stand-alone principle allows us to analyze each project in isolation from the firm simply by focusing on incremental cash flows

Asking the Right Question

- You should always ask yourself "Will this cash flow occur ONLY if we accept the project?"
- If the answer is "yes", it should be included in the analysis because it is incremental
- If the answer is "no", it should not be included in the analysis because it will occur anyway
- If the answer is "part of it", then we should include the part that occurs because of the project

Common Types of Cash Flows

- Sunk costs - costs that have accrued in the past
- Opportunity costs - costs of lost options
- Side effects
- Positive side effects - benefits to other projects
- Negative side effects - costs to other projects
- Changes in net working capital
- Financing costs
- Taxes

Pro Forma Statements and Cash Flow

- Capital budgeting relies heavily on pro forma accounting statements, particularly income statements
- Computing cash flows - refresher
- Operating Cash Flow (OCF) = EBIT + depreciation - taxes
- OCF = Net income + depreciation when there is no interest expense
- Cash Flow From Assets (CFFA) = OCF - net capital spending (NCS) - changes in NWC

Table 1 Pro Forma Income Statement

Sales (50,000 units at \$4.00/unit)
Variable Costs (\$2.50/unit)
Gross profit
Fixed costs
Depreciation (\$90,000 / 3)
EBIT
Taxes (34\%)
Net Income
\$200,000 125,000
\$ 75,000
12,000
30,000
\$ 33,000
11,220
\$ 21,780

Table 2 Projected Capital Requirements

Year
0
1
2 3

NWC $\quad \$ 20,000 \quad \$ 20,000 \quad \$ 20,000 \quad \$ 20,000$

NFA $\quad 90,000 \xrightarrow{60,000}$
0
30,000
Total \$110,000 \$80,000 \$50,000 \$20,000

Table 3 Projected Total Cash Flows

	Year			
	0	1	2	3
OCF	$\$ \$ 51,780$			
Change	$-\$ 20,000$			20,000
in NWC	3			
NCS	$-\$ 90,000$			
CFFA	$-\$ 110,00$	$\$ 51,780$	$\$ 51,780$	$\$ 71,780$

Making The Decision

- Now that we have the cash flows, we can apply the techniques that we learned in chapter 9
- Enter the cash flows into the calculator and compute NPV and IRR
- CFO $=-110,000 ;$ CO1 $=51,780 ;$ FO1 $=2 ; C 02=71,780$
- NPV; I = 20; CPT NPV = 10,648
- CPT IRR $=25.8 \%$
- Should we accept or reject the project?

More on NWC

- Why do we have to consider changes in NWC separately?
- GAAP requires that sales be recorded on the income statement when made, not when cash is received
- GAAP also requires that we record cost of goods sold when the corresponding sales are made, whether we have actually paid our suppliers yet
- Finally, we have to buy inventory to support sales although we haven't collected cash yet

Depreciation

- The depreciation expense used for capital budgeting should be the depreciation schedule required by the IRS for tax purposes
- Depreciation itself is a non-cash expense; consequently, it is only relevant because it affects taxes
- Depreciation tax shield = DT
- $\mathrm{D}=$ depreciation expense
- T = marginal tax rate

Computing Depreciation

- Straight-line depreciation
- D = (Initial cost - salvage) / number of years
- Very few assets are depreciated straight-line for tax purposes
- MACRS
- Need to know which asset class is appropriate for tax purposes
- Multiply percentage given in table by the initial cost
- Depreciate to zero
- Mid-year convention

After-tax Salvage

- If the salvage value is different from the book value of the asset, then there is a tax effect
- Book value $=$ initial cost - accumulated depreciation
- After-tax salvage = salvage $-\mathrm{T}($ salvage - book value $)$

Example: Depreciation and After-tax Salvage

- You purchase equipment for $\$ 100,000$ and it costs $\$ 10,000$ to have it delivered and installed. Based on past information, you believe that you can sell the equipment for $\$ 17,000$ when you are done with it in 6 years. The company's marginal tax rate is 40%. What is the depreciation expense each year and the after-tax salvage in year 6 for each of the following situations?

Example: Straight-line Depreciation

- Suppose the appropriate depreciation schedule is straight-line
- $D=(110,000-17,000) / 6=15,500$ every year for 6 years
$-B V$ in year $6=110,000-6(15,500)=17,000$
- After-tax salvage $=17,000-.4(17,000-17,000)=17,000$

Example: Three-year MACRS

Year	MACRS percent	D
1	.3333	$.3333(110,000)$ $=36,663$
2	.4444	$.4444(110,000)$ $=48,884$
3	.1482	$.1482(110,000)$ $=16,302$
4	.0741	$.0741(110,000)$ $=8,151$

Example: Seven-Year MACRS

Year	MACRS Percent	D
1	.1429	$.1429(110,000)=$ 15,719
2	.2449	$.2449(110,000)=$ 26,939
3	.1749	$.1749(110,000)=$ 19,239
4	.1249	$.1249(110,000)=$ 13,739
5	.0893	$.0893(110,000)=9,823$
6	.0893	$.0893(110,000)=9,823$

Example: Replacement Problem

- Original Machine
- Initial cost = 100,000
- Annual depreciation $=9000$
- Purchased 5 years ago
- Book Value = 55,000
- Salvage today $=65,000$
- Salvage in 5 years $=10,000$
- New Machine
- Initial cost = 150,000
- 5-year life
- Salvage in 5 years $=0$
- Cost savings $=50,000$ per year
- 3-year MACRS depreciation
- Required return $=10 \%$
- Tax rate $=40 \%$

Replacement Problem - Computing Cash Flows

- Remember that we are interested in incremental cash flows
- If we buy the new machine, then we will sell the old machine
- What are the cash flow consequences of selling the old machine today instead of in 5 years?

MA in Heritage Management
(Statements

Year	1	2	3	4	5
Cost	50,000	50,000	50,000	50,000	50,000
Savings					
Depr.					
New	49,500	67,500	22,500	10,500	0
Old	9,000	9,000	9,000	9,000	9,000
Increm.	40,500	58,500	13,500	1,500	$(9,000)$
EBIT	9,500	$(8,500)$	36,500	48,500	59,000
Taxes	3,800	$(3,400)$	14,600	19,400	23,600
NI	5,700	$(5,100)$	21,900	29,100	35,400

Replacement Problem - Incremental Net Capital Spending

- Year 0
- Cost of new machine $=150,000$ (outflow)
- After-tax salvage on old machine $=65,000-.4(65,000-55,000)$ = 61,000 (inflow)
- Incremental net capital spending $=150,000-61,000=89,000$ (outflow)
- Year 5
- After-tax salvage on old machine $=10,000-.4(10,000-10,000)$
$=10,000$ (outflow because we no longer receive this)

Replacement Problem - Cash Flow From Assets

Year	0	1	2	3	4	5
OCF		46,200	53,400	35,400	30,600	26,400
NCS	$-89,000$					$-10,000$
Δ In	0					0
NWC						
CFFA	$-89,000$	46,200	53,400	35,400	30,600	16,400

Replacement Problem - Analyzing the Cash Flows

- Now that we have the cash flows, we can compute the NPV and IRR
- Enter the cash flows
- Compute NPV = 54,812.10
- Compute IRR = 36.28\%
- Should the company replace the equipment?

Other Methods for Computing OCF

- Bottom-Up Approach
- Works only when there is no interest expense
$-\mathrm{OCF}=\mathrm{NI}+$ depreciation
- Top-Down Approach
- OCF = Sales - Costs - Taxes
- Don't subtract non-cash deductions
- Tax Shield Approach
- OCF $=($ Sales - Costs $)(1-T)+$ Depreciation*T

Example: Cost Cutting

- Your company is considering a new computer system that will initially cost $\$ 1$ million. It will save $\$ 300,000$ a year in inventory and receivables management costs. The system is expected to last for five years and will be depreciated using 3year MACRS. The system is expected to have a salvage value of $\$ 50,000$ at the end of year 5 . There is no impact on net working capital. The marginal tax rate is 40%. The required return is 8%.

Example: Setting the Bid Price

- Consider the following information:
- Army has requested bid for multiple use digitizing devices (MUDDs)
- Deliver 4 units each year for the next 3 years
- Labor and materials estimated to be $\$ 10,000$ per unit
- Production space leased for \$12,000 per year
- Requires $\$ 50,000$ in fixed assets with expected salvage of $\$ 10,000$ at the end of the project (depreciate straight-line)
- Require initial \$10,000 increase in NWC
- Tax rate $=34 \%$
- Required return = 15\%

Example: Equivalent Annual Cost Analysis

- Burnout Batteries
- Initial Cost = \$36 each
- 3-year life
- $\$ 100$ per year to keep charged
- Expected salvage = \$5
- Straight-line depreciation
- Long-lasting Batteries
- Initial Cost = \$60 each
- 5 -year life
- \$88 per year to keep charged
- Expected salvage = \$5
- Straight-line depreciation

The machine chosen will be replaced indefinitely and neither machine will have a differential impact on revenue. No change in NWC is required.

The required return is 15% and the tax rate is 34%.

Quick Quiz

- How do we determine if cash flows are relevant to the capital budgeting decision?
- What are the different methods for computing operating cash flow and when are they important?
- What is the basic process for finding the bid price?
- What is equivalent annual cost and when should it be used?

Comprehensive Problem

- A $\$ 1,000,000$ investment is depreciated using a seven-year MACRS class life. It requires \$150,000 in additional inventory, and will increase accounts payable by $\$ 50,000$. It will generate $\$ 400,000$ in revenue and $\$ 150,000$ in cash expenses annually, and the tax rate is 40%. What is the incremental cash flow in years $0,1,7$, and 8 ?

