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LINEAR ALGEBRA 

 

1. Introduction - Notation 

 

A matrix is a rectangular array of numbers, such as: 

2 5 6

20 1 0

− 
 
 

 

An item in a matrix is called entry or element. The example has entries: 2, -5, 6, 20, 1 and 0. 

The horizontal and vertical lines in a matrix are called rows and columns, respectively. To 

specify a matrix size, a matrix with m rows and n columns is called a m n  matrix, while m and 

n are its dimensions. The example is 2 3  matrix. 
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A matrix with one row (a 1 n  matrix) is called a row vector and a matrix with one column (a 

m 1  matrix) a column vector. For example, the first row of the above example 

( )2 5 6−  

is a row vector, while its second column 

5

1

− 
 
 

 

is a column vector. 

 

In general, a m n  matrix is represented as: 
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11 12 1n

21 22 2n

mn

m1 m2 mn

a a a

a a a
A

a a a

 
 
 =
 
 
 

 

The elements of the matrix are represented as: 

ija , i 1,2,...,m and j 1,2,...,n= =  

The subscripts of each element show its position in the matrix. Thus, the element 12a  lies on 

the first row and the second column of the matrix. 

 

The transpose of a matrix A is another matrix A ' created by any one of the following 

equivalent actions: 

• Write the rows of A as the columns of A ' 

• Write the columns of A as the rows of A ' 
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Formally, the (i,j) element of A is the (j,i) element of A '. Thus, if A is a m n  matrix then A ' is a 

n m  matrix. 

 

A square matrix has an equal number of columns and rows. 

A zero matrix has all its elements equal to zero. 

A diagonal matrix is a square matrix with all the elements equal to zero except those of the 

main diagonal. 

An identity matrix is a diagonal matrix with all the elements of the main diagonal equal to 1, 

i.e, 

nn

1 0 0

0 1 0
I

0 0 1

 
 
 =
 
 
 
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In a symmetric matrix the elements are symmetric with respect to the main diagonal. Thus a 

symmetric matrix is a square matrix with: ij jia a , i, j with i j=   . 

 

MATRICES ARE USEFUL FOR: 

• Solving a linear system of equations, or finding whether or not this system has a (unique) 

solution 

• An input-output analysis which describes a production process in macroeconomics 

• A multiple regression analysis in econometrics 

• A portfolio optimization problem in investments. 
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2. Matrix Operations 

When two or more matrices are added or subtracted, these matrices should be compatible. 

This means they should have the same dimensions. 

The rule of addition and subtraction of a matrix states that the respective elements of the 

matrices are added or subtracted. 

The new matrix that will come up after the addition or subtraction of two or more matrices will 

have the same dimensions as them. 

Properties of matrix addition: 

• Commutative law: A + B = B + A 

• Associative law: (A + B) + C = A + (B + C) 

 

The multiplication of a matrix with a real number is called scalar multiplication. 
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The rule of scalar multiplication states that the real number should be multiplied with each 

element of the matrix. 

 

The inner product of a 1 n  row vector ( )1 2 na ' a a a=  and a n 1  column vector 

1

2

n

b

b
b

b

 
 
 =
 
 
 

 is equal to the number: 

n

1 1 2 2 n n i i

i 1

a 'b a b a b ... a b a b
=

= + + + =  

To define the inner product of two vectors the number of the rows of the first vector should be 

equal to the number of the columns of the second. 
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Example 1: In a linear regression model the dependent variable is linearly related to several 

other variables, called the independent variables. Let 
i

y  be the i-th observation of the 

dependent variable in question and let ( )
i i1 i 2 iK

x ' x x x=  be the i-th observation of the K 

independent variables. Then, 

i 1 i1 2 i 2 K iK i
y x x ... x= + + + +   

where ( )
1 2

'


 =     are unknown parameters to be estimated and 
i
  is an unobserved 

error term. The above linear regression model can be written as an inner product as: 

i i i i
y x '=  +   

 

Example 2: Assume an investor that invested in a portfolio of n stocks. The weights of the 

stocks in the portfolio are represented by the row vector ( )1 2 nw' w w w=  with 

n

i

i 1

w 1
=

= . The expected annual returns of the n stocks are represented by the column vector 
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1

2

n

r

r
r

r

 
 
 =
 
 
 

. Then, the expected annual return of the portfolio is given by the inner product of 

vectors w ' and r, i.e., 

n

i i

i 1

w 'r w r
=

=  

If for example the portfolio contains 4 stocks with weights: ( )w' 0.2 0.3 0.1 0.4=  and 

expected annual returns: 

0.1

0.2
r

0.15

0.05

 
 
 =
 
 
 

, then the expected annual return of the portfolio is equal 

to: 

 w'r 0.2 0.1 0.3 0.2 0.1 0.15 0.4 0.05 0.115=  +  +  +  =  
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Multiplication of two matrices is defined only if the number of columns of the left matrix is the 

same as the number of rows of the right matrix. If A is a m n  matrix and B is a n p  matrix, 

then their matrix product C = AB is the m p  matrix whose entries are given by the inner 

product of the corresponding row of A and the corresponding column of B: 

n

ij ik kj i1 1j i2 2 j in nj

k 1

c a b a b a b ... a b
=

= = + + +  

For example, the multiplication of two 2 2  matrices A and B yields: 

( ) ( )

( ) ( )

11 12 11 12

21 22 21 22

11 12

11 12 11 12

21 22

11 12

21 22 21 22

21 22

a a b b
AB

a a b b

b b
a a a a

b b

b b
a a a a

b b

  
= =  
  

    
    

    = =
    
     

    
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11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

a b a b a b a b

a b a b a b a b

+ + 
=  

+ + 
 

 

Example 3: Assume an investor that invested in a portfolio with n stocks. The weights of the 

stocks in the portfolio are represented by the row vector ( )1 2 nw' w w w=  with 

n

i

i 1

w 1
=

= . The variance-covariance matrix V of the n stocks is a n n  matrix with the (i,i) 

element being the annual return variance of the i-th stock and the (i,j) element being the 

covariance between the i-th and the j-th stock. Then, the variance of the portfolio annual 

return is given as: 

w'Vw  

If ( )w' 0.2 0.1 0.1 0.35 0.15 0.05 0.05=  and the variance-covariance matrix is equal 

to: 
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 ΕΜΠ ΑΕΓΕΚ ΑΛΦΑ ΒΙΟΧΚ ΕΛΑΙΣ ΕΤΕ ΟΤΕ 

ΕΜΠ 0.00473 0.00199 0.00262 0.00132 0.00196 0.00362 0.00213 

ΑΕΓΕΚ 0.00199 0.00498 0.00142 0.00173 0.00201 0.00144 0.00143 

ΑΛΦΑ 0.00262 0.00142 0.00239 0.00152 0.0015 0.00239 0.00159 

ΒΙΟΧΚ 0.00132 0.00173 0.00152 0.0036 0.00176 0.00174 0.00141 

ΕΛΑΙΣ 0.00196 0.00201 0.0015 0.00176 0.00438 0.00161 0.00117 

ΕΤΕ 0.00362 0.00144 0.00239 0.00174 0.00161 0.00351 0.00198 

ΟΤΕ 0.00213 0.00143 0.00159 0.00141 0.00117 0.00198 0.00316 

 

Then, the variance of the portfolio return is equal to 0.0022. 

 

Properties of matrix multiplication: 

• The commutative law does not hold: AB BA  
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• Associative law: (AB)C = A(BC) 

• Distributive law: (A + B) C = AC + BC 

• Multiply with the identity matrix:  AI = IA = A 

 

Properties of transpose matrices: 

• ( )A' ' A=  

• ( )A B ' A' B'+ = +  

• (AB) ' B'A '=  

• ( )cA ' cA'=  
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3. The determinant of a matrix 

 

The determinant is a special number associated with any square matrix. The fundamental 

geometric meaning of a determinant is a scale factor for measure when the matrix is regarded 

as a linear transformation. 

 

The Laplace expansion of a n n  square matrix A gives the determinant, denoted as A , of the 

matrix. This is the sum of n determinants of (n 1) (n 1)−  −  sub-matrices of A. There are 2n  

such expressions, one for each row and column of A. 

Define the (i,j) minor matrix 
ij

M  of A as the (n 1) (n 1)−  −  matrix that results from deleting the 

i-th row and the j-th column of A, and 
ij

C  the cofactor of A as i j

ij ij
C ( 1) M+= − . 

Then the Laplace expansion gives the determinant of A as: 
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i1 i1 i 2 i 2 in in

1 j 1 j 2 j 2 j nj nj

A a C a C ... a C

a C a C ... a C

= + + + =

= + + +
 

 

Example 4: The determinant of a 2 2  matrix 
11 12

21 22

a a
A

a a

 
=  
 

 is equal to: 
11 22 12 21

A a a a a= − . 

 

Example 5: Consider the matrix 

1 2 3

A 4 5 6

7 8 9

 
 

=
 
 
 

. The determinant of this matrix can be 

computed using the Laplace expansion along the first row: 

5 6 4 6 4 5
A 1 2 3

8 9 7 9 7 8

1 ( 3) 2 ( 6) 3 ( 3) 0

=  −  +  =

=  − −  − +  − =
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Properties of determinants: 

• If all the elements of a row or column of a matrix are zero, then the determinant of the 

matrix is equal to zero 

• If B results from A by interchanging two rows or two columns, then B A= −  

• If B results from A by multiplying one row or one column with a number c, then B c A=   

• If B results from A by adding a multiple of one row to another row, or a multiple of one 

column to another column, then B A=  

• n

nn nn
cA c A=  

• AB A B=  

• A' A=  
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Consider a n n  matrix A and consider that there exists a vector ( )
1 2 n

' 0 =      for 

which: 

11 12 1n

21 22 2 n

1 2 n

n1 n 2 nn

a a a

a a a
... 0

a a a

     
     
      +  + +  =
     
     
     

 

Then the vectors ( )
1 2 n

a a a  are linearly dependent. In this case the determinant of A is 

equal to zero.1 This matrix is called singular.  

This is exactly what happens in Example 5 where the sum of the first and third column is twice 

the second column. 

 

 

1 The same holds when the columns of the matrix are linearly dependent.  
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4. The inverse of a matrix 

 

The inverse of a square matrix is a new matrix 1A−  (with the same dimensions with A) such 

that: 

1 1AA A A I− −= =  

The calculation of the inverse of a matrix is required when we need to “move” the matrix from 

one side of the equation to the other in order to solve a linear system of equations. For 

example, if AX B= , then by multiplying in the left both sides of the equation with 1A−  we 

obtain: 

1 1 1 1A AX A B IX A B X A B− − − −=  =  =  

 

The inverse of a matrix can be calculated as: 



Quantitative Methods                                                                     

 
21 

1 1
A adj(A)

A

− =  

where adj(A) is the adjoint matrix of A. 

If i j

ij ij
C ( 1) M+= −  defines the cofactor matrix of A, then 

adj(A) C'=  

From the above equation it becomes apparent that the inverse of the matrix is defined only 

when the determinant A 0 . If this property holds then the matrix is called invertible or non-

singular. 

 

Example 6: The inverse of a 2 2  matrix 
11 12

21 22

a a
A

a a

 
=  
 

 is: 
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22 121

21 1122 11 12 21

a a1
A

a a(a a a a )

−
− 

=  
−−  

 

 

Properties of the inverse of a matrix: 

• ( )
1

1A A
−

− =  

• ( )
1

1 1cA c A
−

− −=  

• ( ) ( )
1

1A' A '
−

−=  

• ( )
1

1 1AB B A
−

− −=  

• 1

A 1/ A
−

=  
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SYSTEM OF LINEAR EQUATIONS 

1. INTRODUCTION – NOTATION 

A system of linear equations is a collection of linear equations involving the same set of 

variables. 

 

Example 7: Consider an economic model that describes demand and supply of an asset. We 

can write that the quantity of the asset that the market demand, denoted as 
d

Q  is: 

d
Q a bP, a,b 0= −   

where P is the price of the asset. The above equation implies that as the price decreases the 

demand increases. The quantity supplied by the market, denoted as 
s

Q  is: 

s
Q c dP, c,d 0= − +   

Now, price and supply are positively related. 
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For the market to be in equilibrium we must also impose: 

s d
Q Q Q=   

These three equations constitute a system of two linear equations with two unknowns that 

describe demand, supply and the asset price in equilibrium. We can therefore write: 

Q a bP

Q c dP

= −

= − +
 

Solving this system with respect to P and Q we determine the market equilibrium. 

 

In general, a system of linear equations is written as: 

11 1 12 2 1n n 1

21 1 22 2 2 n n 2

m1 1 m 2 2 mn n m

a x a x ... a x b

a x a x ... a x b

a x a x ... a x b

+ + + =

+ + + =

+ + + =
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Here 
1 2 n

x ,x ,..., x  are the unknowns (endogenous variables), 
11 12 mn

a ,a ,...,a  are the coefficients of 

the system and 
1 2 m

b ,b ,...,b  are the constant terms (exogenous variables). This is system with m 

linear equations and n unknowns. 

Every system of linear equations can be written in matrix form as follows: 

AX B=                                      (1) 

with 

11 12 1n 1 1

21 22 2n 2 2

(m n) (n 1) (m 1)

m1 m2 mn n m

a a a x b

a a a x b
A , X , B

a a a x b

  

     
     
     = = =
     
     
     

A is the coefficient matrix, X is the 

solution vector and B is the vector of constant terms.  
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For example the system of equations that determines the market equilibrium can be written 

as: 

X BA

1 b Q a

1 d P c

    
=    

− −    
 

 

2. The solution of linear system of equations 

 

A linear system may behave in any one of three possible ways: 

• The system has an infinite number of solutions. 

• The system has a unique solution. 

• The system has no solution (inconsistency) 
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The column rank of matrix A is the maximal number of linearly independent columns of A. 

Likewise, the row rank of A is the maximal number of linearly independent rows of A. Since the 

column rank and the row rank are always equal, they are simply called the rank of A. 

The rank of a m n  matrix is at most min(m,n), i.e.,
mn

r(A ) min(m,n) . When 

mn
r(A ) min(m,n)=  the matrix is said to have full rank. 

Also define the augmented matrix as ( )
m ( n 1)

C A B
+
= .  

 

How can we calculate the rank of a matrix? To do so, we need to transform it to its row 

echelon form. This form should satisfy the following conditions: 

• The first non-zero element in each row, called the leading entry, is 1. 

• Each leading entry is in a column to the right of the leading entry in the previous row. 

• Rows with all zero elements, if any, are below rows having non-zero elements. 



Quantitative Methods                                                                     

 
28 

To transform a matrix to its echelon form we need to do a series of elementary row operations 

as follows: 

1. Pivot the matrix. 

• Start with the first row of the matrix if the entry of the first column is different than 

zero. This entry is known as the pivot. Otherwise, interchange it with another row. 

• Multiply each element in the pivot row by the inverse of the pivot, so the pivot equals 

1. 

• Add multiples of the pivot row to each of the lower rows, so every element in the pivot 

column is equal to 0. 

2. Repeat step 1. 

• Repeat the procedure from step 1 above, ignoring previous pivot rows. 

• Continued until there are no more pivots to be processed. 

 



Quantitative Methods                                                                     

 
29 

Once the row echelon form is found, the rank of the matrix is equal to the number of non-zero 

rows in its echelon form. 

 

Example 8: Consider the following matrix 

0 1 2

A 1 2 1

2 7 8

 
 

=
 
 
 

. To transform this matrix to its 

echelon form we do the following series of elementary row operations: 

0 1 2 1 2 1 1 2 1 1 2 1

1 2 1 0 1 2 0 1 2 0 1 2

2 7 8 2 7 8 0 3 6 0 0 0

       
       
       
       
       

 

The last matrix above is the echelon form. It has two non-zero rows so the rank of matrix A is 

equal to 2, r(A) = 2. 
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Proposition 1: The linear system of equations (1) has a solution if and only if r(A) = r(C).  

 

Example 9: Assume that 
2 2

A
1 1

 
=  
 

 and 
8

B
9

 
=  
 

. Then we can show that r(A) = 1 and r(C) = 2, 

thus the system does not have a solution. 

If 
8

B
4

 
=  
 

, then r(C) = 1 and the system has a solution (though not unique). 

 

Proposition 2: The linear system of equations (1) has a unique solution if r(A) = r(C) = n (where 

n is the number of unknowns). 

 

Consider that m < n (more unknowns than equations). In this case r(A) min(m,n) m n =   

and the system cannot have a unique solution. 
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Proposition 3: If n = m and r(A) = n, then the system (1) has a unique solution.2 

 

In this case the matrix A is invertible. This comes from the fact that A is a square matrix and 

A 0 (since r(A) = n). Thus the solution of the system is: 

1X A B−=  

 

Example 7 (continued): In this case we have that n = m and r(A) = 2, thus the system has a 

unique solution. The inverse of A is: 

1
d b d b1 1

A
1 1 1 1d b d b

−
− −   

= − =   
− −+ +   

 

and 

 

2 This comes from Proposition 2. When n = m we can easily prove that r(C) = n. 
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d b a ad bc1 1
X

1 1 c a cd b d b

−    
= =    

− − ++ +    
. 

Thus, the equilibrium price and quantity are: 
a c

P
b d

+
=

+
 and 

ad bc
Q

b d

−
=

+
, respectively. 

 

Example 10: Consider an economic model with two assets 1 and 2. The demand for the two 

assets is: 

d1 0 1 1 2 2

d 2 0 1 1 2 2

Q a a P a P

Q b b P b P

= + +

= + +
 

where 
1

P  and 
2

P  are the prices of asset 1 and 2, respectively. Similarly, the supply for the two 

assets is: 

s1 0 1 1 2 2

s 2 0 1 1 2 2

Q c c P c P

Q d d P d P

= + +

= + +
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In equilibrium, 

s1 d1 1

s 2 d 2 2

Q Q Q

Q Q Q

= 

= 
 

We can write the above problem as a system of linear equations as follows: 

01 2 1

01 2 2

01 2 1

01 2 2

X BA

a1 0 a a Q

b0 1 b b Q

c1 0 c c P

d0 1 d d P

− −    
   

− −
    =
   − −
   

− −    

 

Thus, we have a 4 4  system of linear equations. Assume that r(A) = 4, then this system has a 

unique solution which determines the equilibrium in this two-assets market. To solve this 

system, one should calculate the inverse of a 4 4  matrix which is not an easy task to do 

without a computer program. However, we can simplify the above system of equations to give 
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an explicit solution without using a computer. To do so, we will use results of matrix algebra 

presented in the previous section. First, write the above system as: 

1 1 1

2 2 2

I A X B

I A X B

    
=    

    
 

which implies: 

1 1 2 1

1 2 2 2

X A X B

X A X B

+ =

+ =
 

Substituting 
1

X  from the first equation to the second we obtain: 

1 1 2 2 2 2 2 1 2 2 1
(B A X ) A X B (A A )X B B− + =  − = −  

Thus we have a 2 2  system of equations which can be easily solved, with respect to 
2

X  as in 

the previous example. Finally, using one of the above equations we can solve for 
1

X . 
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Example 11: A pure, primitive, or Arrow-Debreu security is defined as a security that pays $1 

at the end of a period if a given state occurs and nothing if any other state occurs. The concept 

of pure securities allows the decomposition of market securities into portfolios of pure 

securities. Thus, every market security may be considered a combination of various pure 

securities. Of course, these securities are not traded so they should be inferred from market 

traded securities. 

Consider two securities j and k, whose payoff table is given below: 

 

Payoff table for securities j and k 

Security  State 1 State 2  

j $10 $20 pj = $8 

k $30 $10 pk = $9 
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We want to determine the prices of the pure securities (1, 0) and (0 ,1). Note that we have two 

states of nature and two linearly independent market securities, thus the market is complete. 

This means that the pure securities and uniquely determined. 

By buying 10 units of (1, 0) and 20 units of (0, 1) we can construct the end-of-period payoff of 

security j. Similarly, by buying 30 units of (1, 0) and 10 units of  (0, 1) we can construct the end-

of-period payoff of security k. Since the payoffs of these portfolios equate the payoffs of the 

two market securities, we can assume that the prices should do so. Thus, we can write: 

1 j1 2 j2 j

1 k1 2 k2 k

p Q p Q p

p Q p Q p

+ =

+ =
 

Substituting the values given in the table we obtain: 

1 2

1 2

p 10 p 20 8

p 30 p 10 9

+ =

+ =
 

This is a 2 2  system of equations. Solving for p1 and p2 we obtain: p1 = $0.2 and p2 = $0.3. 
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EIGENVALUES AND EIGENVECTORS 

1. POSITIVE DEFINITE MATRICES 

A symmetric n n  matrix A is said to be positive definite if x 'Ax 0  for all non zero n 1  

vectors x. Similarly, we can define positive semi-definite (x 'Ax 0 ), negative definite 

(x 'Ax 0 ) and negative semi-definite (x 'Ax 0 ). 

If the matrix A is positive definite then it is invertible. 

Positive definite matrices are important for linear regressions analysis and the maximization or 

minimization of a multivariate function. 
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2. Eigenvalues and eigenvectors 

Let know write the system of equations: 

Ax x=   

where A is a n n  square matrix, x is n 1  vector and λ is real number. This system can be also 

written as: 

(A I)x 0−  =  

This is a homogenous system of equations (since the vector of constant terms is zero). A trivial 

solution to the above system (when A I−  is invertible) is X = 0. When, however,  

A I 0− =                                                               (2) 

the system has also non-trivial solutions. The determination of these solutions is known as the 

eigenvalue problem. The values of λ that satisfy equation (2) are known as the eigenvalues of 

matrix A. The non-trivial solutions of x are known as the eigenvectors of matrix A. 

 



Quantitative Methods                                                                     

 
39 

Example 12: Consider the matrix 
5 2

A
2 2

− 
=  

− 
. Then, to find the eigenvalues we solve: 

2
5 2

A I 0 0 7 6 0
2 2

− −
− =  =  +  + =

− −
 

The solutions are λ = -6 and λ = -1. These are the eigenvalues of matrix A. 

For each eigenvalue there is a corresponding eigenvector. This vector can be found by 

substituting one of the eigenvalues back into the original equation. 

For λ = -6 we have that: 

1 2

5 6 2 1 2
x 0 x 0 x 2x

2 2 6 2 4

− +   
=  =  = −   

− +   
 

So, the eigenvector corresponding to λ = -6 is any vector of the form 
2c

, c 0
c

− 
 

 
. 

For λ = -1 we have that: 
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2 1

5 1 2 4 2
x 0 x 0 x 2x

2 2 1 2 1

− + −   
=  =  =   

− + −   
 

So the eigenvector corresponding to λ = -1 is any vector of the form 
c

, c 0
2c

 
 

 
. 

Eignevalues are directly related to whether a matrix is positive definite. More specifically, 

• When all eigenvalues are positive the matrix is positive definite 

• When all eigenvalues are negative the matrix is negative definite (as in the Example 11) 

• When all eigenvalues are non-negative (for example all are positive and one is equal to 

zero) the matrix is positive semi-definite 

• When all eigenvalues are non-positive (for example all are negative and one is equal to 

zero) the matrix is negative semi-definite 

• When eignevalues are both positive and negative the matrix is indefinite. 
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DIFFERENTIATION – DIFFERENTIAL CALCULUS 

 

LIMITS 

 

We define as the limit of a function y = f(x) as x approaches x0 a number L in which the function 

converges. Informally the function has a limit L at an input x0 if f(x) is “close” to L whenever x is 

“close” to x0. In other words, f(x) becomes closer and closer to L as x moves closer and closer to 

x0. In this case we write, 

0x x
limf (x) L
→

=  
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In order for the limit to exist the function f(x) should approach L both from the left and the 

right, that is, 

0 0x x x x

limf (x) limf (x) L
− +

→ →

= =  

In the following graph this is not true. As you observe the function converges to different 

numbers as x approaches x0 from the left and the right. In this case the limit of f at x0 does not 

exist. 

f(x) 

L 

x 
x0 

  

f(x) 
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Properties of limits:  

Assume that 
x p x p
limf (x) a, limg(x) b

→ →
= = , then 

• 
x p
lim f (x) a, for

→
 =    

• 
x p
lim(f (x) g(x)) a b

→
 =   

 
     q 

 

L 

 

x x0 

f(x) 
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• 
x p
limf (x)g(x) ab

→
=  

• 
x p

f (x) a
lim , if b 0

g(x) b→
=   

• 
x p
lim f (x) a

→
=  

• n n

x p
limf (x) a

→
=  

 

Limits can be used to determine the asymptotes of a function. The line y = a is the horizontal 

asymptote of a function f if: 

x x
limf (x) a or limf (x) a
→+ →−

= =  

The line x = a is the vertical asymptote of a function f if: 

x a x a
limf (x) or limf (x)

− +→ →
=  =   
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Example 13: Consider the function f(x) = 1/x. 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 1 2 3 4

 

 

Then we can prove that: 



Quantitative Methods                                                                     

 
46 

• 
x x
limf (x) 0 and limf (x) 0
→+ →−

= = , so 0 is a horizontal asymptote of the function. 

• 
x 0 x 0
limf (x) and limf (x)

+ −→ →
= + = − , so the function f is discontinuous at 0 and 0 is a vertical 

asymptote of the function. 
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2. CONTINUITY 

A function is continuous at x0 if: 

0
0x x

limf (x) f (x )
→

=  

The above definition implies that for a function to be continuous at a specific point then the 

following conditions should be satisfied: 

• The limit of f(x) at x0 exists. 

• This limit is equal to f(x0) 

The function f is continuous at A if it continuous at every x A . 

 

Using the properties of limits one can easily show that if the functions f and g are continuous at 

x0 then the functions: n

0

f
f , f g, fg, if g(x ) 0, f and f

g
    are also continuous at x0.  
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We can also define continuity using the left and right limits. 

If f is defined on x0 and 
0

0
x x

limf (x) f (x )
+

→

=  the function is right continuous at x0.  

If f is defined on x0 and 
0

0
x x

limf (x) f (x )
−

→

=  the function is left continuous at x0. 

A function f is continuous at x0 if it is both right and left continuous at this point, i.e, 

0 0
0

x x x x

limf (x) limf (x) f (x )
+ −

→ →

= =  

If a function is not continuous at point x0 it is called discontinuous at this point. From the 

above definition a function is discontinuous if one of the following conditions holds: 

• 
0 0x x x x

limf (x), limf (x)
+ −

→ →

 do not exist. 

• 
0 0x x x x

limf (x) limf (x)
+ −

→ →

  

• 
0 0

0
x x x x

limf (x) limf (x) L f (x )
+ −

→ →

= =   
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3. Definition of the first derivative 

 

Assume a function y = f(x). Consider point A with coordinates (x0,f(x0)) and B another point on 

the curve with coordinates (x,f(x)). The slope of the line AB is: 0

0

f (x) f (x )

x x

−

−
, that is the rate of 

change of y with respect to the change of x. As x approaches x0 (or B approaches A) line AB 

approaches the tangent line at the point A. The slope of this tangent line at A is the first 

derivative of the function f at x0. It is also called the instantaneous rate of change. Formally 

this is defined as: 

0

0

0x x

0

f (x) f (x )
lim f '(x )

x x→

−
=

−
 

 



Quantitative Methods                                                                     

 
50 

 

 

Alternatively, one could consider that the independent variable x changes by Δx, that is, from 

x0 to x0 + Δx. In this case the dependent variable would change from f(x0) to f(x0 + Δx). This 

change is equal to: Δy = f(x0 + Δx) - f(x0). The mean change of y with respect to x in the interval 

(x0, x0 + Δx) is: 

x  

y 

y 

  x0            x          x 

 
A 

B B 
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0 0

0

f (x x) f (x ) y

x x x x

+  − 
=

+  − 
 

If the limit 

x 0

y
lim

x →




 

is finite then we say that the function f is differentiable at x0. This limit is the first derivative of f 

at x0. Setting x = x0 + Δx we obtain the previous definition of the first derivative. 

 

If the function f is differentiable at a set A of its domain, then we define a new function on A 

that assigns to every point x A the first derivative of f at x. This function is called first 

derivative or simply derivative of f and it is denoted as f '(x)  or 
df (x) dy

dx dx
 .  
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Example 14: Consider the function 2f (x) 3x 4= − . Then we have that: 

22

0 0

2 22

0 0 0

2

0

0

y 3(x x) 4 (3x 4)

x x

3(x 2x x x ) 3x

x

6x x 3 x
6x 3 x

x

 +  − − −
= =

 

+  +  −
= =



 + 
= = + 



 

So, 
0x 0

y
lim 6x

x →


=


. 

Since x0 is an arbitrarily chosen point of the domain of f the last result implies that the 

derivative of f is: 

f '(x) 6x=  
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The above result implies that the instantaneous rate of change of y with respect to x is 

different at different points of the domain. In other words, how much would y change with 

respect to x depends on the value of x.  

Theorem 1: If a function f is differentiable at a point x0 of its domain, then f must also be 

continuous at x0. 

 

The opposite does not hold. Thus, continuity of f is necessary but not sufficient for the 

differentiability of f at x0. In other words, if f is discontinuous at x0 then the derivative of f at x0 

does not exist. On the other hand, if f is continuous at x0 the derivative may or may not exist. 
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4 2 2 4

1

2

3

4

5

4 2 2 4

1.0

0.5

0.5

1.0
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4. Rules of differentiation 

The following table gives the derivative of some well-known functions. 

 

f (x)  f '(x)  

c 0 

x 1 

cxn cnxn-1 

ex ex 

lnx 1/x 

 

The derivative has also the following properties: 
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• 
d

(f (x) g(x)) f '(x) g '(x)
dx

 =   

• 
d

(f (x)g(x)) f '(x)g(x) f (x)g '(x)
dx

= +  

• 
2

d f (x) f '(x)g(x) f (x)g '(x)
, if g(x) 0

dx g(x) g(x)

  −
=  

 
 

• 1d 1
f (x)

dx f '(x)

− =  

• 
d

f (g(x)) f '(g(x))g '(x)
dx

=  (Chain rule) 

 

The last property and the results of the previous table imply: 

• n n 1d
f (x) nf (x) f '(x)

dx

−

=  
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• f ( x ) f ( x )d
e e f '(x)

dx
=  

• 
d f '(x)

ln f (x)
dx f (x)

=  

 

5. The instantaneous rate of growth 

 

Assume that a variable y is a function of time t. For example, the final amount of money which 

is compounded is a function of time, y = f(t). 

The instantaneous rate of growth of y is defined as: 

dy / dt f '(t)

y f (t)
=  

which is also equivalent (see the last bullet) to: 
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d
ln y

dt
 

This last property enables us to determine the instantaneous rate of growth in many economic 

problems. 

 

Example 15: Assume that rt

0
y(t) y e= . Then we can write, 

0
ln y(t) ln y rt= +  

and the instantaneous rate of growth equals: 

d
ln y r

dt
=  

which is constant. If r > 0 the variable y exponentially increases with respect to t, while when r 

< 0 the variable exponentially decreases. 
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The notion of constant instantaneous growth rate is very familiar in finance. Assume that r is 

an interest rate. Then y(t) gives the amount of money one would collect from time 0 (when 

he/she invests y0) to time t if this amount of money is continuously compounded. That is in 

every time period there is a flow of cash that increases your money by r. This r is equal to the 

percentage change of the variable in a very small period of time. Notice that the absolute 

change is not constant, actually it increases with respect to t, because the more money you 

invest the more you gain from them. 

The exponential function that appears in the continuous compounding formula is related to 

the well-known discrete compounding formula 

nt

0

r
y(t) y 1

n

 
= + 

 
 

This comes from the fact that: 

nt

rt

n

r
lim 1 e

n→

 
+ = 

 
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So, when the number of compounding during the year (given by n) approaches infinity the 

discrete compounding formula approaches the exponential function. 

 

5. Monotonicity 

 

Consider a function y = f(x). This function is called increasing (decreasing) over its domain if for 

every x1, x2 of the domain with x1 < x2 we have 
1 2

f (x ) f (x )  (
1 2

f (x ) f (x ) ). This is equivalent 

to: 

1 2

1 2

y f (x ) f (x )
0( 0)

x x x

 −
=  

 −
 

 

The function is called strictly increasing (strictly decreasing) if for x1 < x2 we have 
1 2

f (x ) f (x )  

(
1 2

f (x ) f (x ) ). 
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Theorem 2: Consider a function f which is differentiable over its domain A. Then the following 

arguments hold: 

• f is increasing on A if and only if 
0

f '(x ) 0  for every 
0

x A . 

• f is decreasing on A if and only if 
0

f '(x ) 0  for every 
0

x A . 

• If 
0

f '(x ) 0  for every 
0

x A  then f is strictly increasing on A. 

• If 
0

f '(x ) 0  for every 
0

x A  then f is strictly decreasing on A. 

 

From the theorem it is obvious that if f is strictly increasing (decreasing) this does not imply 

that 
0

f '(x ) 0  (
0

f '(x ) 0 ). For example the function f(x) = x3 is strictly increasing but f '(0) 0= . 
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6. Convexity 

 

Consider the function y = f(x). This function is called convex if for any two points x1 and x2 in its 

domain and any  t 0,1 , 

1 2 1 2
f (tx (1 t)x ) tf (x ) (1 t)f (x )+ −  + −  

The function is called concave if 

1 2 1 2
f (tx (1 t)x ) tf (x ) (1 t)f (x )+ −  + −  

If the order   in the definition of convexity is replaced by the strict order < then one obtains a 

strictly convex function. Again, by inverting the order symbol, one finds a strictly concave 

function.  
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Theorem 3: Consider a function f twice differentiable on its domain A. Then the following 

arguments hold: 

• f is convex on A if and only if 
0

f ''(x ) 0  for every 
0

x A .3 

• f is concave on A if and only if 
0

f ''(x ) 0  for every 
0

x A . 

• If 
0

f ''(x ) 0  for every 
0

x A  then f is strictly convex on A. 

• If 
0

f ''(x ) 0  for every 
0

x A  then f is strictly concave on A. 

 

 

 

 

 

3 The function y f ''(x)=  is the second derivative of the function f. It can be defined as the first derivative of the first derivative function y f '(x)= . 
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7. Extrema 

A large number of problems in economics, finance and business administration are related to 

determine the maximum or the minimum point of a function. In some of these problems 

additional constraints should be imposed, leading to the constrained optimization of the 

function. We will examine these problems in the reminder of the course. Examples of such 

problems are: 

• Find the optimal portfolio which maximizes return (or minimizes the risk) 

• Determine asset prices and returns assuming a representative investor maximizing his/her 

utility function. 

• Determine the quantity of products that a firm should produce to maximize its profits. 

• Determine the optimal timing of investing or selling an asset. 
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A function f is said to have a local maximum at x*, if there exists some ε > 0 such that 
*f (x ) f (x)  when *

x x−   . 

A function f is said to have a local minimum at x*, if there exists some ε > 0 such that 
*f (x ) f (x)  when *

x x−   . 

A function is said to have a global maximum at x*, if *f (x ) f (x)  for all x. 

A function is said to have a global minimum at x*, if *f (x ) f (x)  for all x. 

The local (global) minima and maxima are known as the local (global) extrema.  
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If the order or   is replaced by the strict order < or > for all *x x then the global and local 

maxima are unique. 
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Theorem 4: Consider a function f which is differentiable on the interior of its domain. If the 

point x* is a local extremum of the function, then f '(x*) 0= . 

 

Remarks: 

• The above theorem implies that a point x* with f '(x*) 0  cannot be a local extremum of f. 

To this end, the above condition is a necessary condition for the existence of a local 

extremum. It is also called first order condition.  

• The opposite argument does not hold. For example, the function f(x) = x3 has f '(0) 0=  but 

0 is not a local maximum or minimum. These points where the first derivative is equal to 

zero are called stationary points. 

• The requirement that x* belongs to the interior of the function domain is necessary. A 

function which is defined on a closed set could have local extrema on the bounds of this 

domain. For example, the function f(x) = x2 + 1 defined on the closed set [1,4] has 

minimum on x = 1 and maximum on x = 4, but f '(1) 2 0=   and f '(4) 8 0=  . 
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• A function could have local extrema in the interior of its domain without being 

differentiable at this point. For example, the function f (x) x=  is not differentiable on 0 

but it has a local minimum on this point. 

 

In general, a function f defined over a closed and bounded domain A can have an extremum in 

the following points: 

• Stationary points 

• Bounds of the domain A 

• Points where f is not differentiable 

• Points where f is not continuous 

The points where f can have an extremum are called critical points of f. 
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Consider that the function f has an extremum on the interior of its domain. Then the following 

theorem characterizes this extremum. 

 

Theorem 5: Consider a function f twice differentiable on the interior of its domain and a point 

x* of this interior with f '(x*) 0= . 

• If f ''(x*) 0 , then f has a local minimum on x*. 

• If f ''(x*) 0 , then f has a local maximum on x*. 

 

These conditions are known as the sufficient conditions for determining a local extremum. 

They are also called second order conditions. 

 

The sufficient conditions of the above theorem do not cover the case where f ''(x*) 0= . For 

example, the function f(x) = x4 has f '(0) f ''(0) 0= =  and 0 is a local minimum. On the other 
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hand, the function f(x) = x5 has also f '(0) f ''(0) 0= =  but 0 is just a point of inflexion. Thus, we 

need a more general statement than theorem 5 to cover all the possible cases. This is given by 

the following theorem. 

 

Theorem 6: Consider a function f n-differentiable on the interior of its domain and consider a 

point x* of this interior for which: 

( n 1) ( n )f '(x*) f ''(x*) ... f (x*) 0, f (x*) 0−= = = =   

Then, 

• If n is even then, 

o If ( n )f (x*) 0 , then f has a local minimum on x* 

o If ( n )f (x*) 0 , then f has a local maximum on x* 

• If n is odd, then f has a point of inflexion on x*. 
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For example, the function f(x) = x6 has: 

(5)f '(0) f ''(0) ... f (0) 0= = = =  

and (6)f (0) 720 0=  . Thus, it has a local minimum on 0. On the other hand, the function f(x) = 

x5 has: 

( 4)f '(0) f ''(0) ... f (0) 0= = = =  

and (5)f (0) 120 0=  . Thus, it has a point of inflexion on 0. 

 

The above theorems characterize local minima and maxima. Under certain conditions these 

local extrema are also the global extrema of a function. These are given in the following 

theorem. 
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Theorem 7: Consider a function f defined on a closed and bounded domain A. 

• If f is continuous and concave (convex) on A, then every local maximum (minimum) is also 

a global maximum (minimum). 

• If f is strictly concave (convex), then the global maximum (minimum) is unique. 

 

Example 16: Consider the function 3 21
f (x) x 4x 2

3
= − +  which is continuous and differentiable 

in the domain . 

1. Find the local maxima and minima of f. 

2. Find the intervals where f is increasing and decreasing. 

3. Find the intervals where f is convex and concave. 
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Using the first order condition we specify the points which we may observe local extrema. 

Thus,  

 ( ) ( ) ( )
2

* * * * *
f ' x 0 x 8x 0 x x 8 0=  − =  − =  

Thus, the stationary points of this function are *x 0=  and *x 8= . Using the second order 

condition we can specify if these points are local extrema or points of inflexion. We have that, 

 f ''(x) 2x 8= −  

Thus, f ''(0) 8 0= −   and f ''(8) 8 0=  . So, in x = 0 the function has a local maximum and in x = 8 

it has a local minimum. 

To determine the intervals where f is increasing or decreasing, we should examine the sign of 

the first derivative. But we know that a function changes signs around its root. Solving for the 

first order condition we find that the roots of f ' are 0 and 8. At the interval ( ),0− , f '(x) 0 , 

so the function f is (strictly) increasing. At the interval ( )0,8 , f '(x) 0 , and the function f is 

(strictly) decreasing. Finally, at the interval ( )8,+ , f '(x) 0 , so f is (strictly) increasing. 
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To determine the intervals where f is concave or convex, we should examine the sign of the 

second derivative function. If we solve f ''(x) 0 2x 8 0 x 4=  − =  = , we find that f ''  changes 

signs around 4. At the interval ( ),4− , f ''(x) 0 , so f is (strictly) concave, whereas at the 

interval ( )4,+ , f ''(x) 0 , so f is (strictly) convex.  

    

 

 

 

8. Profit maximization 

The cost function C = C(Q) specifies the total cost C for the production of a quantity Q. We also 

define the marginal cost as 

dC
MC

dQ
=  
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and the average cost as 

C
AC

Q
=  

According to economic theory the function C has the following characteristics: 

• It is strictly increasing (C'(Q) 0 ) because as the quantity increases the cost also 

increases. 

• For small values of Q the cost increases with a decreasing rate, so C''(Q) 0  for Q < Q1, 

and then it increases with increasing rate, so C''(Q) 0  for      Q > Q1. Thus Q1 is a point of 

inflexion of C. This is due to the law of diminishing returns. 

 

The revenue function R = R(Q) specifies the total income R earned by selling a quantity Q. We 

define the marginal revenue as 
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dR
MR

dQ
=  

and the average revenue as 

R
AR

Q
=  

 

Consider a firm which wants to determine the quantity of products Q that maximizes its 

profits. 

The profit function is defined as: 

(Q) R(Q) C(Q) = −  

The first order condition determines that a local extremum Q* exists when: 

'(Q*) 0 R '(Q*) C'(Q*) MR MC =  =  =  

that is, when marginal revenue is equal to marginal cost. 
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The second order condition determines that this point correspond to a maximum if 

dMR dMC
''(Q*) 0 R ''(Q*) C''(Q*)

dQ dQ
       

Thus at the point where the profit function is maximized the slope of the marginal revenue is 

smaller to the slope of the marginal cost. 

 

Example 17: Assume that the firm is a monopoly. In this case the firm can determine for itself 

the quantity and the price of the product. Even in this case the firm cannot impose an 

extremely high price because demand would decrease, causing the decrease of profits. Assume 

that the relation between demand quantity Q and price P is determined by the function P = 

f(Q) for which f '(Q) 0 . 

Assume that f(Q) = 250 – 20Q. 

In this case the revenue function is equal to: 
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2R(Q) QP Q(250 20Q) 250Q 20Q= = − = −  

and the marginal revenue equals: 

dR
MR 250 40Q

dQ
= = −  

Assume that 3 21 7
C(Q) Q Q 15Q 100

3 2
= − + +  

Then, 

2dC
MC Q 7Q 15

dQ
= = − +  

The first order condition gives: 

2 2MR MC 250 40Q Q 7Q 15 Q 33Q 235 0=  − = − +  + − =  

The solutions of the last equation are Q1 = -39.02 which is rejected and Q2 = 6.02. 

The second order condition is: 
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dMR dMC
40 2Q 7

dQ dQ
  −  −  

which holds for Q = 6.02, so at this point the profit of the firm is maximized. For this quantity 

demanded the price should be set at P = 129.6. 
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 Example 18: Assume that the firm operates in a perfectly competitive market. In this case it 

cannot influence the price of the product and the price is considered constant both for 

demanders and suppliers. 

The revenue function is equal to: R(Q) PQ=  and the marginal revenue is constant, MR P= . 

Assume now that the firm of the previous example operates in a perfectly competitive market 

with P 50= . 

The first order condition is: 

2 2MR MC 50 Q 7Q 15 Q 7Q 35 0=  = − +  − − =  

The solutions of the last equation are Q1 = -3.37 which is rejected and Q2 = 10.37. 

dMR dMC
0 2Q 7

dQ dQ
   −  

For Q2 = 10.37 this condition is satisfied, so for this quantity produced the firm maximizes its 

profits. 
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9. Partial derivatives 

 

In many real problems that we face in economics and finance a variable depends on a number 

of other variables. For example, the demand for a specific car depends on its price, the prices 

of other cars in the same category, the income of consumers, the age of the car e.t.c. Thus, we 

need to introduce multivariate functions in order to describe these types of relations. Their 

general form is: 

1 2 n
y f (x ,x ,...,x ) f (x)= =  

where y is the dependent variable and 
1 2 n

x ' (x ,x ,...,x )=  is the vector of independent variables. 

A partial derivative measures the instantaneous rate of change of the dependent variable with 

respect to one independent variable assuming that all the others are constant. For the previous 

function f we can define n partial derivatives, 

1 2 n

f f f
, ,...,

x x x

  

  
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The rules for calculating a partial derivative are the same to the rules of calculating a derivative 

and are given below: 

• If z f (x)g(x)= , then 
j j j

z g g
f (x) g(x)

x x x

  
= +

  
 

• If 
f (x)

z , g(x) 0
g(x)

=   then j j

2

j

g g
f (x) g(x)

x xz

x g(x)

 
−

 
=


  

• If nz f (x)=  then n 1

j j

z f
nf (x)

x x

− 
=

 
 

• If z = f(x,y) with x = g(u,v) and y = h(u,v) then, 
z f x f y

u x u y u

    
= +

    
 and 

z f x f y

v x v y v

    
= +

    
. 
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10. Constrained optimization 

In several problems that we face in economics and finance we must maximize or minimize a 

multivariate function with respect to several constraints. For example, 

• To maximize the production function with respect to budget constraints. 

• To maximize the expected utility of an investor with respect to budget constraints. 

• To minimize the risk of a portfolio with respect to the return expected by the investor. 

 

The problem can be written as follows: 

1 n
1 nx ,...,x

j 1 n j

max f (x ,..., x )

s.t.c g (x ,..., x ) b , j 1,2,...,m.= =
              (3) 

 

The following theorem helps us solve this problem. 
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Theorem 8: If 
1 2 n

x* (x *,x *,...,x *) '=  is a local extremum of the problem (3) then it exists a 

vector 
1 2 n

* ( *, *,..., *) ' =     such as 

m
j

j
j 1

i i

g (x*)f (x*)
* 0, i 1,2,...,n

x x=


−  = =

 
 

 

The above theorem implies that in order to find x* and λ* we must first write the Lagrangian 

function 

m

j j j
j 1

L(x, ) f (x) (b g (x))
=

 = +  −  

where λ is the Lagrange multiplier. Then we must solve the following system of equations: 

i

j

L
0, i 1,2,...,n

x

L
0, j 1,2,...,m


= =




= =


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The above system of equations determines the sufficient first order conditions for x* to be a 

local extremum of (3). 

 

We need to determine if this extremum is a maximum or a minimum. For ease of simplicity, we 

will solve the problem for n = 2 and m = 1. 

We define the bordered Hessian matrix as: 

1 2

2 2

L
21 2

1 1 1 2

2 2

2

2 2 1 2

g g
0

x x

g L L
H (x ,x )

x x x x

g L L

x x x x

  
 

 
 
   

=  
   

 
   
 
    
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If LH (x*) 0  then x* is a local maximum If LH (x*) 0  then x* is a local minimum. These are 

the second order conditions.4 

 

Example 19: An individual’s expected utility of end-of-period wealth W1 can be written as 

( ) ( )1 s sE U W U Q=      

where Qs = the number of pure securities paying a dollar if state s occurs. In this context, Qs 

represents the number of state s pure securities the individual buys as well as his end-of-period 

wealth if state s occurs. 

Now consider the problem we face when we must decide how to invest our initial wealth W0 

(how much of each pure security we should buy) in order to maximize the expected utility. We 

 

4 In general, the bordered Hessian matrix is of dimension (n m n n)+  + . In this case x* is a local maximum if the matrix is negative definite. If the matrix is positive definite 

x* is a local minimum.  



Quantitative Methods                                                                     

 
89 

therefore face a problem of maximizing the expected utility subject to a wealth constraint. The 

problem can be written as: 

s

s s
Q

s

max U(Q )  

subject to 

s s 0

s

p Q W=  

Our portfolio decision consists of choices we make for Qs. To solve the above problem, we 

construct the Lagrange function: 

s s s s 0

s s

L U(Q ) p Q W
 

=  − − 
 

   

where λ is a Lagrange multiplier. 

We take the first partial derivatives with respect to the unknown variables Qs and the Lagrange 

multiplier, and we set them equal to zero. 
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s s s

s

s s 0

s

L
U'(Q ) p 0 for every s

Q

L
p Q W 0


=  −  =




= − =




 

Solving the above system of equations, we obtain the solution to our problem. 

 

Consider an investor with a logarithmic utility function of wealth, i.e., U(C) = lnC, and initial 

wealth $5,000. Assume a two-state world where the pure security prices are $0.4 and $0.6 and 

the state probabilities are 1/3 and 2/3. The system of equations can be written as: 
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1 1

2 2

1 2

L 1
0.4 0

Q 3Q

L 2
0.6 0

Q 3Q

L
5,000 0.4Q 0.6Q 0


= −  =




= −  =




= − − =



 

Solving the first two equations we obtain: 

1

2

1
Q

1.2

1
Q

0.9

=


=


 

Substituting these equations to the last equation we obtain: 

0.4 0.6 1
5,000

1.2 0.9 5,000
+ =   =

 
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Therefore, the optimal investment choices are: Q1 = 4,166.7 and Q2 = 5,555.5. 

To ensure that the above solutions define a local maximum we must calculate the bordered 

Hessian matrix. We have that, 

1 2

1 2

g g
p , p

Q Q

 
= =

 
 

and 

2 2 2

1 2

2 2 2 2

1 21 1 2 2

L L L
, , 0

Q QQ Q Q Q

    
= − = − =

  
 

So, 

1 2

2
L 1 1 1

2

2 2 2

0 p p

H p / Q 0

p 0 / Q

 
 

= − 
 − 
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and we can prove that LH 0 , so above solutions define a local maximum. 

 

 

V. Integration 

 

1. Indefinite integral 

 

When we differentiate a function f we calculate the instantaneous rate of change at a point of 

its domain. When this rate of change is known, and we want to find the function itself we take 

the opposite path, and we must apply integration. Thus, integration is the opposite of 

differentiation. If y = f(x) then 
dy

f '(x)
dx

=  and f '(x)dx f (x) c= + . 
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In general we define the indefinite integral of a function f, denoted as f (x)dx , as a family of 

functions described by the formula 

f (x)dx F(x) c, where F'(x) f (x)= + =  

 

Example 20: Consider the function f(x) = x3. The first derivative function is 2f '(x) 3x= . So one 

could assume that the indefinite integral of f ' is 3f '(x)dx x= . However, the first derivative 

function of f(x) = x3 + 2 is also equal to 2f '(x) 3x= . So starting with f ' we are not exactly sure 

about f. However, one thing is certain that the family of functions that have the same f ' differs 

by a constant c. 

 

To specify c a boundary condition should be given. If for example in the previous example we 

know that f(1) = 3 then, 
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3f (x) x c f (1) 1 c 3 1 c c 2= +  = +  = +  =  

So, f(x) = x3 + 2. 

 

2. Rules of integration 

 

We now give the indefinite integrals of some basic functions: 

• adx ax c= +  

• n n 11
ax dx a x c, n 1

n 1

+
= +  −

+  

• 1ax dx a ln x c− = +  

• 
bx

bx a
a dx c

bln a
= +  
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• 
ax

ax e
e dx c

a
= +  

 

The following rules also hold: 

• af (x)dx a f (x)dx=   

• ( )f (x) g(x) dx f (x)dx g(x)dx =     

• f (x)g '(x)dx f (x)g(x) f '(x)g(x)dx= −  (integration by parts) 

• f (g(x))g '(x)dx f (u)du, with u g(x)= =   (integration by substitution) 
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3. Definite integral 

Indefinite integrals can be used to compute definite integrals. If F'(x) f (x)=  then 

b

a

f (x)dx F(b) F(a)= −  

 



Quantitative Methods                                                                     

 
98 

This number defines the net signed area of the region bounded by the graph of the function f, 

the x-axis and the vertical lines x = a and x = b. 

 

The definite integrals have the following properties: 

• 
b a

a b

f (x)dx f (x)dx= −   

• 
a

a

f (x)dx 0=  

• 
b c c

a b a

f (x)dx f (x)dx f (x)dx+ =    

  


