Induction Course in Quantitative Methods for Finance

Estimation: Single Population

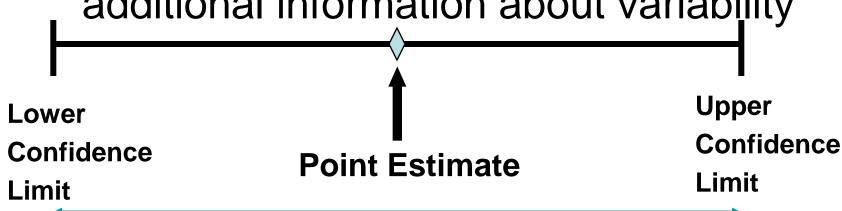
Definitions

- An estimator of a population parameter is
 - a random variable that depends on sample information . . .
 - whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides

 additional information about variability



Width of confidence interval

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	ħ	X	
Proportion	Р	ĝ	

Unbiasedness

• A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of $\hat{\theta}$ is θ ,

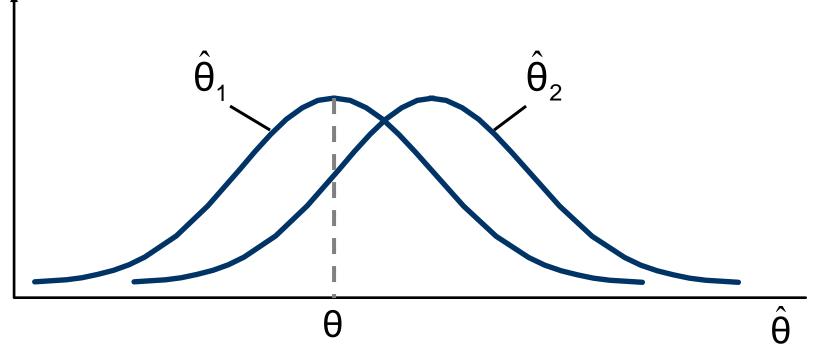
$$E(\hat{\theta}) = \theta$$

- Examples:
 - The sample mean is an unbiased estimator of μ
 - The sample variance is an unbiased estimator of σ^2
 - The sample proportion is an unbiased estimator of P for Finance

Unbiasedness

(continued)

• $\hat{\theta}_1$ is an unbiased estimator, $\hat{\theta}_2$ is biased:



K. Drakos, Quantitative Methods for Finance

Bias

- Let $\hat{\theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$\mathsf{Bias}(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$$

The bias of an unbiased estimator is 0

Consistency

- Let $\hat{\theta}$ be an estimator of θ
- θ is a consistent estimator of θ if the difference between the expected value of and θ decreases as the sample size increases
- Consistency is desired when unbiased estimators cannot be obtained

Most Efficient Estimator

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , based on the same number of sample observations. Then,
 - $-\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ f $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
 - The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio of their variances:

Relative Efficiency =
$$\frac{\text{Var}(\hat{\theta}_2)}{\text{Var}(\hat{\theta}_1)}$$

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observation from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Confidence Interval and Confidence Level

- If $P(a < \theta < b) = 1 \alpha$ then the interval from a to b is called a $100(1 \alpha)\%$ confidence interval of θ .
- The quantity (1-α) is called the confidence level of the interval (α between 0 and 1)
 - In repeated samples of the population, the true value of the parameter θ would be contained in 100(1 α)% of intervals calculated this way.
 - The confidence interval calculated in this manner is written as a $< \theta <$ b with 100(1 α)% confidence

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = 0.95$
- A relative frequency interpretation:
 - From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

General Formula

 The general formula for all confidence intervals is:

Point Estimate ± (Reliability Factor)(Standard Error)

 The value of the reliability factor depends on the desired level of confidence

Confidence Interval for μ (σ² Known)

- Assumptions
 - Population variance σ^2 is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$|\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}| < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}|$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Margin of Error

The confidence interval,

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Can also be written as x±ME
 where ME is called the margin of error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 The interval width, w, is equal to twice the margin of error

Reducing the Margin of Error

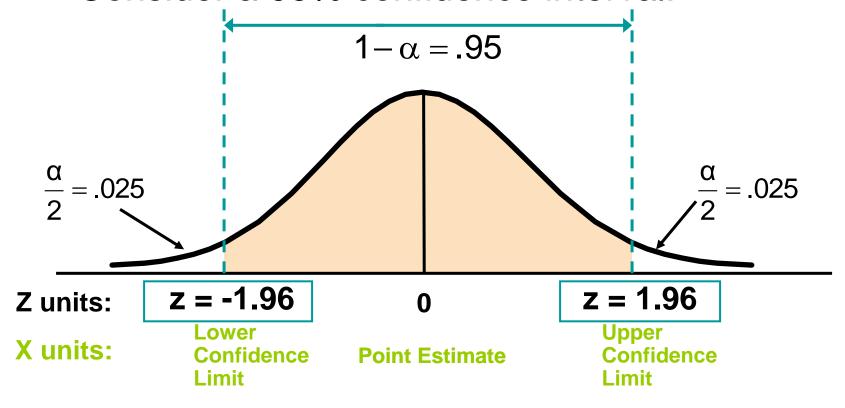
$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The margin of error can be reduced if

- the population standard deviation can be reduced (σ↓)
- The sample size is increased (n↑)
- The confidence level is decreased, (1-α) ↓

Finding the Reliability Factor, $z_{\alpha/2}$

Consider a 95% confidence interval:



• Find $z_{.025} = \pm 1.96$ from the standard normal distribution table K. Drakos, Quantitative Methods for Finance

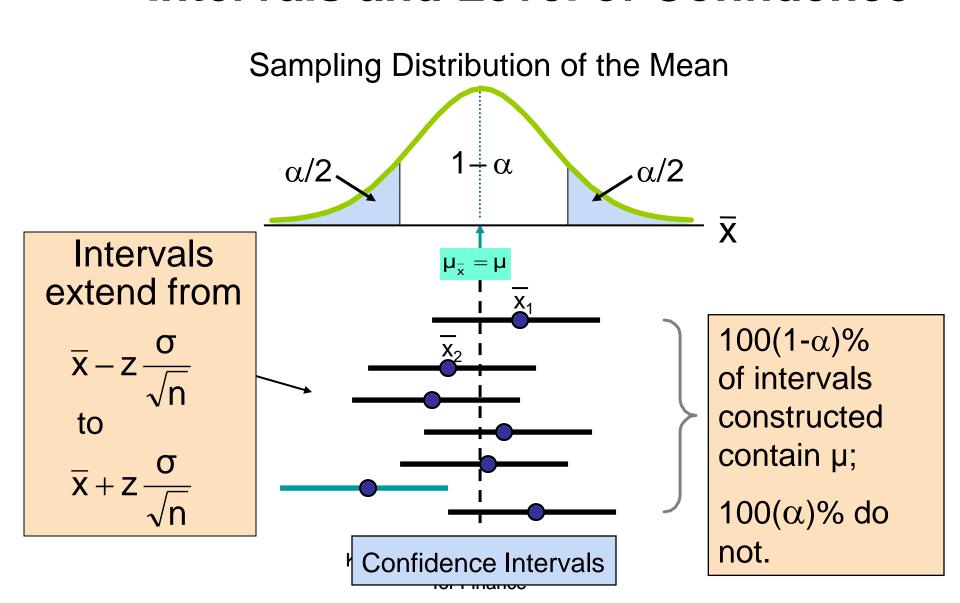
Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value	
80%	.80	1.28	
90%	.90	1.645	
95%	.95	1.96	
98%	.98	2.33	
99%	.99	2.58	
99.8%	.998	3.08	
99.9%	.999	3.27	

K. Drakos, Quantitative Methods for Finance

Intervals and Level of Confidence



Example

- A sample of 11 firms from a large normal population has a mean monthly return of 2.20%. We know from past testing that the population standard deviation is 0.35%.
- Determine a 95% confidence interval for the true mean return of the population.

Example

(continued)

$$\overline{x}\pm z\frac{\sigma}{\sqrt{n}}$$

$$=2.20\pm1.96\,(.35/\sqrt{11})$$

$$= 2.20 \pm .2068$$

$$1.9932 < \mu < 2.4068$$

Interpretation

- We are 95% confident that the true mean return is between 1.9932 and 2.4068 %
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Student's t Distribution

- Consider a random sample of n observations
 - with mean x and standard deviation s
 - from a normally distributed population with mean µ
- Then the variable $t = \frac{x \mu}{s / \sqrt{n}}$

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

 follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ² Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate.

$$\overline{\overline{x}} - t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}}$$

where $t_{n-1,\alpha/2}$ is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail:

K. Drakos,
$$P(t_{n-1} > t_{n-1,\alpha/2}) = \alpha/2$$
for Finance

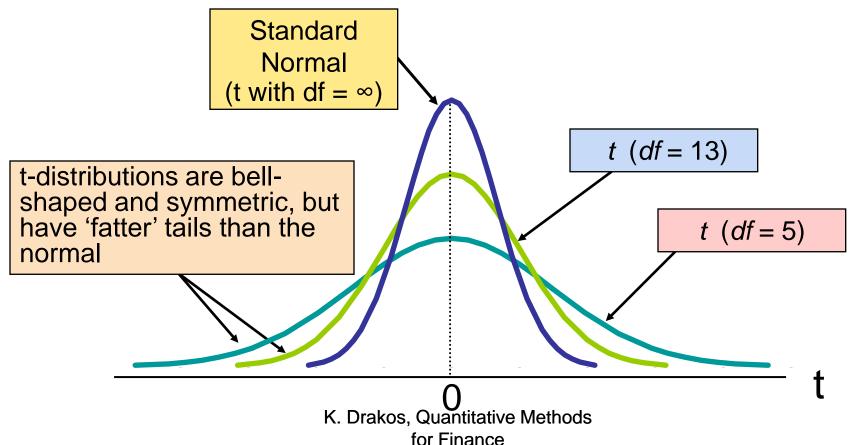
Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

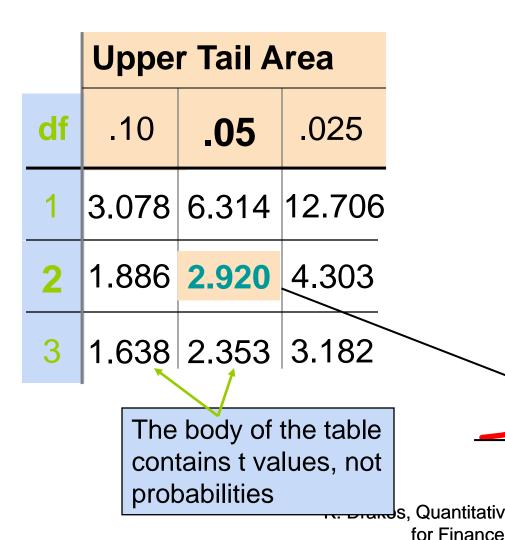
$$d.f. = n - 1$$

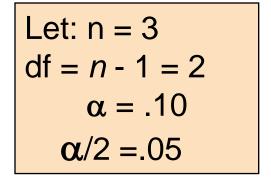
Student's t Distribution

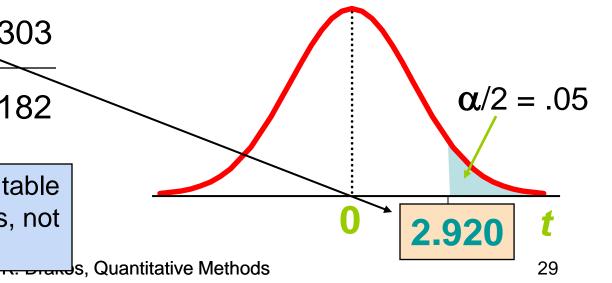
Note: $t \rightarrow Z$ as n increases



Student's t Table







t distribution values

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z
.80	1.372	1.325	1.310	1.282
.90	1.812	1.725	1.697	1.645
.95	2.228	2.086	2.042	1.960
.99	3.169	2.845	2.750	2.576

Note: $t \rightarrow Z$ as n increases

Example

A random sample of n = 25 has $\bar{x} = 50$ and s = 8. Form a 95% confidence interval for μ

$$-$$
 d.f. = n - 1 = 24, so $t_{n-1,\alpha/2} = t_{24,.025} = 2.0639$

The confidence interval is

$$\begin{split} \overline{x} - t_{n\text{--}1,\alpha/2} \, \frac{S}{\sqrt{n}} \, < \, \mu \, < \, \overline{x} + t_{n\text{--}1,\alpha/2} \, \frac{S}{\sqrt{n}} \\ 50 - (2.0639) \frac{8}{\sqrt{25}} \, < \, \mu \, < \, 50 + (2.0639) \frac{8}{\sqrt{25}} \\ 46.698 \, < \, \mu \, < \, 53.302 \end{split}$$

K. Drakos, Quantitative Methods for Finance

Confidence Intervals for the Population Proportion, p

 An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

Confidence Intervals for the Population Proportion, p

(continued)

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_{P} = \sqrt{\frac{P(1-P)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \ < \ P \ < \ \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where

- $-z_{\alpha/2}$ is the standard normal value for the level of confidence desired
- $-\hat{p}$ is the sample proportion
- n is the sample size

Example

- A random sample of 100 firms shows that
 25 did not pay dividend
- Form a 95% confidence interval for the true proportion of non-paying firms

Example

(continued)

$$\begin{split} \hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} &< P < \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \\ \frac{25}{100} - 1.96 \sqrt{\frac{.25(.75)}{100}} &< P < \frac{25}{100} + 1.96 \sqrt{\frac{.25(.75)}{100}} \\ 0.1651 &< P < 0.3349 \end{split}$$

Interpretation

 We are 95% confident that the true percentage of non-paying firms in the population is between

16.51% and 33.49%.

 Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Dependent Samples

Dependent samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$d_i = x_i - y_i$$

- Assumptions:
 - Both Populations Are Normally Distributed

Mean Difference

Dependent samples

The ith paired difference is d_i, where

$$d_i = x_i - y_i$$

The point estimate for the population mean_paired difference is d:

$$\bar{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$

The sample standard deviation is:

$$S_{d} = \sqrt{\frac{\sum_{i=1}^{n} (d_{i} - \bar{d})^{2}}{n-1}}$$

n is the number of matched pairs in the sample

Confidence Interval for Mean Difference

Dependent samples

The confidence interval for difference between population means, μ_d , is

$$\frac{\bar{d}}{d} - t_{n-1,\alpha/2} \, \frac{S_d}{\sqrt{n}} \; < \; \mu_d \; < \; \bar{d} \, + \, t_{n-1,\alpha/2} \, \frac{S_d}{\sqrt{n}}$$

Where

n = the sample size (number of matched pairs in the paired sample)

Confidence Interval for Mean Difference

(continued)

Dependent samples

The margin of error is

$$ME = t_{n-1,\alpha/2} \, \frac{s_d}{\sqrt{n}}$$

• $t_{n-1,\alpha/2}$ is the value from the Student's t distribution with (n-1) degrees of freedom for which

$$P(t_{n-1} > t_{n-1,\alpha/2}) = \frac{\alpha}{2}$$

Paired Samples Example

 Six people sign up for a weight loss program. You collect the following data:

	Weight:		
Person	Before (x)	After (y)	<u>Difference</u> , <u>d</u> _i
1	136	125	11
2	205	195	10
3	157	150	7
4	138	140	- 2
5	175	165	10
6	166	160	6
			42

$$= 7.0$$

$$= \sqrt{\frac{\sum (d_i - \overline{d})^2}{n-1}}$$

$$= 4.82$$

Paired Samples Example

(continued)

- For a 95% confidence level, the appropriate t value is $t_{n-1,\alpha/2} = t_{5,.025} = 2.571$
- The 95% confidence interval for the difference between means, µ_d, is

between means,
$$\mu_d$$
, is $\bar{d} - t_{n-1,\alpha/2} \frac{S_d}{\sqrt{n}} < \mu_d < \bar{d} + t_{n-1,\alpha/2} \frac{S_d}{\sqrt{n}}$
$$7 - (2.571) \frac{4.82}{\sqrt{6}} < \mu_d < 7 + (2.571) \frac{4.82}{\sqrt{6}}$$

 $-1.94 < \mu_d < 12.06$

Since this interval contains zero, we cannot be 95% confident, given this limited data, that the weight loss program helps people lose weight

Difference Between Two Means

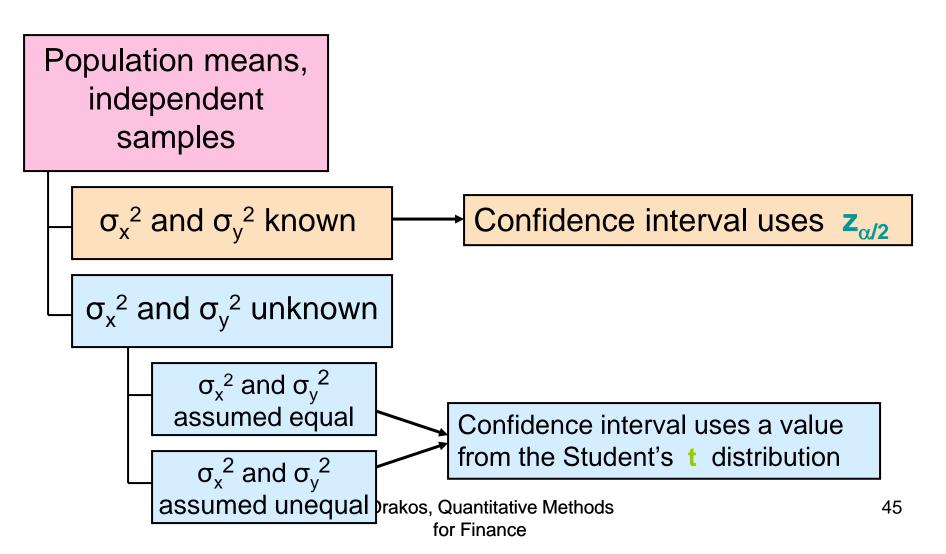
Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_v$

- Different data sources
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population
- The point estimate is the difference between the two sample means:

Difference Between Two Means

(continued)



σ_x^2 and σ_y^2 Known

Population means, independent samples

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ known

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ unknown

Assumptions:

- Samples are randomly and independently drawn
- both population distributions are normal
- Population variances are known

*

σ_x^2 and σ_y^2 Known

(continued)

Population means, independent samples

 σ_x^2 and σ_v^2 known

 σ_x^2 and σ_v^2 unknown

When σ_x and σ_y are known and both populations are normal, the variance of $\overline{X} - \overline{Y}$ is

$$\sigma_{\overline{X}-\overline{Y}}^2 = \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}$$

...and the random variable

$$Z = \frac{(\overline{x} - \overline{y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_x^2}{n_X} + \frac{\sigma_y^2}{n_Y}}}$$

has a standard normal distribution

Confidence Interval, σ_x^2 and σ_y^2 Known

Population means, independent samples

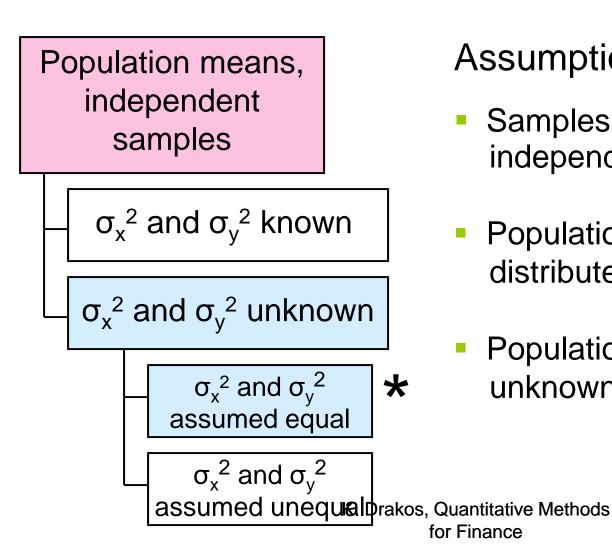
 σ_x^2 and σ_y^2 known

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ unknown

***** The confidence interval for $\mu_x - \mu_y$ is:

$$(\overline{x}-\overline{y})-z_{\alpha/2}\sqrt{\frac{\sigma_{\chi}^2}{n_x}+\frac{\sigma_{\gamma}^2}{n_y}}\ <\ \mu_\chi\ -\ \mu_Y\ <\ (\overline{x}-\overline{y})+z_{\alpha/2}\sqrt{\frac{\sigma_{\chi}^2}{n_x}+\frac{\sigma_{\gamma}^2}{n_y}}$$

σ_{x}^{2} and σ_{v}^{2} Unknown, **Assumed Equal**



Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

49

$\sigma_{x}2$ and $\sigma_{v}^{\ 2}$ Unknown, **Assumed Equal**

(continued)

Population means, independent samples

 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ known

 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ unknown

 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ assumed equal

*

for Finance

 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$

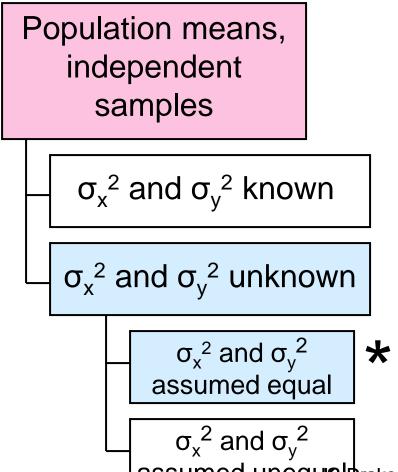
Forming interval estimates:

The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ

use a t value with $(n_x + n_v - 2)$ degrees of freedom assumed unequal prakos, Quantitative Methods

σ_x^2 and σ_y^2 Unknown, Assumed Equal

(continued)



The pooled variance is

$$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$$

assumed unequal prakos, Quantitative Methods for Finance

Confidence Interval, $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ Unknown, Equal

 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ unknown

 σ_x^2 and σ_y^2 assumed equal

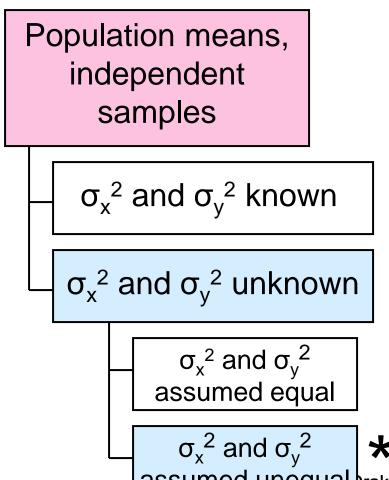
 $\sigma_{\rm x}^2$ and $\sigma_{\rm v}^2$ assumed unequal

The confidence interval for $\mu_1 - \mu_2$ is:

$$(\overline{x} - \overline{y}) - t_{n_x + n_y - 2, \alpha/2} \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}} \ < \ \mu_X - \mu_Y \ < \ (\overline{x} - \overline{y}) + t_{n_x + n_y - 2, \alpha/2} \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}$$

$$s_{p}^{2} = \frac{(n_{x} - 1)s_{x}^{2} + (n_{y} - 1)s_{y}^{2}}{n_{x} + n_{y} - 2}$$
 re Methods

σ_x^2 and σ_y^2 Unknown, Assumed Unequal



Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal

σ_x^2 and σ_y^2 Unknown, Assumed Unequal

(continued)

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_{x}^{2} and σ_{v}^{2} unknown

 σ_x^2 and σ_y^2 assumed equal

 σ_x^2 and σ_y^2 assumed unequal prakes, Quantif

Forming interval estimates:

- The population variances are assumed unequal, so a pooled variance is not appropriate
- use a t value with v degrees of freedom, where

$$v = \frac{\left[\left(\frac{s_{x}^{2}}{n_{x}} \right) + \left(\frac{s_{y}^{2}}{n_{y}} \right) \right]^{2}}{\left(\frac{s_{x}^{2}}{n_{x}} \right)^{2} / (n_{x} - 1) + \left(\frac{s_{y}^{2}}{n_{y}} \right)^{2} / (n_{y} - 1)}$$

Confidence Interval, σ_x^2 and σ_y^2 Unknown, Unequal

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ unknown

 σ_x^2 and σ_y^2 assumed equal

 σ_x^2 and σ_y^2 assumed unequal

The confidence interval for $\mu_1 - \mu_2$ is:

$$\overline{\left(\overline{x} - \overline{y}\right) - t_{_{\nu,\alpha/2}} \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}} \ < \ \mu_X - \mu_Y \ < \ (\overline{x} - \overline{y}) + t_{_{\nu,\alpha/2}} \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$

Where
K. Drakos, Quantitat for Finance
$$v = \frac{\left[\left(\frac{s_x^2}{n_x}\right) + \left(\frac{s_y^2}{n_y}\right)\right]^2}{\left(\frac{s_x^2}{n_x}\right)^2/(n_x - 1) + \left(\frac{s_y^2}{n_y}\right)^2/(n_y - 1)}$$

Two Population Proportions

Population proportions

Goal: Form a confidence interval for the difference between two population proportions, $P_x - P_y$

Assumptions:

Both sample sizes are large (generally at least 40 observations in each sample)

The point estimate for the difference is

$$\hat{p}_x - \hat{p}_y$$

Two Population Proportions

(continued)

Population proportions

The random variable

$$Z = \frac{(\hat{p}_{x} - \hat{p}_{y}) - (p_{x} - p_{y})}{\sqrt{\frac{\hat{p}_{x}(1 - \hat{p}_{x})}{n_{x}} + \frac{\hat{p}_{y}(1 - \hat{p}_{y})}{n_{y}}}}$$

is approximately normally distributed

Confidence Interval for Two Population Proportions

Population proportions

The confidence limits for $P_x - P_y$ are:

$$(\hat{p}_{x} - \hat{p}_{y}) \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}_{x}(1-\hat{p}_{x})}{n_{x}} + \frac{\hat{p}_{y}(1-\hat{p}_{y})}{n_{y}}}$$

Example: Two Population Proportions

Form a 90% confidence interval for the difference between the proportion of retail firms and the proportion of industrial firms who went bankrupt last year.

 In a random sample, 26 of 50 retail and 28 of 40 industrial firms had gone bankrupt

Example: Two Population Proportions

(continued)

Retail:

$$\hat{p}_x = \frac{26}{50} = 0.52$$

Industrial:

$$\hat{p}_y = \frac{28}{40} = 0.70$$

$$\sqrt{\frac{\hat{p}_x(1-\hat{p}_x)}{n_x} + \frac{\hat{p}_y(1-\hat{p}_y)}{n_y}} = \sqrt{\frac{0.52(0.48)}{50} + \frac{0.70(0.30)}{40}} = 0.1012$$

For 90% confidence, $Z_{\alpha/2} = 1.645$

Example: Two Population Proportions

(continued)

The confidence limits are:

$$\begin{split} &(\hat{p}_x - \hat{p}_y) \ \pm \ Z_{\alpha/2} \ \sqrt{\frac{\hat{p}_x (1 - \hat{p}_x)}{n_x} + \frac{\hat{p}_y (1 - \hat{p}_y)}{n_y}} \\ &= (.52 - .70) \ \pm \ 1.645 (0.1012) \end{split}$$

so the confidence interval is

$$-0.3465 < P_x - P_y < -0.0135$$

Since this interval does not contain zero we are 90% confident that the two proportions are not equal

Confidence Intervals for the Population Variance

Population Variance

- Goal: Form a confidence interval for the population variance, σ²
- The confidence interval is based on the sample variance, s²
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)

Population Variance

The random variable

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

follows a chi-square distribution with (n – 1) degrees of freedom

The chi-square value $\chi^2_{n-1,\alpha}$ denotes the number for which

$$P(\chi_{n-1}^2 > \chi_{n-1,\alpha}^2) = \alpha$$

K. Drakos, Quantitative Methods for Finance

Confidence Intervals for the Population Variance

(continued)

Population Variance

The $(1 - \alpha)$ % confidence interval for the population variance is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

Hypothesis Testing

What is a Hypothesis?

- A hypothesis is a claim (assumption) about a population parameter:
- population mean / population proportion

Example: The mean monthly cell phone bill of this city is $\mu = 42

Example: The proportion of adults in this city with cell phones is p = .68

The Null Hypothesis, H₀

States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S.

Homes is equal to three $(H_0: \mu = 3)$

Is always about a population parameter, not about a sample statistic

$$H_0$$
: $\mu = 3$

$$H_0: \overline{X} = 3$$

The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in U.S. homes is not equal to 3 (H_1 : $\mu \neq 3$)
- Challenges the status quo
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

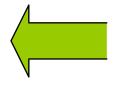
 H_0 : $\mu = 50$)

Population

Is $\overline{X}=20$ likely if $\mu = 50$?

If not likely,

REJECT Null Hypothesis



Suppose the sample mean age

K. Drakos, Quantitative Methods for Finance

Hypothesis Tests Design

- Is X likely given that $\mu = 50$? If we believe that this not likely we will reject H_0 .
- How can we determine if the event is likely to occur given that H₀ is true?
- We define a rejection region of the sampling distribution, X < c.

$$P(\overline{X} < c | \mu = 50) = P(Re ject H_0 | H_0 true) = \alpha$$

So we want small values of α (significance level). According to α if we know the distribution of X we can determine c (critical value)

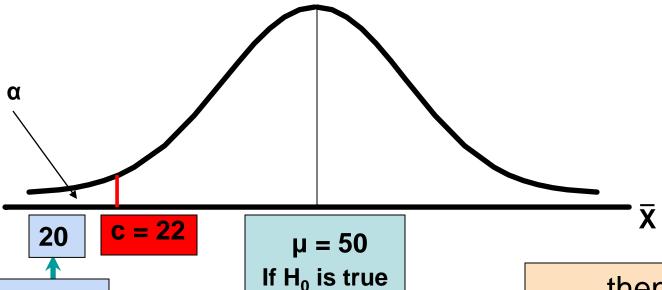
Hypothesis Tests Design

(continued)

- If we find that for $\alpha = 1\%$ the c = 22 then since 20 < 22 we will reject H_0 at the 1% significance level.
- So for H_0 being true the 1% of the samples would have \overline{X} < c. The rest 99% would have a sample mean \overline{X} > c. So we are 99% confident that H_0 should be rejected.

Hypothesis Tests Design

(continued)



If it is unlikely that we would get a sample mean of this value ...

... if in fact this were the population mean...

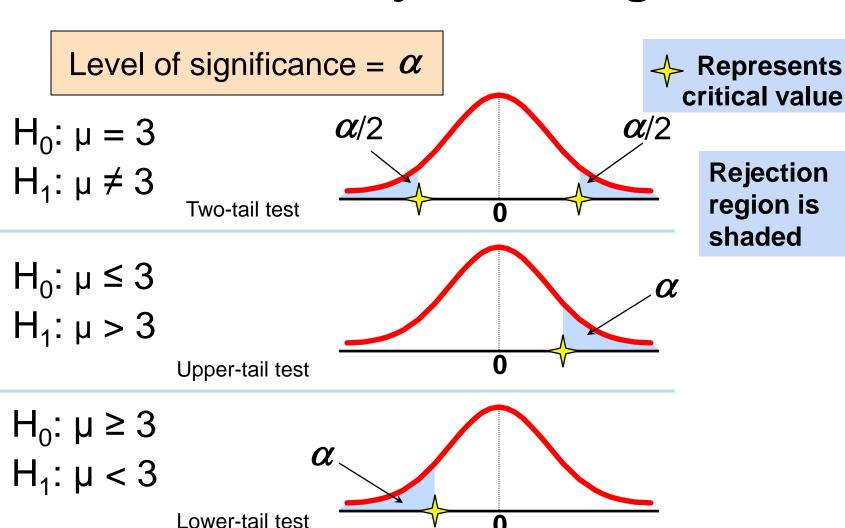
n. Diakos, Quanilialive ivielinous for Finance ... then we reject the null hypothesis that $\mu = 50$.

73

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region



K. Drakos, Quantitative Methods

for Finance

Errors in Making Decisions

Type I Error

- -Reject a true null hypothesis
- -Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

(continued)

- Type II Error
 - -Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual	
Decision	H ₀ Situatio	n H _o False
Do Not Reject H ₀	No error $(1 - \alpha)$	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)

Key:
Outcome
(Probability)

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α) $\widehat{\Box}$, then Type II error probability (β) $\overline{\Box}$

Factors Affecting Type II Error

- All else equal,
 - β when the difference between hypothesized parameter and its true value
 - $-\beta$ when α
 - $-\beta \hat{1}$ when $\sigma \hat{1}$
 - $\beta \hat{\mathbf{1}}$ when $n \downarrow$

Power of the Test

 The power of a test is the probability of rejecting a null hypothesis that is false

• i.e., Power = $P(Reject H_0 | H_1 is true)$

Power of the test increases as the sample size increases

Test of Hypothesis for the Mean (σ Known)

Convert sample result (x) to a z value

Hypothesis Tests for µ

σ Known

σ Unknown

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

$$H_1: \mu > \mu_0$$

(Assume the population is normal)

The decision rule is:

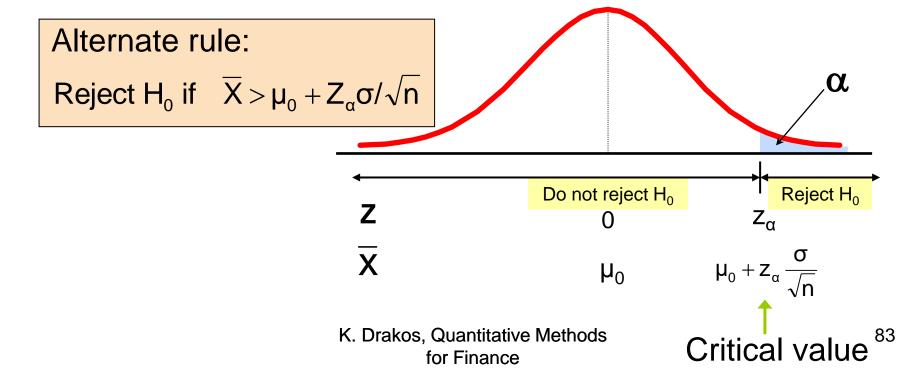
Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$$

K. Drakos, Quantitative Methods

Decision Rule

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu > \mu_0$



p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-Value Approach to Testing

(continued)

- Convert sample result (e.g., \(\overline{\chi}\)) to test statistic (e.g., z statistic)
- - For an upper tail test:

• Obtain the p-value
$$p$$
-value $= P(Z > \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$, given that H_0 is true)

$$= P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \mid \mu = \mu_0)$$

Decision rule: compare the p-value to α

- If p-value $< \alpha$, reject H_0 If p-value $\ge \alpha$, do not reject H_0

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

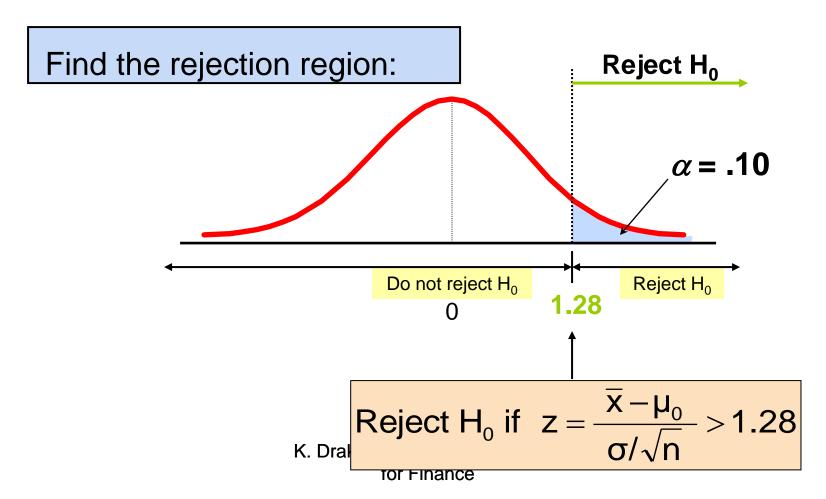
Form hypothesis test:

H_0 : µ ≤ 52	the average is not over \$52 per month
H_1 : $\mu > 52$	the average is greater than \$52 per month
	(i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

(continued)

• Suppose that $\alpha = .10$ is chosen for this test



Example: Sample Results

(continued)

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\overline{x} = 53.1$ ($\sigma = 10$ was assumed known)

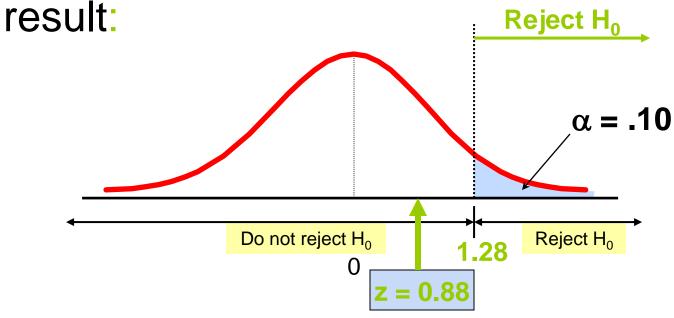
Using the sample results,

$$z = \frac{\bar{x} - \mu_0}{\sigma} = \frac{53.1 - 52}{10} = 0.88$$

Example: Decision

(continued)

Reach a decision and interpret the



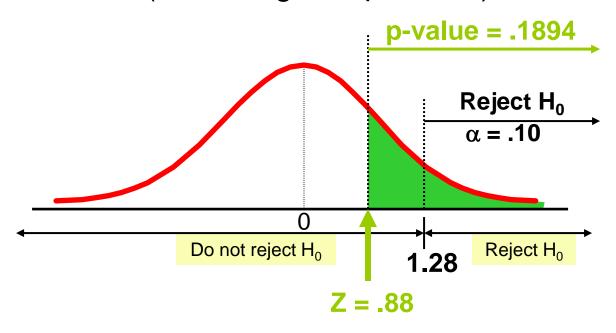
Do not reject H_0 since z = 0.88 < 1.28

i.e.: there is not sufficient evidence that the mean bill is over \$52

Example: p-Value Solution

(continued)

Calculate the p-value and compare to α (assuming that $\mu = 52.0$)



$$P(\bar{x} \ge 53.1 \mid \mu = 52.0)$$

$$= P \left(z \ge \frac{53.1 - 52.0}{10/\sqrt{64}} \right)$$

$$=P(z \ge 0.88) = 1 - .8106$$

=.1894

Do not reject H_0 since p-value = .1894 > α = .10

One-Tail Tests

 In many cases, the alternative hypothesis focuses on one particular direction

 H_0 : μ ≤ 3

H₁: µ > 3

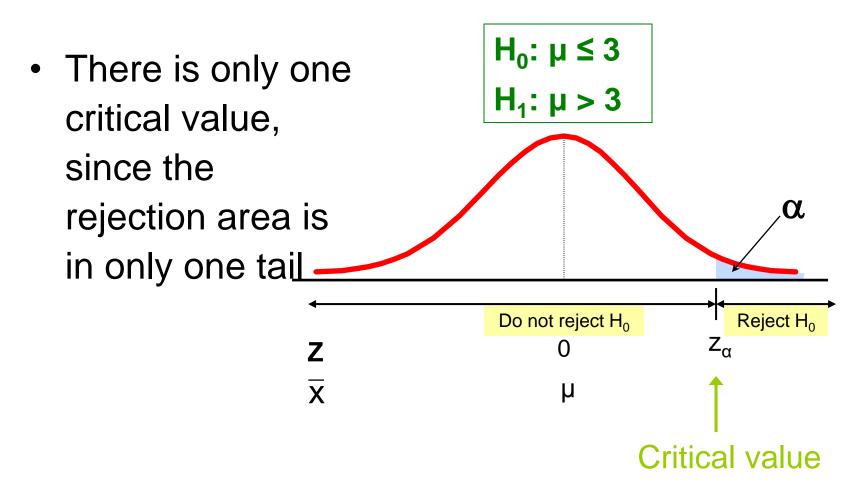
This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

 H_0 : $\mu \ge 3$

 H_1 : $\mu < 3$

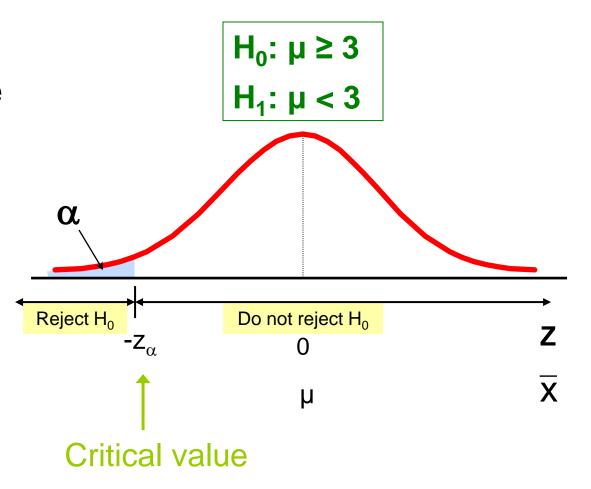
This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests



Lower-Tail Tests

 There is only one critical value, since the rejection area is in only one tail



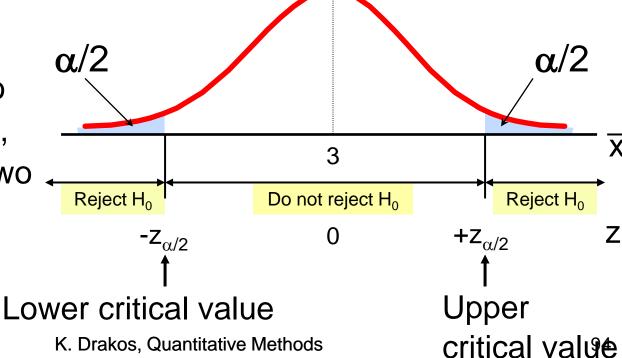
Two-Tail Tests

for Finance

 In some settings, the alternative hypothesis does not specify a unique direction

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

 There are two critical values, defining the two regions of rejection



Test the claim that the true mean # of TV sets in US homes is equal to 3.

(Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

(continued)

- Determine the appropriate technique
 - $-\sigma$ is known so this is a z test
- Set up the critical values
 - For α = .05 the critical z values are ±1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100,
$$\bar{x}$$
 = 2.84 (σ = 0.8 is assumed known)

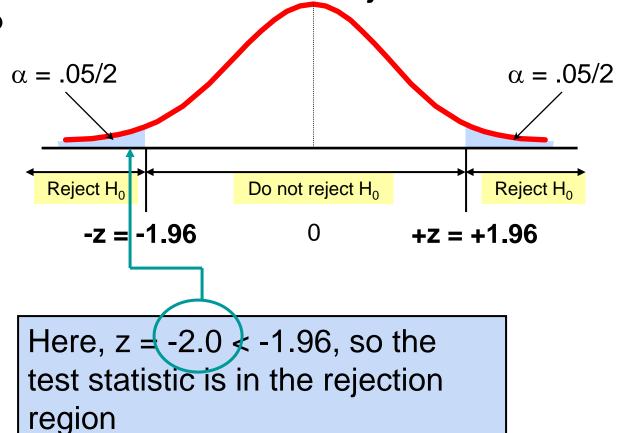
So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

r. Diakos, Quantitative Methous for Finance (continued)

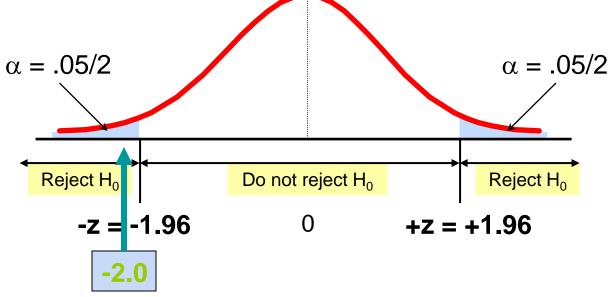
Is the test statistic in the rejection

region?
Reject H_0 if z < -1.96 or z > 1.96; otherwise do not reject H_0



(continued)

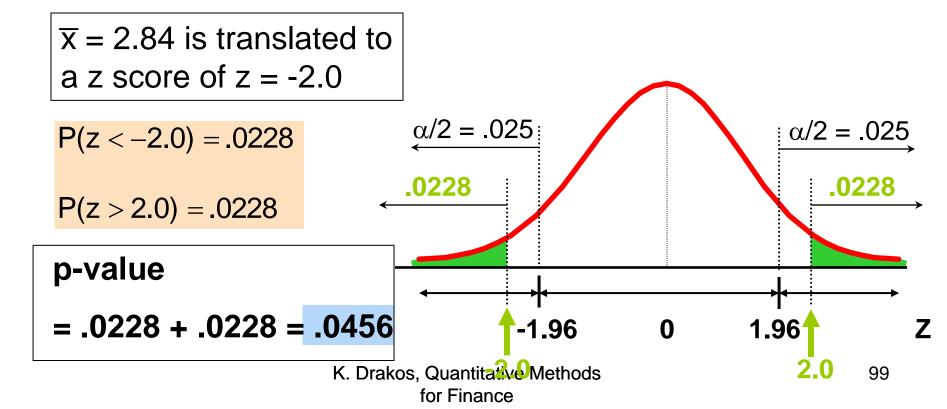
Reach a decision and interpret the result



Since z = -2.0 < -1.96, we <u>reject the null hypothesis</u> and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example: p-Value

• Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?



Example: p-Value

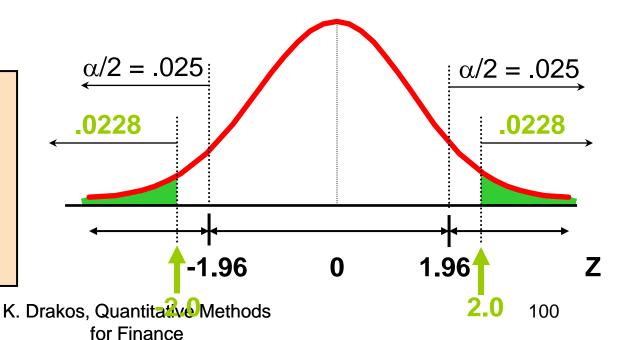
(continued)

- Compare the p-value with α
 - If p-value $< \alpha$, reject H₀
 - If p-value $\geq \alpha$, do not reject

 H_0

Here: p-value = .0456 α = .05

Since .0456 < .05, we reject the null hypothesis



t Test of Hypothesis for the Mean (σ Unknown)

• Convert sample result (\bar{x}) to a t test statistic Hypothesis

Tests for µ

σ Known

σ Unknown

Consider the test

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

The decision rule is:

Reject H₀ if
$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1,\alpha}$$

(Assume the population is normal)

K. Drakos, Quantitative Methods

101

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

Reject
$$H_0$$
 if $t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} < -t_{n-1, \alpha/2}$ or if $t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_n$

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \alpha/2}$$

Example: Two-Tail Test (σ Unknown)

The average cost of a 5-star hotel room in Athens is said to be 168 euros per night. A random sample of 25 hotels resulted in $x = 17\overline{2}.50$ euros and

s = 15.40 euros. Test at the

 $\alpha = 0.05$ level.

(Assume the population distribution is normal)

$$H_0$$
: $\mu = 168$

$$H_1$$
: µ ≠ 168

Example Solution: Two-Tail Test

$$H_0$$
: $\mu = 168$

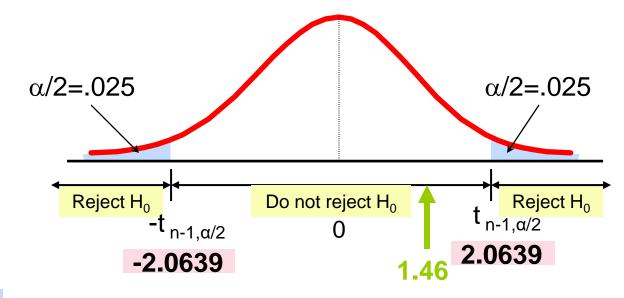
 H_1 : $\mu \neq 168$

•
$$n = 25$$

•
$$a = 0.05$$

- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24, 0.025} = \pm 2.0639$$



$$t_{n-1} = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168